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Abstract

Policy optimization methods with function ap-
proximation are widely used in multi-agent re-
inforcement learning. However, it remains elu-
sive how to design such algorithms with statis-
tical guarantees. Leveraging a multi-agent per-
formance difference lemma that characterizes the
landscape of multi-agent policy optimization, we
find that the localized action value function serves
as an ideal descent direction for each local policy.
Motivated by the observation, we present a multi-
agent PPO algorithm in which the local policy of
each agent is updated similarly to vanilla PPO. We
prove that with standard regularity conditions on
the Markov game and problem-dependent quanti-
ties, our algorithm converges to the globally op-
timal policy at a sublinear rate. We extend our
algorithm to the off-policy setting and introduce
pessimism to policy evaluation, which aligns with
experiments. To our knowledge, this is the first
provably convergent multi-agent PPO algorithm
in cooperative Markov games.

1. Introduction
Recently, multi-agent reinforcement learning (MARL) has
demonstrated many empirical successes, e.g., popular strat-
egy games such as Go (Silver et al., 2016), StarCraft
II (Vinyals et al., 2019), and poker (Brown & Sandholm,
2018). In contrast to vanilla reinforcement learning (RL),
which is only concerned with a single agent seeking to max-
imize the total reward, MARL studies how multiple agents
interact with the shared environment and other agents.
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Policy optimization methods are widely used in MARL.
These algorithms often parameterize policies with a function
class and compute the gradients of the cumulative reward
using the policy gradient theorem (Sutton et al., 1999) or
its variants (e.g., NPG (Kakade, 2001) and PPO (Schulman
et al., 2017)) to update the policy parameters.

Despite the empirical successes, theoretical studies of pol-
icy optimization in MARL are very limited. Even for the
cooperative setting where the agents share a common goal:
maximizing the total reward function, numerous challenges
arise (Zhang et al., 2021). (1) non-stationarity: each ac-
tion taken by one agent affects the total reward and the
transition of state. Consequently, each learning agent must
learn to adapt to the changing environment caused by other
agents. From the optimization perspective, the geometry of
the multi-agent policy optimization problem becomes un-
clear. Direct application of traditional single-agent analysis
becomes vague due to the lack of stationary Markovian prop-
erty, which states that evolution in the future only depends
on the previous state and individual action. (2) scalabil-
ity: taking other agents into consideration, each individual
agent would face the joint action space, whose dimension in-
creases exponentially with the number of agents. Thus, hav-
ing numerous agents in the environment problematizes the
theoretical analysis of MARL. (3) function approximation:
closely related to the scalability issue, the state space and
joint action space are often immense in MARL, promoting
function approximation to become a necessary component
in MARL at the ease of computation and statistical analysis.

In this paper, we aim to answer the following fundamental
question:

Can we design a provably convergent multi-agent policy
optimization algorithm in the cooperative setting with

function approximation?

We answer the above question affirmatively. We propose a
multi-agent PPO algorithm in which the local policy of each
agent is updated sequantially in a similar fashion as vanilla
PPO algorithm (Schulman et al., 2017). In particular, we
leverage a multi-agent performance difference lemma (cf.
Lemma 4.1), assuming the joint policy is decomposed into
conditional dependent policies. Such a lemma characterizes
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the landscape of policy optimization, showing the superior-
ity of using localized action value functions as the decent
direction for each local policy. Such factorized structure
essentially bypasses the non-stationarity and scalability con-
cerns. To address large state spaces, we parameterize each
local policy using log-linear parametrization and propose to
update the policy parameters via KL divergence-regularized
mirror descent, where the descent direction is estimated
separately. Combining these results, we obtain our multi-
agent PPO algorithm. We prove that the multi-agent PPO
algorithm converges to globally optimal policy at a sublin-
ear rate. Furthermore, we extend multi-agent PPO to the
off-policy setting in which policy is evaluated using samples
collected according to data distribution µ. We prove similar
theoretical guarantees under a coverage assumption of the
sampling distribution.

We summarize our contributions below.

Our contributions. First, by focusing on the factorized
policies, we prove a multi-agent version of the performance
difference lemma showing that the action value functions
are ideal descent directions for local policies. Such a geo-
metric characterization functions as a remedy for the non-
stationarity concern, motivating our multi-agent PPO algo-
rithm.

Second, we adopt the log-linear function approximation for
the policies. We prove that multi-agent PPO converges at

a sublinear O
(

N
1−γ

√
log |A|

K

)
rate up to some statistical

errors incurred in evaluating/improving policies, where K
is the number of iterations, N is the number of agents and
|A| is the action space of each individual agent. The sample
complexity depends polynomially on N , thus breaking the
curse of scalability.

Third, we propose an off-policy variant of the multi-agent
PPO algorithm and introduce pessimism into policy eval-
uation. The algorithm also converges sublinearly to the
globally optimal policy up to the statistical error Õ(n− 1

3 ).
Here, n is the number of samples used to estimate the crit-
ics.1A key feature of the sample complexity bound is that it
only requires single-policy concentrability.

To our knowledge, this is the first provably convergent multi-
agent PPO algorithm in cooperative Markov games with
function approximation.

Organization. This paper is organized as follows. In
Section 2, we review related literature. In Section 3, we
formally describe the problem setup and introduce the neces-
sary definitions. In Section 4, we state the main multi-agent
PPO algorithm in detail. We further extend our results to

1Õ (·) hides logarithmic factors.

the off-policy setting in Section 5. We conclude in Section 6
and defer the proofs to the Appendix.

2. Related Work
Policy optimization Many empirical works have proven
the validity and efficiency of policy optimization methods
in games and other applications (Silver et al., 2016; 2017;
Guo et al., 2016; Tian et al., 2019). These works usually
update the policy parameter in its parametric space using
the pioneering policy gradient (PG) theorem by Sutton et al.
(1999), or many PG variants invented to improve the em-
pirical performances of vanilla PG methods. In particular,
Kakade (2001) introduced the natural policy gradient (NPG)
algorithm which searched for the steepest descent direc-
tion within the parameter space based on the idea of KL
divergence-regularization. Trust region learning-based algo-
rithms are often regarded as advanced policy optimization
methods in practice (Lillicrap et al., 2015; Duan et al., 2016),
showing superior performances with stable updates. Specif-
ically, TRPO (Schulman et al., 2015) and PPO (Schulman
et al., 2017) could be seen as KL divergence-constrained
variants of NPG. A benign feature of these algorithms is the
monotonic improvement guarantees of the expected return.

Despite prosperous empirical findings, the lack of convex-
ity often impedes the development of theories for policy
optimization methods. Denote K and T as the number of
iterations and samples. Agarwal et al. (2020) showed an
iteration complexity of O(K− 1

2 ) and a sample complexity
of O(T− 1

4 ) for online NPG with function approximation.
Shani et al. (2020) considered a sample-based TRPO and
proved a Õ(T− 1

2 ) rate converging to the global optimum,
which could be improved to Õ(1/T) when regularized. Mak-
ing minor modifications to the vanilla PPO algorithm, Liu
et al. (2019) presented a convergence rate of O(K− 1

2 ) to
global optima when parameterizing both policy and Q func-
tions with neural networks. The key to their analysis is
the desirable one-point monotonicity in infinite-dimensional
mirror descent that assists in characterizing the policy up-
dates without convexity. We also make use of similar one-
point properties in our multi-agent PPO algorithm analysis.

MARL Markov Game (MG) is a commonly used model to
characterize the multi-agent decision-making process (Shap-
ley, 1953; Littman, 1994), which can be regarded as a multi-
agent extension to the Markov Decision Process (MDP).
Policy-based algorithms could generalize to large states
through function approximation. There has been grow-
ing interest in developing provably efficient algorithms for
Markov games (Daskalakis et al., 2020; Cen et al., 2021;
Zhao et al., 2022; Ding et al., 2022; Cen et al., 2022). These
works often studied competitive RL settings, e.g., zero-sum
games. Their convergence rates usually depended on vari-
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ous notions of concentrability coefficient and may not scale
tightly under the worst scenario.

Policy optimization for MARL Applying policy opti-
mization methods in the MARL setting is more complicated
than in the single-agent setting because of the non-stationary
environment faced by each agent (Zhang et al., 2021). A
learning paradigm called centralized training with decentral-
ized execution (CTDE) is often used in practice (Kraemer
& Banerjee, 2016; Lowe et al., 2017; Foerster et al., 2018;
Yang et al., 2018; Wen et al., 2019; Zhang et al., 2020). In
CTDE, a joint centralized value function helps to address the
non-stationarity issue caused by other agents. Each agent
has access to the global state and actions of other agents
during training, thus allowing them to adjust their policy
parameters individually. For instance, Lowe et al. (2017)
proposed a multi-agent policy gradient algorithm in which
agents learned a centralized critic based on the observations
and actions of all agents.

Trust region learning (Schulman et al., 2015) has recently
been combined with the CTDE paradigm to ensure mono-
tonic improvements. In particular, IPPO (de Witt et al.,
2020) and MAPPO (Yu et al., 2021) showed strong perfor-
mances of PPO-based methods in the cooperative setting.
The practical efficacy of these methods is usually restricted
by the homogeneity assumption, where the agents share a
common action space and policy parameter. Theoretically,
providing statistical guarantees for policy optimization al-
gorithms in MARL is more complicated than single-agent
scenario (Zhang et al., 2021). In Markov games, the non-
stationary environment faced by each agent precludes direct
application of the single-agent convergence analysis. A re-
cent attempt by Kuba et al. (2022) proposed the first set
of trust region learning algorithms in MARL that enjoyed
monotonic improvement guarantees assuming neither ho-
mogeneity of agents nor value function decomposition rule.
The critical observation leading to their results is the multi-
agent advantage function decomposition rule that builds the
sequential policy update structure. However, they did not
show rates of convergence. In this work, we design a new,
provably convergent PPO algorithm for fully cooperative
Markov games that converges to globally optimal at policy
at sublinear rates by taking advantage of this conditional
dependency structure.

Pessimism-based RL methods Though being able to ac-
count for large state/action spaces, function approximation
also has its own drawbacks. A significant issue arising in
using function approximators is the usual occurrence of a
positive bias in value function (Thrun & Schwartz, 1993).
The learner may not receive an accurate assessment. Numer-
ous empirical works leverage the principle of pessimism to
correct such overestimation (Fujimoto et al., 2018; Laskin

et al., 2020; Lee et al., 2020; Moskovitz et al., 2021). For
example, to reduce the evaluation bias brought by function
approximation, Fujimoto et al. (2018) constructed the Bell-
man target by choosing the minimum of two value estimates
as an intuitive estimate lower bound. Their approach took a
pessimistic view of the value function.

On the theoretical side, a growing body of literature in of-
fline reinforcement learning has also focused pessimism to
account for datasets lacking data coverage (Liu et al., 2020;
Jin et al., 2021; Uehara & Sun, 2021; Rashidinejad et al.,
2021; Zhan et al., 2022). Technically, these works aimed
at maximizing the worst-case rewards that a trained agent
could obtain. Instead of relying on coverage assumptions on
dataset (Munos, 2003; Munos & Szepesvári, 2008; Chen &
Jiang, 2019), these methods provided dataset-dependent per-
formance bounds, thus providing robust results for datasets
lacking exploration for which traditional methods do not
apply. We focus on the off-policy setting in Section 5 where
we leverage the Bellman-consistent pessimism (Xie et al.,
2021). We show concrete bounds under linear function ap-
proximation by assuming a sampling oracle that provides
rewards and transition estimates that are used in approxi-
mating action value functions.

3. Preliminaries
In this section, we introduce necessary notations, problem
setup, and some useful quantities that will be frequently
used in this work.

3.1. Setup and Notations

Setup We consider a fully-cooperative Markov game
(Shapley, 1953; Littman, 1994), which is defined by a tuple
(N ,S,A,P, r, γ). Here, N = {1, . . . , N} denotes the set
of agents, S is the finite state space, A = AN is the product
of finite action spaces of all agents(i.e., joint action space),
P : S × A × S → [0, 1] decides the transition scheme,
a reward function r : S ×A → [0, 1], and γ ∈ [0, 1) is
the discount factor.2 The agents interact with the environ-
ment according to the following protocol: at time step t, the
agents are at state st ∈ S; every agent i takes action ait ∈ A,
drawn from its policy πi(·|st), which together with actions
of other agents gives a joint action at = (a1t , . . . , a

N
t ) ∈ A,

drawn from the joint policy π(·|st) =
∏N

i=1 π
i(·|st); the

agents receive a joint reward rt = r(st,at) ∈ R, and move
to st+1 ∼ P(·|st,at). Given the joint policy π, the transi-
tion probability function P , and the initial state distribution
ρ, we define the discounted occupancy state-action distribu-

2For clarity, we assume N agents share the same set of actions.
It is straightforward to generalize our results to the setting where
action sets are different. See Section 4.
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tion as

dπ(s,a) = (1− γ)E
∞∑
t=0

Prπ(st = s, at = a|s0 ∼ ρ).

The standard value function and action value function are
defined as

Vπ(s) ≜ E
a0:∞∼π,s1:∞∼P

[ ∞∑
t=0

γtrt

∣∣∣ s0 = s

]
,

Qπ(s,a) ≜ E
s1:∞∼P,a1:∞∼π

[ ∞∑
t=0

γtrt

∣∣∣ s0 = s, a0 = a

]
.

The standard advantage function considering all agents is
written as Aπ(s,a) ≜ Qπ(s,a) − Vπ(s). Later, we shall
introduce the agents-specific advantage functions.

Let νπ(s) and σπ(s,a) = π(a|s) ·νπ(s) denote the station-
ary state distribution and the stationary state-action distribu-
tion associated with a joint policy π, respectively. Define
the underlying optimal policy as π∗. We use ν∗ and σ∗ in
this paper to indicate νπ∗ and σπ∗ for simplicity.

Throughout this paper, we pay close attention to the con-
tribution of different subsets of agents to the performance
of the whole team. We introduce the following multi-agent
notations before proceeding to multi-agent definitions.

Notations In this work, we index the N agents with in-
tegers from 1 to N and use set N = {i|i = 1, · · · , N} to
represent all agents. We use m ∈ N to indicate the specific
m-th agent. In particular, the set notation on the superscript
of a term represents the quantities associated with agents
in that set. For example, a{1,2,3} represents the joint action
of agents 1, 2 and 3. We may write index k on superscript
when we refer to the specific k-th agent. When bold sym-
bols are used without any superscript (e.g., a), they consider
all agents. For simplicity, let (m : m′) be shorthand for set:
{i|m ≤ i ≤ m′, i ∈ N}. An example is π1:m(·|s) which
represents the joint policy considering agents 1, 2 · · · ,m.

We now introduce the multi-agent action value functions
and advantage functions that characterize contributions from
specific sub-agents.
Definition 3.1. Let P be a subset in N . The multi-agent
action value function associated with agents in P is

QP
π

(
s,aP

)
≜ Eã∼π̃

[
Qπ

(
s,aP , ã

)]
,

here we use a tilde over symbols to refer to the complement
agents, namely ã = {ai|i ̸∈ P, i ∈ N}.

Let P, P ′ ⊆ N be two disjoint subsets of agents. The multi-
agent advantage function is defined below. Essentially, it
accounts for the improvements of setting agents aP

′
upon

setting agents aP , while all other agents follow π.

AP ′

π

(
s,aP ,aP

′
)
≜ QP∪P ′

π

(
s,aP ,aP

′
)
−QP

π

(
s,aP

)
.

The multi-agent Bellman operators are defined by generaliz-
ing the classic versions.

Definition 3.2. For m ∈ N and any function f : S ×
Am −→ R we define multi-agent Bellman operator T 1:m

π :
RS×Am 7→ RS×Am

as

T 1:m
π f(s,a1:m) :=

E
ã∼π̃

r(s,a1:m, ã) + γ E
ã∼π̃

s′∼P(·|s,a1:m,ã)

f(s′,π1:m)

where f(s′,π1:m) is shorthand for Ea′∼π1:m(·|s′)f(s
′,a′).

It is straightforward to see that Q1:m
π is the unique fixed

point for T 1:m
π , which corresponds to the classic single-

agent Bellman operator.

3.2. KL divergence-regularized mirror descent

We review the mirror-decent formulation in provable single-
agent PPO algorithm (Liu et al., 2019). At the k-th iteration,
the policy parameter θ is updated via

θk+1 ←− argmax
θ

(1)

Ê
[
⟨Ak(s, ·), πθ(·|s)⟩ − βkKL (πθ(·∥s)∥πθk(·|s))

]
.

Hereafter we shall use ⟨·, ·⟩ to represent the inner product
over A. The expectation is taken over Ê, which is an em-
pirical estimate of stationary state-action distribution νπθk

,
and Ak is estimate of advantage function Aπθk .

Adopting the KL-divergence, (1) is closely related to the
NPG (Kakade, 2001) update. As a variant, this formula-
tion is slightly different from the vanilla PPO (Schulman
et al., 2017): here KL(πθ(·∥s)∥πθk(·|s)) is used instead
of KL(πθk(·∥s)∥πθ(·|s)). Such variation is essential for
presenting provable guarantees, which will be shown in the
next section.

4. Multi-Agent PPO
Recall that ν∗ is the stationary state distribution for π∗.
In this section, we desire to maximize the expected value
function under distribution ν∗: J(π) ≜ Es∼ν∗Vπ(s).

This paper aims to present a trust region learning multi-
agent algorithm that enjoys a rigorous convergence theory.
As we have mentioned, policy optimization for cooperative
MARL is challenging because the policy optimization prob-
lem becomes a joint optimization involving all the agents.
It remains unclear: (a) what the landscape of the total re-
wards as a multivariate function of the joint policy is and
(b) what would be proper policy descent directions for each
agent. We come up with a solution to characterize the land-
scape by taking advantage of a serial decomposition of the
performance difference lemma in MARL described below.
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Lemma 4.1. For any joint policy π we have

J(π∗)− J(π) =
1

1− γ

N∑
m=1

Es∼ν∗Ea1:m−1∼π1:m−1
∗〈

Q1:m
π (s,a1:m−1, ·), πm

∗ (·|s,a1:m−1)− πm(·|s,a1:m−1)
〉

where the inner product is over am ∈ A.

With this geometric characterization, we can justify that
using Qm

π (s,a1:m−1, am) as the descent direction and run-
ning KL divergence-regularized mirror descent for each
agent m ∈ N can lead to a better total reward, which en-
ables a serial optimization procedure. Below we describe
the algorithm in detail.

To represent conditional policies, we adopt log-linear
parametrization.

Parametrization For the m-th agent (m ∈ N ), its con-
ditional policy depends on all prior ordered agents a1:m−1.
Given a coefficient vector θm ∈ Θ, where Θ = {∥θ∥ ≤
R|θ ∈ Rd} is a convex, norm-constrained set. The proba-
bility of choosing action am under state s is

πθm(am|s,a1:m−1) =
exp (ϕ⊤(s,a1:m−1, am)θm)∑

am∈A
exp (ϕ⊤(s,a1:m−1, am)θm)

(2)
where ϕ is a set of feature vector representations. Without
loss of generality, we impose a regularity condition such that
every ∥ϕ∥2 ≤ 1. This parametrization has been widely used
in RL literature (Branavan et al., 2009; Gimpel & Smith,
2010; Heess et al., 2013; Agarwal et al., 2020; Zhao et al.,
2022).3

4.1. Policy Improvement and Evaluation

At the k-th iteration, we have the current policy πθk , and we
need to: (1) perform policy evaluation to obtain the action
value function estimates Q̂πθk

for determining the quality
of πθk . (2) perform policy improvement to update policy
to πθk+1

.

For notational simplicity, we use νk and σk to represent
stationary state distribution νπk

θ
and the stationary state-

action distribution σπk
θ

, which are induced by πθk .

Policy Improvement At the k-th iteration, we define
π̂m
k+1 as the ideal update based on Q̂1:m

πθk
(for agent m ∈ N ),

which is an estimator of Q1:m
πθk

. The ideal update is obtained

3We assume that all players share the same parameter set only
for clarity. We only need minor modifications in the analysis to
extend our results to the setting where N agents have different
capabilities. Specifically, we only need to treat norm bounds of
updates (R), regularity conditions on features, and β separately
for each agent.

via the following update

π̂m
k+1 ←− argmax

πm
F̂ (πm) (3)

F̂ (πm) = Eσk

[
⟨Q̂1:m

πθk
(s,a1:m−1, ·), πm(·|s,a1:m−1)⟩

− βkKL
(
πm(·|s,a1:m−1)∥πθm

k
(·|s,a1:m−1)

) ]
where θmk is the parameter of the current conditional pol-
icy of the m-th agent. In above equation, the distribu-
tion is taken over (s,a1:m−1) ∼ νkπ

1:m−1
θk

, we write σk

for simplicity. Under log-linear parametrization: πθm
k
∝

exp{ϕ⊤θmk }, we have the following closed-form ideal pol-
icy update.

Proposition 4.2. Given an estimator Q̂1:m
πθk

, the KL
divergence-regularized update (3) has explicit solution

π̂m
k+1(·|s,a1:m−1) ∝

exp
{
β−1
k Q̂1:m

πθk
(s,a1:m−1, ·) + ϕ⊤(s,a1:m−1, ·)θmk

}
.

The proof is straightforward by adding the constraint:∑
am∈A πm(·) = 1 as a Lagrangian multiplier to F̂ (πm).

See details in Appendix B.

To approximate the ideal π̂m
k+1 using a parameterized

πθm
k+1
∝ exp{ϕ⊤θmk+1}, we minimize the following mean-

squared error (MSE) as a sub-problem

θmk+1 ←− argmin
θm∈Θ

L(θm) (4)

where L(θm) is defined as

E
σk

(
(θm−θmk )⊤ϕ(s,a1:m−1, am)−

Q̂1:m
πθk

(s,a1:m−1, am)

βk

)2
Intuitively, a small L(θ) indicates that πθm is close to the
ideal update π̂m

k+1. Moreover, if π̂m
k+1 exactly lies in the

log-linear function class, i.e., there exists a ϑ ∈ Θ such that
π̂m
k+1 ∝ exp {ϕ⊤ϑ}. Then we have L(ϑ) = 0.

To solve the MSE minimization problem (4), we use the
classic SGD updates. Let stepsize be η, at each step t =
0, 1, · · · , T − 1, parameter θ is updated via

θ(t+
1

2
)←− θ(t)− 2ηϕ

(
(θ(t)− θmk )⊤ϕ− β−1

k Q̂1:m
πθk

)
)

θ(t+ 1)←− ΠΘθ(t+
1

2
)

where we omit (s,a1:m−1, am) for simplicity, which is sam-
pled from σk. See Algorithm 3 for the detailed solver.

Policy Evaluation In this step, we aim to examine the
quality of the attained policy. Thereby, a Q-function estima-
tor is required. We make the following assumption.
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Assumption 4.3. Assume we can access an estimator of
Q function that returns Q̂. The returned Q̂ satisfies the
following condition for all m ∈ N at the k-th iteration

E
σk

(
Q̂1:m

πθk
(s,a1:m−1, am)−Q1:m

πθk
(s,a1:m−1, am)

)2
≤ (ξmk )2.

We also have a regularity condition for the estimator: there
exists a positive constant B, such that for any m ∈ N and
(s,a1:m−1, am) ∈ S ×Am−1 ×A,∣∣∣Q̂1:m

πθk
(s,a1:m−1, am)

∣∣∣ ≤ B.

In RL practice, such an estimator is often instantiated with
deep neural networks (DNNs) (Mnih et al., 2015). While
there has been recent interest in studying the theoretical
guarantees for DNNs as function approximators (Fan et al.,
2020), we assume we have access to such an estimator
to ensure the generality of our algorithm. We note that
policy estimators like episodic sampling oracle that rolls out
trajectories (Agarwal et al., 2020) or neural networks (Mnih
et al., 2015; Liu et al., 2019) could all be possible options
here. As a generalization, we introduce a specific value
function approximation setting in Section 5, in which we
assume all Q-functions lie in linear class F . We further
adopt the principle of pessimism for better exploration.

Algorithm Equipped with the sub-problem solver for pol-
icy improvement and the Q-function estimator, we are pre-
pared to present the provable multi-agent PPO algorithm.
The pseudo-code is listed in Algorithm 1. The algorithm
runs for K iterations. At the k-th iteration, we estimate
Q-function for each agent m ∈ N via the estimator (cf. As-
sumption 4.3) to measure the quality of πθk . The estimates
would also serve as the ideal descent direction for policy
improvement. Since we use a constrained parametric policy
class, the ideal update is approximated with the best pol-
icy parameter θ ∈ Θ by minimizing the MSE problem (4),
which runs SGD for T iterations (cf. Algorithm 3). Thanks
to the geometric characterization (cf. Lemma 4.1), we are
guaranteed to reach a globally improved total reward by
updating each agent consecutively.

4.2. Theoretical Analysis

Our analysis relies on problem-dependent quantities. We
denote weighted Lp-norm of function f on state-space X
as ∥f∥p,ρ =

(∑
x∈X ρ(x)|f(x)|p

) 1
p

Definition 4.4. At the k-th iteration, for m ∈ N we define
the following problem-dependent quantity using Radon-
Nikodym derivatives

ϕm
k =

∥∥∥∥∥d(ν∗π1:m
∗ )

d(νkπ1:m
θk

)

∥∥∥∥∥
2,σk

Algorithm 1 Multi-Agent PPO
Input: Markov game (N ,S,A,P, r, γ), penalty param-

eter β, stepsize η for sub-problem, number of SGD
iterations T , number of iterations K.

Output: Uniformly sample k from 0, 1, · · ·K − 1, return
π̄ = πθk .

1: Initialize θm0 = 0 for every m ∈ N .
2: for k = 0, 1, . . . ,K − 1 do
3: Set parameter βk ←− β

√
K

4: for m = 1, · · · , N do
5: Sample {st,a1:m−1

t , amt }T−1
t=0 from σk = νkπθk .

6: Obtain Q̂1:m
πθk

(s,a1:m−1, am) for each sample .
7: Feed samples into Algorithm 3, obtain θmk+1.
8: end for
9: end for

These conditions are the well-known concentrability coeffi-
cients (Munos, 2003; Farahmand et al., 2010; Chen & Jiang,
2019) for the factorized policy. Still, our conditions are
structurally simpler and weaker because they are only den-
sity ratios between stationary state-action distributions, not
requiring trajectories to roll out.

Now we are prepared to present the main theorem that char-
acterizes the global convergence rate.

Theorem 4.5. Under Assumption 4.3, for the output policy
π̄ attained by Algorithm 1 in the fully cooperative Markov
game, set η = R

G
√
T

and

β =

√
NB2/2

N log |A|+
∑N

m=1

∑K−1
k=0 (∆m

k + δmk )
.

After K iterations, we have J(π∗)− J(π̄) upper bounded
by

O

B
√
N

1− γ

√
N log |A|+

∑N
m=1

∑K−1
k=0 (∆m

k + δmk )

K


where ∆m

k =
√
2(ϕm

k + ϕm−1
k ) ·

(
ϵmk +

ξmk
βk

)
and δmk =

2ϕm−1
k ϵmk . Here ϵmk is the statistical error of a PPO itera-

tion: for agent m ∈ N ,

Eσk

(
(θmk+1 − θmk )⊤ϕ− β−1

k Q̂1:m
πθk

)2
≤ (ϵmk )2

where we omit (s,a1:m−1, am) for simplicity.

Let ϵapprox be the approximation capability of the log-linear
policy class we adopt, then ϵmk = ϵapprox +O(T− 1

4 ).

Theorem 4.5 explicitly characterizes the performance of the
output π̄ in terms of the number of iterations and the itera-
tion errors. When PPO updates are ideal, namely, viewing
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δ′k,∆
m
k to be 0 for any m ∈ N , and k < K , the rate sim-

plifies to O
(

NB
1−γ

√
log |A|

K

)
. The dependency on iteration

K is O(K− 1
2 ), matching the same rate as the sample-based

single-agent NPG analysis (Agarwal et al., 2020; Liu et al.,
2019).

The proof of Theorem 4.5 further requires the following
parts: mirror-descent update analysis used in (Liu et al.,
2019) and Lemma 4.1 that builds sequential dependency
structure among the agents. The full proof is deferred to
Appendix B.

4.3. Compare with Independent Learning

In MARL, independent learning refers to a class of algo-
rithms that train multiple agents independently. In these
methods, each agent has its own policy function that maps
the agent’s observations to its actions. The policies are op-
timized using policy gradient methods in a decentralized
manner without explicit communication or coordination,
and without explicitly modeling the behavior of the other
agents. Independent learning methods are widely used in
MARL due to its strong performance and efficiency.

In this subsection, we provide detailed comparisons between
our algorithm and previous results on independent learning
(both experiments and theories). We also performed a sim-
ulation study to showcase the superiority of our sequential
policy update structure over naive independent policy gradi-
ent updates.

Experiments Some empirical attempts showed indepen-
dent policy gradient learning could achieve surprisingly
strong performance in MARL, such as MAPPO (Yu et al.,
2021), IPPO (de Witt et al., 2020), and (Papoudakis et al.,
2021).

Despite the empirical success, these methods have several
drawbacks. IPPO and MAPPO assume homogeneity (agents
share the same action space and policy parameters). Thus,
parameter sharing is required. Even though the parameter
sharing can be turned off, they still suffer from no mono-
tonic improvement guarantees, though being called PPO-
based algorithms. Recall that the main virtue of vanilla
TRPO (Schulman et al., 2015) is monotonicity. Also, these
methods do not come with any convergence guarantees. The
converging problem becomes more severe when parameter-
sharing is switched off. A counterexample in (Kuba et al.,
2022, Proposition 1) shows parameter sharing could lead to
an exponentially-worse sub-optimal outcome.

Thanks to the sequential agents’ structure and novel multi-
agent mirror-decent analyses, we present the first MARL
algorithm that converges at a sub-linear rate. Note that our
results neither rely on the homogeneity of agents nor the

value function decomposition rule.

Theories Several theoretical works have studied conver-
gence guarantees of independent policy optimization algo-
rithms to a Nash equilibrium (NE) policy in MARL mathe-
matically (Daskalakis et al., 2020; Leonardos et al., 2022;
Fox et al., 2022; Ding et al., 2022).

Specifically, Daskalakis et al. (2020) studied competitive
RL. And others studied convergence to the NE policy in
Markov potential games (an extension of fully-cooperative
games). However, we argue that a NE policy is not neces-
sarily optimal in terms of the value function.

In contrast to their work, we present the first provable multi-
agent policy optimization algorithm that finds a policy with
a near globally optimal value function equipped with a sub-
linear convergence rate.

Simulation To further validate the theoretical and experi-
mental benefits of our algorithm, we conducted a numerical
simulation to showcase the superiority of our algorithm with
sequential updates structure over naive independent policy
gradient updates. We consider von Neumann’s ratio game, a
simple stochastic game also used by Daskalakis et al. (2020).
Simulation results show that, unlike our algorithm, the inde-
pendent learning method has significant difficulty escaping
the stationary point. Moreover, our algorithm consistently
outperforms independent learning in maximizing value func-
tion. See Section E for detailed settings and results.

5. Pessimistic MA-PPO with Linear Function
Approximation

In this section, we study the off-policy setting, using samples
from a data distribution µ to evaluate Qπ . Experimentally,
since function approximators often cause a positive bias
in value function (Thrun & Schwartz, 1993), many deep
off-policy actor-critic algorithms introduce pessimism to
reduce such overestimation (Fujimoto et al., 2018; Laskin
et al., 2020). We also adopt pessimistic policy evaluation in
this setting, aligning with experimental works.

We focus on the setting where value functions and poli-
cies are linearly parameterized. Our results can extend to
the general function approximation setting, presented in
Appendix D.

Definition 5.1 (Linear Function Approximation). Let ϕ be
a set of feature mappings built conditionally, the same defi-
nition as Section 4. Define the action value function class
as Fm = {ϕ⊤ω : ω ∈ Rd, ∥ω∥2 ≤ L, ϕ⊤ω ∈ [0, 1/1−γ]}.
The policy class is still parameterized by log-linear: Πm =
{π ∝ exp(ϕ⊤θ) : θ ∈ Rd, ∥θ∥2 ≤ R} (cf. Section 4).

Remark 5.2. Under the definition, for any m ∈ N and
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policy π, there must exist a parameter ω ∈ Rd that satisfies

Q1:m
π (s,a1:m) = ϕ(s,a1:m)⊤ω

In this section, we fix the initial state at a certain s0. Thus
the expected reward we aim to maximize is defined as

J(π) ≜ Vπ(s0).

Note that, in single-agent offline RL, only one policy affects
the action at a particular state so that we can gauge the
quality of value function estimates using an offline dataset
D consisting of states, actions, rewards, and transitions.
Intuitively, when the following L0 approaches 0, we can
say f is a nice approximator for the Q-function (Xie et al.,
2021).

L0 =
1

n

∑
(s,a,r,s′)∼D

(f(s, a)− r − γf(s′, π))
2

where f(s′, π) is a shorthand for
∑

a′ f(s′, a′)π(a′|s′)
which will be frequently used in this section.

However, in the multi-agent environment, the complex de-
pendent structure precludes the application of such an offline
dataset. Specifically, for the m-th agent and policy π, esti-
mating the multi-agent value function Q1:m

π demands that
all agents not in {1 : m} must follow π (cf. Definition 3.1),
which could not be guaranteed by an offline dataset.

Therefore, online interactions are unavoidable in the multi-
agent setting we study. Below we make clarifications for
the sample-generating protocol.

We will collect state-action samples from a fixed data dis-
tribution µ = µsµa ∈ ∆(S ×A). In the benign case, a
well-covered µ guarantees adequate exploration over the
whole state and action spaces. Assume we have access to a
standard RL oracle

Definition 5.3 (Sampling Oracle). The oracle can start from
s ∼ µs, take any action a ∈ A, and obtain the next state
s′ ∼ P(·|s,a), and reward r(s,a).

Our query oracle aligns with the classic online sampling
oracle for MDP (Kakade & Langford, 2002; Du et al., 2019;
Agarwal et al., 2020). The difference is that we transit for
one step, while the classic online model usually terminates
at the end of each episode. We also note that our oracle is
weaker than the generative model (Kearns & Singh, 2002;
Kakade, 2003; Sidford et al., 2018; Li et al., 2020) which
assumes that agent can transit to any state, thus greatly
weakening the need for explicit exploration. Whereas our
oracle starts from a fixed µs.4

4In MDPs, such oracle is called µ-reset model (Kakade &
Langford, 2002).

We take advantage of the sampler in the following steps
to obtain action value functions that preserve a small error
under the multi-agent Bellman operator (cf. Definition 5.1).
For agent m ∈ N and π, (1) obtain s ∼ µs; (2) obtain
a ∼ µa and a′ ∼ πm+1:N (·|s); (3) take (a1:m,a′) as the
joint action to query the oracle where a1:m represents the
{1 : m} subset of a. The oracle returns (r, s′), which are
guaranteed to satisfy:

r ∼ E
ã∼πm+1:N

R(s,a1:m, ã),

s′ ∼ E
ã∼πm+1:N

P(·|s,a1:m, ã).

Repeat the steps for n times. Together this gives dataset
Dm = {(si,a1:mi , ri, s

′
i)|i = 1, 2, · · ·n}. Define

L1:m(f ′, f,π) :=
1

n

∑
Dm

(
f ′(s,a1:m)− r − γf(s′,π1:m)

)2
where f ∈ Fm (cf. Definition 5.1) and the summation is
taken over n quadruples of (s,a1:m, r, s′).

We will need the following Bellman error to evaluate the
quality of f .

E1:m(f,π) = L1:m(f, f,π)− min
f ′∈Fm

L1:m(f ′, f,π). (5)

Intuitively, we consider f as a nice approximation of
Q1:m

π (s,a1:m) when the quantity is small. This formula-
tion also works for general function approximation. See
Appendix D for details.

We shall need a concentrability measure accounting for the
distributional mismatch.

Definition 5.4 (Concentrability). The following condition
characterizes the distribution shift from the dπ∗ to the sam-
pling distribution.

Cdπ∗
µ = sup

m∈N ,f∈Fm,π∈Πm

∥∥f − T 1:m
π f

∥∥
2,dπ∗

∥f − T 1:m
π f∥2,Dm

.

Recall that ∥ · ∥2,ρ is the weighted L2-norm. In the nomi-
nator, the sum is taken over (s,a1:m) ∼ dπ∗ . Whereas in
the denominator, the sum is taken over (s,a1:m) from Dm

as an empirical version of µ. The notion serves a similar
role as concentrability coefficients in the literature (Munos,
2003; Agarwal et al., 2020): it measures the distributional
mismatch between the underlying optimal distribution and
the distribution of samples we employ.

Policy Evaluation At the k-th iteration, we have the cur-
rent policy πθk . We perform pessimistic policy evaluation
via regularization to reduce value bias in evaluating Q1:m

πθk
.

ωm
k ←− argmin

ω

(
f(s0,π

1:m
k ) + λE1:m(f,πθk)

)
.
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Here E is the Bellman error defined in (5). We obtain
fm
k = ϕ⊤ωm

k as the pessimistic estimate for Q1:m
πθk

. This
update has a closed-form solution under linear function ap-
proximation (cf. Definition 5.1). Moreover, under linear
function approximation, the minimization on the right-hand
side can be solved computationally efficiently because of its
quadratic dependency on ω. See details in Appendix C

Policy Improvement When both value functions and poli-
cies are linear parameterized (cf. Definition 5.1), the mirror
descent policy update for any (s,a1:m) ∈ S ×Am

πm
k+1(a

m|s,a1:m−1) ∝
πm
k (am|s,a1:m−1) · exp(ηfm

k (s,a1:m)) (6)

could be further simplified to parameter updates in Rd

θmk+1 = θmk + ηωm
k .

This observation makes policy improvements in this setting
significantly more superficial than in Section 4. For the k-th
iteration and agent m ∈ N , we only need to add ηωm

k to the
policy parameter θmk to improve policy.

Algorithm With the pessimistic policy evaluation and in-
tuitive policy improvement, our pessimistic variant of the
multi-agent PPO algorithm is presented in Algorithm 2.

Algorithm 2 Pessimistic Multi-Agent PPO with Linear
Function Approximation
Input: Regularization coefficient λ.
Output: Uniformly sample k from 0, 1 · · ·K − 1, return

π̄ = πθk .
1: Initialize θm0 = 0 for every m ∈ N .
2: for k = 0, 1, . . . ,K − 1 do
3: for m = 1, 2, · · · , N do
4: Pessimistic policy evaluation:

ωm
k ←− argmin

ω

(
f(s0,π

1:m
θk

) + λE1:m(f,πθk)
)
.

5: Policy improvement: θmk+1 = θmk + ηωm
k .

6: end for
7: end for

Now we are prepared to present the main theorem for this
section.

Theorem 5.5. For the output policy π̄ attained by Al-
gorithm 2 in a fully cooperative Markov game, set η =

(1− γ)
√

log |A|
2K and λ = (1− γ)−1

(
d log nLR

δ

n

)−2/3

. After

K iterations, w.p. at least 1 − δ we have J(π∗) − J(π̄)
upper bounded by

O

 N

(1− γ)2

√
log |A|
K

+
Cdπ∗
µ

(1− γ)2
3

√
d log nLR

δ

n



To interpret this bound, the first term accounts for the
optimization error accumulating from mirror descent up-
dates (6). The first term has an (1 − γ)−2 dependency on
the discount factor, which may not be tight, and we leave it
as a future work to improve. The second term represents the
estimation errors accumulated during training. We use state-
action pairs from µ and the sampling oracle for minimiz-
ing E1:m(f,π), thereby introducing distribution mismatch
which is expressed by Cdπ∗

µ . Note that this single-policy
concentrability is already weaker than traditional concen-
trability coefficients (Munos, 2003; Farahmand et al., 2010;
Perolat et al., 2015). Intuitively, a small value of concentra-
bility requires the data distribution µ close to dπ∗ , which is
the unknown occupancy distribution of optimal policy. On
the other hand, if Cdπ∗

µ is large, then the bound becomes
loose. We provide a similar result for general function ap-
proximation in the appendix (cf. Theorem D.7).

There is no explicit dependence on state-space S in the
theorem. Hence the online algorithm proves nice guarantees
for function approximation even in the infinite-state setting.

In proving Theorem 5.5, the analysis for Bellman-consistent
pessimism (Xie et al., 2021) is useful. We obtain statistical
and convergence guarantees by taking advantage of the
conditional dependency structure of the cooperative Markov
games. See Appendix C for details.

6. Conclusion
In this paper, we present a new multi-agent PPO algorithm
that converges to the globally optimal policy at a sublinear
rate. The key to the algorithm is a multi-agent performance
difference lemma which enables sequential local policy up-
dates. As a generalization, we extend the algorithm to the
off-policy setting and present similar convergence guaran-
tees. To our knowledge, this is the first multi-agent PPO
algorithm in cooperative Markov games that enjoys provable
guarantees.
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Farahmand, A.-m., Szepesvári, C., and Munos, R. Error
propagation for approximate policy and value iteration.
Advances in Neural Information Processing Systems, 23,
2010.

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., and
Whiteson, S. Counterfactual multi-agent policy gradi-
ents. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Fox, R., Mcaleer, S. M., Overman, W., and Panageas, I.
Independent natural policy gradient always converges in
markov potential games. In International Conference
on Artificial Intelligence and Statistics, pp. 4414–4425.
PMLR, 2022.

Fujimoto, S., Hoof, H., and Meger, D. Addressing function
approximation error in actor-critic methods. In Interna-
tional conference on machine learning, pp. 1587–1596.
PMLR, 2018.

Gimpel, K. and Smith, N. A. Softmax-margin CRFs: Train-
ing log-linear models with cost functions. In Human
Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for
Computational Linguistics, pp. 733–736, 2010.

Guo, X., Singh, S., Lewis, R., and Lee, H. Deep learning
for reward design to improve Monte Carlo tree search in
Atari games. arXiv preprint arXiv:1604.07095, 2016.

Heess, N., Silver, D., and Teh, Y. W. Actor-critic reinforce-
ment learning with energy-based policies. In European
Workshop on Reinforcement Learning, pp. 45–58. PMLR,
2013.

Jin, C., Ge, R., Netrapalli, P., Kakade, S. M., and Jordan,
M. I. How to escape saddle points efficiently. In Interna-
tional conference on machine learning, pp. 1724–1732.
PMLR, 2017.

Jin, Y., Yang, Z., and Wang, Z. Is pessimism provably
efficient for offline RL? In International Conference on
Machine Learning, pp. 5084–5096. PMLR, 2021.

Kakade, S. and Langford, J. Approximately optimal ap-
proximate reinforcement learning. In In Proc. 19th In-
ternational Conference on Machine Learning. Citeseer,
2002.

Kakade, S. M. A natural policy gradient. Advances in neural
information processing systems, 14, 2001.

10



Local Optimization Achieves Global Optimality in Multi-Agent Reinforcement Learning

Kakade, S. M. On the sample complexity of reinforcement
learning. University of London, University College Lon-
don (United Kingdom), 2003.

Kearns, M. and Singh, S. Near-optimal reinforcement learn-
ing in polynomial time. Machine learning, 49(2):209–
232, 2002.

Kraemer, L. and Banerjee, B. Multi-agent reinforcement
learning as a rehearsal for decentralized planning. Neuro-
computing, 190:82–94, 2016.

Kuba, J. G., Chen, R., Wen, M., Wen, Y., Sun, F., Wang, J.,
and Yang, Y. Trust region policy optimisation in multi-
agent reinforcement learning. In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=EcGGFkNTxdJ.

Laskin, M., Lee, K., Stooke, A., Pinto, L., Abbeel, P., and
Srinivas, A. Reinforcement learning with augmented data.
Advances in neural information processing systems, 33:
19884–19895, 2020.

Lee, K.-H., Fischer, I., Liu, A., Guo, Y., Lee, H., Canny,
J., and Guadarrama, S. Predictive information acceler-
ates learning in RL. Advances in Neural Information
Processing Systems, 33:11890–11901, 2020.

Leonardos, S., Overman, W., Panageas, I., and Piliouras,
G. Global convergence of multi-agent policy gradient
in markov potential games. In International Conference
on Learning Representations, 2022. URL https://
openreview.net/forum?id=gfwON7rAm4.

Li, G., Wei, Y., Chi, Y., Gu, Y., and Chen, Y. Breaking
the sample size barrier in model-based reinforcement
learning with a generative model. Advances in neural
information processing systems, 33:12861–12872, 2020.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Littman, M. L. Markov games as a framework for multi-
agent reinforcement learning. In Machine learning pro-
ceedings 1994, pp. 157–163. Elsevier, 1994.

Liu, B., Cai, Q., Yang, Z., and Wang, Z. Neural trust
region/proximal policy optimization attains globally opti-
mal policy. Advances in neural information processing
systems, 32, 2019.

Liu, Y., Swaminathan, A., Agarwal, A., and Brunskill, E.
Provably good batch off-policy reinforcement learning
without great exploration. Advances in neural information
processing systems, 33:1264–1274, 2020.

Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Pieter Abbeel,
O., and Mordatch, I. Multi-agent actor-critic for mixed
cooperative-competitive environments. Advances in neu-
ral information processing systems, 30, 2017.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Moskovitz, T., Parker-Holder, J., Pacchiano, A., Arbel, M.,
and Jordan, M. Tactical optimism and pessimism for deep
reinforcement learning. Advances in Neural Information
Processing Systems, 34:12849–12863, 2021.

Munos, R. Error bounds for approximate policy iteration.
In International Conference on Machine Learning, pp.
560–567, 2003.
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A. Sub-problem Solver for Section 4

Algorithm 3 Policy Improvement Solver for MA-PPO

Input: MG (N ,S,A,P, r, γ), iterations T , stepsize η, samples {st,a1:m−1
t , amt }T−1

t=0 .
Output: Policy update θ.

1: Initialize θ0 = 0.
2: for t = 0, 1, . . . , T − 1 do
3: Let (s,a1:m−1, a)←− (st,a

1:m−1
t , amt ).

4: θ(t+ 1
2 )←− θ(t)− 2ηϕ(s,a1:m−1, a)

(
(θ(t)− θmk )

⊤
ϕ(s,a1:m−1, am)− β−1

k Q̂1:m
πk

(s,a1:m−1, am)
)
.

5: θ(t+ 1)←− ΠΘθ(t+
1
2 )

6: end for
7: Calculate average: θ̄ ←− 1

T

∑T
t=1 θt.

B. Proofs for Section 4
First, we note that using SGD updates to solve the MSE problem has the following guarantee.

Lemma B.1 (Average policy). For a convex objective function F (θ), suppose the gradient is bounded by G, and the output
θ̄ converges to the best function in the class at

F (θ̄)− min
∥θ∥≤R

F (θ) ≤ GR√
T

where we set η = R
G
√
T

.

Proof. Please refer to Theorem 14.8 (Shalev-Shwartz & Ben-David, 2014).

Now we turn to Algorithm 3, in which, we feed samples {st,a1:m−1
t , amt }T−1

t=0 from σk = νkπθk into the algorithm (for
m ∈ N ), in order to minimize

L(θm) = Eσk

(
(θm)⊤ϕ(s,a1:m−1, am)− (β−1

k Q̂1:m
πθk

(s,a1:m−1, am) + (θmk )⊤ϕ(s,a1:m−1, am))
)2

.

We have the following theoretical guarantee for the algorithm.

Lemma B.2 (Policy Improvement error). At the k-th outer loop, the output policy θk+1 from Algorithm 3 satisfies√
L(θmk+1) ≤ ϵmk

where ϵmk = ϵapprox +O(T− 1
4 ).

Proof. For Algorithm 3, we have ∥ϕ∥2 ≤ 1 and Θ = {∥θ∥ ≤ R|θ ∈ Rd}.Thereby the gradient of L(θ) is bounded by

G = 2

(
R+

1

(1− γ)βk

)
.

From Lemma B.1, we have the following guarantee holds for any outer iteration k < K

L(θmk+1) ≤= min
θ

L(θ) +O(1/
√
T ),

when we set η = R
G
√
T

. Thus

ϵmk =
√
min
θ

L(θ) +O(T− 1
4 ) = ϵapprox +O(T− 1

4 ).

The proof is completed.
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Lemma B.3 (Multi-Agent Advantage Decomposition). In cooperative Markov games, the following decomposition holds
for any joint policy π, state s, and agents 1 : m,

A1:m
π (s,a1:m) =

m∑
i=1

Ai
π(s,a

1:i−1, ai)

Proof. Please refer to Lemma 1 (Kuba et al., 2022).

Proof for Lemma 4.1

Proof. From the classical performance difference lemma (Kakade & Langford, 2002, Lemma 6.1) we have

J(π∗)− J(π) =
1

1− γ
Eσ∗A

1:N
π (s,a1:N )

Decomposing the all-agents advantage function into individual contributions via the multi-agent advantage decomposition
lemma (cf. Lemma B.3), we have

J(π∗)− J(π) =
1

1− γ
Eσ∗A

1:N
π (s,a1:N )

=
1

1− γ

N∑
m=1

Es∼ν∗Ea1:m−1∼π1:m−1
∗

〈
Am

π (s,a1:m−1, am), πm
∗ (·|s,a1:m−1)

〉
.

Note that we have
∑

a π
m(a|s, a1:m−1)Am

π (s,a1:m−1, a) = 0, then

1

1− γ

N∑
m=1

Es∼ν∗Ea1:m−1∼π1:m−1
∗

〈
Am

π (s,a1:m−1, ·), πm
∗ (·|s,a1:m−1)− πm(·|s, a1:m−1)

〉
=

1

1− γ

N∑
m=1

Es∼ν∗Ea1:m−1∼π1:m−1
∗

〈
Q1:m

π (s,a1:m−1, ·), πm
∗ (·|s,a1:m−1)− πm(·|s, a1:m−1)

〉
where the last line is because Am

π (s,a1:m−1, am) = Q1:m
π (s,a1:m−1, am)−Q1:m−1

π (s,a1:m−1) and Q1:m−1
π (s,a1:m−1)

can be omitted because it does not change with am.

Proof for Proposition 4.2.

Proof. For any (s,a1:m−1) ∈ S ×Am−1, policy π̂m
k+1(·|s,a1:m−1) is obtained via

max
πm

Eνk

[
⟨Q̂1:m

πk
(s,a1:m−1, ·), πm(·|s,a1:m−1)⟩ − βkKL

(
πm(·|s,a1:m−1)∥πθk(·|s,a1:m−1)

)]
s.t.

∑
am∈A

πm(am|s,a1:m−1) = 1

Adding constraint as a Lagrangian multiplier, we have∫
S×Am−1

[
⟨Q̂1:m

πk
(s,a1:m−1, ·), πm(·|s,a1:m−1)⟩ − βkKL

(
πm(·|s,a1:m−1)∥πθm

k
(·|s,a1:m−1)

)]
σkdsda

1:m−1

+

∫
S×Am−1

( ∑
am∈A

πm(am|s,a1:m−1)− 1

)
dsda1:m−1
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Note that πθm
k
∝ exp{θmk

⊤ϕ}, he optimality condition gives

π̂m
k+1(·|s,a1:m−1) ∝ exp{β−1

k Q̂1:m
πk

(s,a1:m−1, ·) + θmk
⊤ϕ(s,a1:m−1, a)}.

Lemma B.4. Suppose for any agent m ∈ N , policy improvement error and policy evaluation errors satisfy

Eσk

(
θmk+1

⊤ϕ(s,a1:m−1, am)− (β−1
k Q̂1:m

πθk
(s,a1:m−1, am) + θmk

⊤ϕ(s,a1:m−1, am))
)2
≤ (ϵmk )2, (7)

Eσk

(
Q̂1:m

πθk
(s,a1:m−1, am)−Q1:m

πθk
(s,a1:m−1, am)

)2
≤ (ξmk )2. (8)

Considering the L∞-norm of θmk+1
⊤ϕ− θmk

⊤ϕ we have

Es∼ν∗,a1:m−1∼π∗

∥∥∥(θmk+1 − θmk )⊤ϕ(s,a1:m−1, ·)− β−1
k Q̂1:m

πθk
(s,a1:m−1, ·)

∥∥∥
∞
≤ δmk

2

where δmk = 2ϕm−1
k ϵmk .

Proof. The proof is straightforward,

Es∼ν∗,a1:m−1∼π1:m−1
∗

∥∥∥(θmk+1 − θmk )⊤ϕ(s,a1:m−1, ·)− β−1
k Q̂1:m

πθk
(s,a1:m−1, ·)

∥∥∥
∞

≤ E
s∼ν∗

a1:m−1∼π∗

∥∥∥(θmk+1 − θmk )⊤ϕ(s,a1:m−1, am)− β−1
k Q̂1:m

πθk
(s,a1:m−1, am)

∥∥∥ .
We shift from σ∗ to σk and introduce concentrability coefficients to measure distributional shift

E
s∼νk

a1:m−1∼πθk

∥∥∥(θmk+1 − θmk )⊤ϕ(s,a1:m−1, am)− β−1
k Q̂1:m

πθk
(s,a1:m−1, am)

∥∥∥ · ν∗π1:m−1
∗

νkπ
1:m−1
θk

≤
[
Eσk

(
(θmk+1 − θmk )⊤ϕ− β−1

k Q̂πθk

)2]1/2
·

Eσk

∣∣∣∣∣d(ν∗π1:m−1
∗ )

d(νkπ
1:m−1
θk

)

∣∣∣∣∣
2
1/2

= ϵmk ϕm−1
k

where we use Cauchy-Schwartz inequality in the second line.

The proof is completed.

Recall that we define π̂m
k+1 as the ideal update policy based on Q̂1:m

πθk
. Correspondingly, we define the ideal update based on

the exact value function Q1:m
πθk

as

πm
k+1 ←− argmax

πm
F (πm)

F (πm) = Eσk

[
⟨Q1:m

πθk
(s,a1:m−1, ·), πm(·|s,a1:m−1)⟩ − βkKL

(
πm(·|s,a1:m−1)∥πθm

k
(·|s,a1:m−1)

) ]
.

Under log-linear parametrization: πθm
k
∝ exp{ϕ⊤θmk }, analogously we have

πm
k+1(·|s,a1:m−1) ∝ exp

{
β−1
k Q1:m

πk
(s,a1:m−1, ·) + ϕ⊤(s,a1:m−1, ·)θmk

}
.

Lemma B.5 (Error Propagation). Suppose for any agent m ∈ N and (s,a1:m−1) ∈ S ×Am−1, policy improvement and
policy evaluation errors satisfy,

Eσk

(
(θmk+1 − θmk )⊤ϕ− β−1

k Q̂1:m
πθk

)2
≤ (ϵmk )2,
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Eσk

(
Q̂1:m

πθk
−Q1:m

πθk

)2
≤ (ξmk )2

where we omit (s,a1:m−1, am) for simplicity.

Compare the statistical error, we have∣∣∣∣∣Es∼ν∗,a∼π∗

〈
log

πθm
k+1

(·|s,a1:m−1)

πm
k+1(·|s,a1:m−1)

, πm
∗ (·|s,a1:m−1)− πθm

k
(·|s,a1:m−1)

〉∣∣∣∣∣ ≤ ∆m
k .

where ∆m
k =

√
2(ϕm

k + ϕm−1
k ) ·

(
ϵmk +

ξmk
βk

)
Lemma B.5 presents the quantitative differences between the actual parameterized πθm

k+1
based on Q̂1:m and the ideal policy

πm
k+1 based on the exact value function Q1:m.

Proof. First, from definition for any m ∈ N and s,a1:m−1 ∈ S ×Am−1 we have

πm
k+1(·|s,a1:m−1) = exp

{
βk

−1Qπθk
+ θmk

⊤ϕ(s,a1:m−1, ·)
}
/W (s,a1:m−1), (9)

πθm
k+1

(·|s,a1:m−1) = exp
{
θmk+1

⊤ϕ(s,a1:m−1, ·)
}
/M(s,a1:m−1). (10)

Substituting this into the expression, we have

LHS =
〈
log πθm

k+1
− log πm

k+1, π
m
∗ − πθm

k

〉
=
〈
θmk+1

⊤ϕ− (β−1
k Qπθk

+ θmk
⊤ϕ), πm

∗ − πθm
k

〉
=
〈
θmk+1

⊤ϕ− (β−1
k Q̂πθk

+ θmk
⊤ϕ), πm

∗ − πθm
k

〉
︸ ︷︷ ︸

(a)

+
〈
β−1
k Q̂πθk

− β−1
k Qπθk

, πm
∗ − πθm

k

〉
︸ ︷︷ ︸

(b)

In the second line, we use the fact that
〈
log W

M , πm
∗ − πθm

k

〉
= log W

M

∑
am

(
πm
∗ (·)− πθm

k
(·)
)
= 0.

Bounding the two terms separately, we have

• For (a), taking the expectation over S ×Am−1 we have∣∣∣Es∼ν∗Ea1:m−1∼π∗

〈
θmk+1

⊤ϕ− (β−1
k Q̂πθk

+ θmk
⊤ϕ), πm

∗ − πθm
k

〉∣∣∣
=

∣∣∣∣∣∣
∫

S×Am−1×A

[
(θmk+1 − θmk )⊤ϕ− β−1

k Q̂πθk

]
·
(
πm
∗ − πθm

k

)
dam · π1:m−1

∗ d(a1:m−1) · ν∗(s)ds

∣∣∣∣∣∣
Here the expectation is taken w.r.t. σ∗, we change it to be expectation over σk by introducing concentrability coefficients∣∣∣∣∣∣

∫
S×Am−1×A

[
(θmk+1 − θmk )⊤ϕ− β−1

k Q̂πθk

]
·

(
π1:m
∗

π1:m
θk

−
π1:m−1
∗ πθm

k

π1:m
θk

)
π1:m
θk

(a1:m|s)d(a1:m) · ν∗(s)ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫

S×Am−1×A

[
(θmk+1 − θmk )⊤ϕ− β−1

k Q̂πθk

]
· ν∗(s)
νk(s)

(
π1:m
∗

π1:m
θk

−
π1:m−1
∗ πθm

k

π1:m
θk

)
dσk

∣∣∣∣∣∣
(i)

≤
[
Eσk

(
(θmk+1 − θmk )⊤ϕ− β−1

k Q̂πθk

)2]1/2
·

Eσk

∣∣∣∣∣d(ν∗π1:m
∗ )

d(νkπ1:m
θk

)
− d(ν∗π

1:m−1
∗ )

d(νkπ
1:m−1
θk

)

∣∣∣∣∣
2
1/2

(ii)

≤
√
2ϵmk (ϕm

k + ϕm−1
k )

(i) : This is because of the Cauchy-Schwartz inequality.

(ii) : This is because:
√∫
|f − g|2dσ ≤

√∫
2|f |2dσ +

∫
2|g|2dσ ≤

√
2(∥f∥2,σ + ∥g∥2,σ).
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• For (b), taking the expectation over S ×Am−1 we have∣∣∣Es∼ν∗Ea1:m−1∼π∗

〈
β−1
k Q̂πθk

− β−1
k Qπθk

, πm
∗ − πθm

k

〉∣∣∣
=

∣∣∣∣∣∣
∫

S×Am−1×A

[
β−1
k Q̂πθk

− β−1
k Qπθk

]
·
(
πm
∗ − πθm

k

)
dam · π1:m−1

∗ d(a1:m−1) · ν∗(s)ds

∣∣∣∣∣∣
Analogously we replace the expectation over σ∗ with expectation over σk∣∣∣∣∣∣

∫
S×Am−1×A

[
β−1
k Q̂πθk

− β−1
k Qπθk

]
· ν∗(s)
νk(s)

(
π1:m
∗

π1:m
θk

−
π1:m−1
∗ πθm

k

π1:m
θk

)
π1:m
θk

(a1:m|s)d(a1:m) · νk(s)ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫

S×Am−1×A

[
β−1
k Q̂πθk

− β−1
k Qπθk

]
· ν∗(s)
νk(s)

(
π1:m
∗

π1:m
θk

− π1:m−1
∗

π1:m−1
θk

)
dσk

∣∣∣∣∣∣
(i)

≤
[
Eσk

(
β−1
k Q̂πθk

− β−1
k Qπθk

)2]1/2
·

Eσk

∣∣∣∣∣d(ν∗π1:m
∗ )

d(νkπ1:m
θk

)
− d(ν∗π

1:m−1
∗ )

d(νkπ
1:m−1
θk

)

∣∣∣∣∣
2
1/2

(ii)

≤
√
2

βk
ξmk (ϕm

k + ϕm−1
k )

(i) : This is because of the Cauchy-Schwartz inequality.

(ii) : This is because:
√∫
|f − g|2dσ ≤

√∫
2|f |2dσ +

∫
2|g|2dσ ≤

√
2(∥f∥2,σ + ∥g∥2,σ).

Combining the bounds, we conclude the proof for Lemma B.5

∆m
k =

√
2(ϕm

k + ϕm−1
k ) ·

(
ϵmk +

ξmk
βk

)
.

Below we introduce a lemma that is crucial in our multi-agent PPO analysis. The original version is widely found and
proven to be useful for mirror descent analysis (Nesterov, 2003).

Lemma B.6 (One-Step Descent). For the ideal updated policy πm
k+1, the real updated policy πθm

k+1
and current policy πθm

k
,

we have that for any (s,a1:m−1) ∈ S ×Am−1,

KL
(
πm
∗ (·|s,a1:m−1)∥πθm

k+1
(·|s,a1:m−1)

)
−KL

(
πm
∗ (·|s,a1:m−1)∥πθm

k
(·|s,a1:m−1)

)
≤

〈
log

πθm
k+1

(·|s,a1:m−1)

πm
k+1(·|s,a1:m−1)

, πθm
k
(·|s,a1:m−1)− πm

∗ (·|s,a1:m−1)

〉

+
1

βk

〈
Am

πθk
(s,a1:m−1, ·), πθm

k
(·|s,a1:m−1)− πm

∗ (·|s,a1:m−1)
〉
− 1

2

∥∥∥πθm
k+1

(·|s,a1:m−1)− πθm
k
(·|s,a1:m−1)

∥∥∥2
1

−
〈
(θmk+1 − θmk )⊤ϕ(s,a1:m−1, ·), πθm

k
(·|s,a1:m−1)− πθm

k+1
(·|s,a1:m−1)

〉
Proof. In the proof, we simply omit (s,a1:m−1) when making no abuse of notation.

Using the definition, we have

KL
(
πm
∗ ∥πθm

k

)
−KL

(
πm
∗ ∥πθm

k+1

)
=

〈
log

πθm
k+1

πθm
k

, πm
∗

〉
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=

〈
log

πθm
k+1

πθm
k

, πm
∗ − πθm

k+1

〉
+KL

(
πθm

k+1
∥πθm

k

)
=

〈
log

πθm
k+1

πθm
k

− β−1
k Qπθk

, πm
∗ − πθm

k

〉
+
〈
β−1
k Qπθk

, πm
∗ − πθm

k

〉
+KL

(
πθm

k+1
∥πθm

k

)
+

〈
log

πθm
k+1

πθm
k

, πθm
k
− πθm

k+1

〉
.

(11)

Recall the definitions of πm
k+1 (9) and πθm

k+1
(10), we have the following two equations〈

log
πθm

k+1

πθm
k

, πθm
k
− πθm

k+1

〉
=
〈
(θmk+1 − θmk )⊤ϕ, πθm

k
− πθm

k+1

〉
, (12)〈

β−1
k Qπθk

, πm
∗ − πθm

k

〉
=

〈
log

πm
k+1

πθm
k

, πm
∗ − πθm

k

〉
. (13)

Plugging these results (12), (13) into the RHS of (11) we have

KL
(
πm
∗ ∥πθm

k

)
−KL

(
πm
∗ ∥πθm

k+1

)
=

〈
log

πθm
k+1

πm
k+1

, πm
∗ − πθm

k

〉
+
〈
β−1
k Q1:m

πθk
, πm

∗ − πθm
k

〉
+
〈
(θmk+1 − θmk )⊤ϕ, πθm

k
− πθm

k+1

〉
+KL

(
πθm

k+1
∥πθm

k

)
≥
〈
log

πθm
k+1

πm
k+1

, πm
∗ − πθm

k

〉
+
〈
β−1
k Am

πθk
, πm

∗ − πθm
k

〉
+
〈
(θmk+1 − θmk )⊤ϕ, πθm

k
− πθm

k+1

〉
+

1

2

∥∥∥πθm
k+1
− πθm

k

∥∥∥2
1

In the last line: (1) From the Definition 3.1 of multi-agent advantage functions, we have

⟨Q1:m
πθk
−Am

πθk
, πm

∗ − πθm
k
⟩ = 0,

and (2) Pinsker’s inequality in information theory gives a lower bound of the KL-divergence.

KL
(
πθm

k+1
∥πθm

k

)
≥ 1

2

∥∥∥πθm
k+1
− πθm

k

∥∥∥2
1
,

plugging these into the expression, which concludes the proof.

With these results, we are ready to present the proofs for the main theorem.

Proofs for Theorem 4.5.

Proof. With Lemma B.6, take expectation with respect to s ∼ ν∗ and a ∼ π∗, we have

1

βk
Eσ∗

〈
Am

πθk
(s,a1:m−1, ·), πm

∗ (·|s,a1:m−1)− πθm
k
(·|s,a1:m−1)

〉
≤ Eσ∗

[
KL

(
πm
∗ (·|s,a1:m−1)∥πθm

k
(·|s,a1:m−1)

)
−KL

(
πm
∗ (·|s,a1:m−1)∥πθm

k+1
(·|s,a1:m−1)

)]
− Eσ∗

〈
log

πθm
k+1

(·|s,a1:m−1)

πm
k+1(·|s,a1:m−1)

, πm
∗ (·|s,a1:m−1)− πθm

k
(·|s,a1:m−1)

〉

− 1

2
Eσ∗

∥∥∥πθm
k+1

(·|s,a1:m−1)− πθm
k
(·|s,a1:m−1)

∥∥∥2
1

− Eσ∗

〈
θmk+1

⊤ϕ(s,a1:m−1, ·)− θmk
⊤ϕ(s,a1:m−1, ·), πθm

k
(·|s,a1:m−1)− πθm

k+1
(·|s,a1:m−1)

〉
.

Analogous to the previous section, we omit (s,a1:m−1) below for simplicity when making no abuse of notation. Rearrange
the inequality by plugging in Lemma. B.5

1

βk
Eσ∗

〈
Am

πθk
, πm

∗ − πθm
k

〉
18
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≤ Eσ∗

[
KL

(
πm
∗ ∥πθm

k

)
−KL

(
πm
∗ ∥πθm

k+1

)]
− Eσ∗

[〈
log

πθm
k+1

πm
k+1

, πm
∗ − πθm

k

〉
+

1

2

∥∥∥πθm
k+1
− πθm

k

∥∥∥2
1
+
〈
(θmk+1 − θmk )⊤ϕ, πθm

k
− πθm

k+1

〉]
≤ Eσ∗

[
KL

(
πm
∗ ∥πθm

k

)
−KL

(
πm
∗ ∥πθm

k+1

)]
︸ ︷︷ ︸

(i)

+∆m
k −Eσ∗

[
1

2

∥∥∥πθm
k+1
− πθm

k

∥∥∥2
1
+
〈
(θmk+1 − θmk )⊤ϕ, πθm

k
− πθm

k+1

〉]
︸ ︷︷ ︸

(ii)

(14)

Take summation over m = 1, · · · , N and k = 0, · · · ,K − 1 for both sides, note that

LHS This equals (1− γ)
∑K−1

k=0
1
βk

(J(π∗)− J(πθk)) by performance difference lemma (cf. Lemma 4.1).

RHS (i) : After taking summation over k and m, this term is upper bounded by N logA because for any m ∈ N , we
have E

σ∗
KL

(
πm
∗ ∥πm

θ0

)
≤ log |A| since the initial policy πθ0 is uniformly distributed over action spaces.

(ii): Using Hölder inequality, we have

− E
σ∗

〈
(θmk+1 − θmk )⊤ϕ, πθm

k
− πθm

k+1

〉
≤ E

σ∗

∥∥(θmk+1 − θmk )⊤ϕ
∥∥
∞ ·
∥∥∥πθm

k
− πθm

k+1

∥∥∥
1

Using the triangle inequality we can upper bound it by

E
σ∗

∥∥∥(θmk+1 − θmk )⊤ϕ− β−1
k Q̂

∥∥∥
∞
·
∥∥∥πθm

k
− πθm

k+1

∥∥∥
1
+ E

σ∗

∥∥∥β−1
k Q̂

∥∥∥
∞
·
∥∥∥πθm

k
− πθm

k+1

∥∥∥
1

≤ δmk + E
σ∗

∥∥∥β−1
k Q̂

∥∥∥
∞
·
∥∥∥πθm

k
− πθm

k+1

∥∥∥
1
,

where we plug in Lemma B.4 and:
∥∥∥πθm

k
− πθm

k+1

∥∥∥
1
≤
∥∥πθm

k

∥∥
1
+
∥∥∥πθm

k+1

∥∥∥
1
= 2.

We have

− E
σ∗

[
1

2

∥∥∥πθm
k+1
− πθm

k

∥∥∥2
1

]
+ E

σ∗

∥∥∥β−1
k Q̂

∥∥∥
∞
·
∥∥∥πθm

k
− πθm

k+1

∥∥∥
1

≤ E
σ∗

1

2

∥∥∥β−1
k Q̂

∥∥∥2
∞

, because ∀x, y it holds: −1

2
x2 + yx ≤ 1

2
y2.

≤ B2

2β2
k

Finally, by combining these results, we rearrange (14) and obtain

(1− γ)

K−1∑
k=0

1

βk
(J(π∗)− J(πθk)) ≤ N log |A|+

N∑
m=1

K−1∑
k=0

(∆m
k + δmk ) +

N∑
m=1

K−1∑
k=0

B2

2β2
k

.

Setting the penalty parameter βk = β
√
K and noting that π̄ is uniformly sampled from πθk , k = 1, 2 · · ·K − 1, we have

J(π∗)− J(π̄) ≤
Nβ2 log |A|+NB2/2 + β2

∑N
m=1

∑K−1
k=0 (∆m

k + δmk )

(1− γ)β
√
K

.

Considering policy improvement/evaluation errors, the optimal choice for β is

β =

√
NB2/2

N log |A|+
∑N

m=1

∑K−1
k=0 (∆m

k + δmk )

then

J(π∗)− J(π̄) ≤ O

B
√
N

1− γ

√
N log |A|+

∑N
m=1

∑K−1
k=0 (∆m

k + δmk )

K

 .

The proof is completed.
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C. Proofs for Section 5
C.1. Computational efficiency

Observe the pessimistic evaluation

ωm
k ←− argmin

ω

(
f(s0,π

1:m
k ) + λE1:m(f,πθk)

)
.

Under linear function approximation, f(s0,π1:m) is instantiated as ϕ(s0,π1:m)⊤ω, then

L1:m(f ′, f,π) =
1

n

∑
Dm

(
ϕ(s,a1:m)⊤ω′ − r − γϕ(s′,π1:m)⊤ω

)2
,

thus we have

E1:m(f,π) =
∑
Dm

(ϕ(s,a1:m)⊤ω − r − γϕ(s′,π1:m)⊤ω)2 −min
ω′

∑
Dm

(ϕ(s,a1:m)⊤ω′ − r − γϕ(s′,π1:m)⊤ω)2,

summation is taken over (s,a1:m, r, s′) from Dm.

Therefore, the Bellman error has a quadratic-form dependency on value function parameter ω, allowing the application of
many efficient numerical solvers.

C.2. Proofs

The linear function approximation directly implies the Realizability and Completeness conditions: For any m ∈ N ,
π ∈ Πm,

inf
f∈Fm

sup
admissable ν

∥f − T 1:m
π f∥22,ν = 0,

and

sup
f∈Fm

inf
f∈Fm

∥f ′ − T 1:m
π f∥22,µ = 0.

These conditions hold because we assume a linear structure for state-action value functions: Q1:m
π ∈ Fm (cf. Definition 5.1).

First we examine concentration analysis for linear function approximation (Xie et al., 2021).

Lemma C.1. For any m ∈ N , π ∈ Πm, with probability at least 1− δ it holds

E1:m(Qπ, π) ≤ O

(
d log nLR

δ

(1− γ)2n

)
= εr.

Lemma C.2. For any m ∈ N , π ∈ Πm, f ∈ Fm (cf. Definition 5.1) , if E1:m(f,π) ≤ ε, with probability at least 1− δ it
holds ∥∥f − T 1:m

π f
∥∥
2,Dm ≤ O

√ d log nLR
δ

(1− γ)2n

+
√
ε.

For simplicity, below, we shall define
R(s,a1:m) = Eã∼π̃k

r(s,a1:m, ã).

In the following lemma, we show that at every iteration k of Algorithm 2, there exists a Markov gameMk whose multi-agent
value function is exactly fm

k , m ∈ N . Moreover, the transition dynamics ofMk are the same as those of the originalM.
We have the following theoretical guarantees to control the differences between the reward ofM and rewards ofMk.

Lemma C.3. At each iteration k, there exists a Markov gameMk that has the same dynamics as originalM. Let the
reward function ofMk be Rk, then ∥∥R1:m

k (s,a1:m)−R(s,a1:m)
∥∥2
2,Dm ≤ εr.
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Proof. Set Rk = (I − γP)fk. It directly implies that

fm
k = T 1:m

πk,Mk
(s.a1:m)

= R1:m
k (s,a1:m) + γEfm

k (s′,a′).

Therefore ∥∥R1:m
k (s,a1:m)−R(s,a1:m)

∥∥2
2,Dm = ∥fm

k − T 1:m
πk

fm
k ∥22,Dm ≤ εr

Lemma C.4. For any conditional policy π : S ×Am−1 −→ ∆(A), and s ∈ S,a1:m−1 ∈ Am−1,

K∑
k=1

〈
πk+1(·|s,a1:m−1), fm

k (s,a1:m−1, ·)
〉
− ℓsa(π1(·|s,a1:m−1))

≥
K∑

k=1

〈
π(·|s,a1:m−1), fm

k (s,a1:m−1, ·)
〉
− ℓsa(π)

where we assume ℓsa(π) =
1
η

∑
a∈A π(a|s,a1:m−1) · log π(a|s,a1:m−1)

Proof. Proofs are straightforward by noticing the fact that θmk+1 = θmk + ηwm
k .

Lemma C.5. For any conditional policy π : S ×Am−1 −→ ∆(A), and s ∈ S,a1:m−1 ∈ Am−1,

K∑
k=1

〈
π(·|s,a1:m−1)− πk(·|s,a1:m−1), fm

k (s,a1:m−1, ·)
〉

≤
K∑

k=1

〈
πk+1(·|s,a1:m−1)− πk(·|s,a1:m−1), fm

k (s,a1:m−1, ·)
〉
− ℓsa(π1(·|s,a1:m−1))

Proof. The results could be obtained by applying Lemma C.4.

Lemma C.6. For any conditional policy π : S×Am−1 −→ ∆(A), and s ∈ S,a1:m−1 ∈ Am−1, if set stepsize η =
√

log |A|
2K

K∑
k=1

〈
π(·|s,a1:m−1)− πk(·|s,a1:m−1), fm

k (s,a1:m−1, ·)
〉
≤ 2
√

2 log |A|K

Proof. Define Lm
sa,k =

∑k
k′=1⟨π(·|s,a1:m−1), fk′(s,a1:m−1, ·)⟩ − ℓsa(π). Let BLm

sa,k
(·∥·) and Bℓsa(·∥·) be the Bregman

divergences w.r.t. losses Lm
sa,k and ℓsa. Using the property of divergence we have

Lm
sa,k(π

m
k ) ≤ Lm

sa,k(π
m
k+1) +BLm

sa,k
(πm

k (·|s,a1:m−1)∥πm
k+1(·|s,a1:m−1))

= Lm
sa,k(π

m
k+1)−Bℓsa(π

m
k (·|s,a1:m−1)∥πm

k+1(·|s,a1:m−1)).

Reordering it we have

Bℓsa(π
m
k (·|s,a1:m−1)∥πm

k+1(·|s,a1:m−1)) ≤ Lm
sa,k(π

m
k+1)− Lm

sa,k(π
m
k ).

RHS of the expression above is not greater than〈
πm
k+1(·|s,a1:m−1)− πm

k (·|s,a1:m−1), fm
k (s,a1:m−1, ·)

〉
.

Then 〈
πm
k+1(·|s,a1:m−1)− πm

k (·|s,a1:m−1), fm
k (s,a1:m−1, ·)

〉
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≤
√
2ηBℓsa(π

m
k (·|s,a1:m−1)∥πm

k+1(·|s,a1:m−1)) ·
∥∥fm

k (s,a1:m−1, ·)
∥∥
∞

≤
√
2η
√
⟨πm

k+1(·|s,a1:m−1)− πm
k (·|s,a1:m−1), fm

k (s,a1:m−1, ·)⟩ 1

1− γ
.

Thus we have
〈
πm
k+1(·|s,a1:m−1)− πm

k (·|s,a1:m−1), fm
k (s,a1:m−1, ·)

〉
≤ 2η

(1−γ)2 . Substituting it into Lemma C.5 we
have

K∑
k=1

〈
π(·|s,a1:m−1)− πk(·|s,a1:m−1), fm

k (s,a1:m−1, ·)
〉

≤ 2ηK

(1− γ)2
+

log |A|
η

≤
2
√
2 log |A|K
1− γ

where the last line is by setting η = (1− γ)
√

log |A|
2K .

Lemma C.7. For any conditional policy π : S ×Am−1 −→ ∆(A),

Q1:m
π (s0,π

1:m) ≥ min
f∈Fm

(
f(s0,π

1:m
k ) + λE1:m(f,πk)

)
− λεr.

Proof. For any conditional policy π1:m, and ∀m ∈ N . With realizability assumption we have Q1:m
π = argminf supν ∥f−

T 1:m
π f∥22,ν for any admissible ν

J(π) = Q1:m
π (s0,π

1:m)

= Q1:m
π (s0,π

1:m)−
(
Q1:m

π (s0,π
1:m) + λE1:m(Q1:m

π ,π)
)
+
(
Q1:m

π (s0,π
1:m) + λE1:m(Q1:m

π ,π)
)

≥ min
f∈Fm

(
f(s0,π

1:m) + λE1:m(f,π)
)
− λεr,

where in the last line we use Lemma C.1.

Proofs for Theorem 2.

Proof. Use Lemma C.7, at the k-th iteration we have

J(πk) ≥ min
f∈Fm

(
f(s0,π

1:m
k ) + λE1:m(f,πk)

)
− λεr

≥ fm
k (s0,π

1:m
k )− λεr

= JMk
(πk)− λεr

where fm
k is the multi-agent value function of Markov gameMk (cf. Lemma C.3).

Therefore we have,

J(π∗)− J(π̄) =
1

K

K∑
k=1

(J(π∗)− J(πk))

≤ 1

K

K∑
k=1

(J(π∗)− JMk
(πk)) + λεr

≤ 1

K

K∑
k=1

(JMk
(π∗)− JMk

(πk))︸ ︷︷ ︸
I

+
1

K

K∑
k=1

(J(π∗)− JMk
(π∗))︸ ︷︷ ︸

II

+λεr
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Term I. Apply performance difference lemma we have

1

K

K∑
k=1

(JMk
(π∗)− JMk

(πk))

=
1

1− γ

1

K

N∑
m=1

Es∼dπ∗
Ea1:m−1

K∑
k=1

(
Qπk

Mk
(s,a1:m−1,πm

∗ )−Qπk

Mk
(s,a1:m−1,πm

k )
)

=
1

1− γ

1

K

N∑
m=1

Es∼dπ∗ ,a
1:m−1∼π∗

K∑
k=1

〈
πm
∗ (·|s,a1:m−1)− πm

k (·|s,a1:m−1), fm
k (s,a1:m−1, ·)

〉
where the last line is because fm

k is the multi-agent state-action value function forMk. Then, if η = (1 − γ)
√

log |A|
2K ,

Lemma C.6 gives

Term I ≤ 2N

(1− γ)2

√
2 log |A|

K
.

Term II. The following analysis holds for any m ∈ N so we omit m for clarity. For this term, again, we use Lemma
1 (Xie & Jiang, 2020) to transform it into norm over state-action distributions

J(π∗)− JMk
(π∗) = Qπ∗(s,π∗)− JMk

(π∗)

≤ 1

1− γ
∥Qπ∗ − Tπ∗,Mk

Qπ∗∥2,dπ∗

Note the definition of the auxiliary Markov game for which fk is its value function(cf. Lemma C.3) we have

1

1− γ
∥Qπ∗ −Rk − γPπk

Qπ∗∥2,dπ∗
Rk = (I − γP)fk

=
1

1− γ
∥fk − Tπk

fk∥2,dπ∗

≤ C
dπ∗
µ

1− γ
∥fk − Tπk

fk∥2,D

which is no greater than Cdπ∗
µ

1−γ

(√
εr +

√
1

λ(1−γ)

)
, because E(fk,πk) ≤ εr +

1
(1−γ)λ :

fk(s0,πk) + λE(fk,πk) = min
f

(f(s0,πk) + λE(f,πk))

≤ Qπk
(s0,πk) + λE(Qπk

,πk), Lemma C.2

≤ 1

1− γ
+ λεr.

The proof is completed by substituting λ to the original expression.

D. Pessimistic MA-PPO with General Function Approximation
In this section we extend the results from linear function approximation to general function approximation (cf. Section 5).

In this setting, the value function is searched over a finite set Fm. We impose the following regularity conditions on the
general function class

Assumption D.1. For any m ∈ N , f ∈ Fm and (s,a1:m) ∈ S ×Am, it holds

|f(s,a1:m−1, am)| ≤ 1

1− γ
, (15)
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Algorithm 4 Pessimistic Multi-Agent PPO with General Function Approximation
Input: Regularization coefficient λ.
Output: Uniformly sample k from 0, 1 · · ·K − 1, return π̄ = πk.

1: Initialize uniformly: θm0 = 0 for every m ∈ N .
2: for k = 0, 1, . . . ,K − 1 do
3: for m = 1, 2, · · · , N do
4: Obtain the pessimistic estimate:

fm
k ←− argminf∈Fm

(
f(s0,π

1:m
k ) + λE1:m(f,πk)

)
.

5: Policy improvement: for any (s,a1:m) ∈ S ×Am,

πm
k+1(a

m|s,a1:m−1) ∝ πm
k+1(a

m|s,a1:m−1) · exp (ηfm
k (s,a1:m−1, am)).

6: end for
7: end for

|Fm| ≤ |F| (16)

where |F| is a certain positive number.

Instead of a pre-defined fixed policy class Π, now policy improvement is made upon Fm, formally, for m ∈ N and
(s,a1:m−1) ∈ S ×Am−1

Πm =

πm(·|s,a1:m−1) ∝ exp

η

k∑
j=0

fj(s,a
1:m−1, ·)

 : fj ∈ Fm, 0 ≤ k ≤ K − 1

 . (17)

Also note that under general function approximation, policy improvement has to be specific for each (s,a1:m), which might
become troublesome when the state space is enormous.

For general function approximation, two common expressivity assumptions on F are required (Antos et al., 2008; Xie et al.,
2021).
Assumption D.2 (Realizability). For any m ∈ N , π ∈ Πm,

inf
f∈Fm

sup
admissable ν

∥f − T 1:m
π f∥22,ν = ζF .

where ν can be any admissible distribution over S ×A1:m, and
Assumption D.3 (Completeness). For any m ∈ N , π ∈ Πm,

sup
f∈Fm

inf
f∈Fm

∥f ′ − T 1:m
π f∥22,µ = ζ ′F .

We have the following concentration guarantees for general function approximation (Xie et al., 2021).
Lemma D.4. For any m ∈ N , π ∈ Πm, let

f1:m
π = argmin

f∈Fm

sup
admissable ν

∥f − T 1:m
π f∥22,ν ,

with probability at least 1− δ, it holds

E1:m(f1:m
π , π) ≤ O

(
log |Fm||Πm|

δ

n(1− γ)2
+ ζF

)

= O

(
K log |Fm|

δ

n(1− γ)2
+ ζF

)
= εr, (18)

where we note that |Πm| ≤ |Fm|K from (17).
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Lemma D.5. For any m ∈ N , π ∈ Πm, f ∈ Fm , if E1:m(f,π) ≤ ε, with probability at least 1− δ it holds

∥∥f − T 1:m
π f

∥∥
2,Dm ≤ O

 1

1− γ

√
K log |Fm|

δ

n

+
√
ζ ′F +

√
ζ ′F + ε.

Lemma D.6. For any conditional policy π : S ×Am−1 −→ ∆(A),

Q1:m
π (s0,π

1:m) ≥ min
f∈Fm

(
f(s0,π

1:m
k ) + λE1:m(f,πk)

)
−
√
ζF

1− γ
− λεr.

Proof. For any conditional policy π1:m, and ∀m ∈ N . Let f1:m
π = argminf supν ∥f − T 1:m

π f∥22,ν for any admissible ν

J(π) = Q1:m
π (s0,π

1:m)

= Q1:m
π (s0,π

1:m)−
(
f1:m
π (s0,π

1:m) + λE1:m(Q1:m
π ,π)

)
+
(
f1:m
π (s0,π

1:m) + λE1:m(f1:m
π ,π)

)
≥ min

f∈Fm

(
f(s0,π

1:m) + λE1:m(f,π)
)
−
√
ζF

1− γ
− λεr,

where in the last line we use Lemma C.1 and the realizability assumption

f1:m
π −Q1:m

π ≤ ∥f
1:m
π − T 1:m

π f1:m
π ∥2,dπ

1− γ
≤
√
ζF

1− γ
.

Equipped with these useful lemmas, we are prepared to proceed to the main theorem for the general function approximation
setting

Theorem D.7. Recall the definition of εr (18), for the output policy π̄ attained by Algorithm 4 in a fully cooperative Markov

game, set η = (1− γ)
√

log |A|
2K and λ = (1− γ)−1ε

− 2
3

r . After K iterations, w.p. at least 1− δ we have

J(π∗)− J(π̄) ≤ O

 N

(1− γ)2

√
log |A|
K

+
Cdπ∗
µ

1− γ
·

 1

1− γ

3

√
K log |F|

n

n
+
√

ζF + ζ ′F + 3
√
ζF


Proof. Use Lemma D.6, at the k-th iteration we have

J(πk) ≥ min
f∈Fm

(
f(s0,π

1:m
k ) + λE1:m(f,πk)

)
−
√
ζF

1− γ
− λεr

≥ fm
k (s0,π

1:m
k )−

√
ζF

1− γ
− λεr

= JMk
(πk)−

√
ζF

1− γ
− λεr

Analogous to Appendix C, we have

J(π∗)− J(π̄) =
1

K

K∑
k=1

(J(π∗)− J(πk))

≤ 1

K

K∑
k=1

(J(π∗)− JMk
(πk)) +

√
ζF

1− γ
+ λεr

≤ 1

K

K∑
k=1

(JMk
(π∗)− JMk

(πk))︸ ︷︷ ︸
I

+
1

K

K∑
k=1

(J(π∗)− JMk
(π∗))︸ ︷︷ ︸

II

+

√
ζF

1− γ
+ λεr
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Term I. The analysis for the optimization term is the same as that in Appendix C. If η = (1− γ)
√

log |A|
2K , Lemma C.6

gives

Term I ≤ 2N

(1− γ)2

√
2 log |A|

K
.

Term II. Similar with Appendix C

J(π∗)− JMk
(π∗) = Qπ∗(s,π∗)− JMk

(π∗)

≤ C
dπ∗
µ

1− γ
∥fk − Tπk

fk∥2,D

which is no greater than

Cdπ∗
µ

1− γ

O
 1

1− γ

√
K log |Fm|

δ

n

+
√
ζ ′F +

√
ζ ′F + εr +

√
1

(1− γ)λ


, because E(fk,πk) ≤ εr +

1
(1−γ)λ :

fk(s0,πk) + λE(fk,πk) = min
f

(f(s0,πk) + λE(f,πk))

≤ Qπk
(s0,πk) + λE(Qπk

,πk), Lemma C.2

≤ 1

1− γ
+ λεr.

The proof is completed by substituting λ to the original expression.

E. Simulation
In this section, we perform a toy example to showcase the superiority of our sequential update structure over naive
independent policy gradient updates. We consider von Neumann’s ratio game, a simple stochastic game also used by
(Daskalakis et al., 2020).

In the game, there are only two agents, and each has an action space of 2. There is only one state, i.e., no state transition
exists. The immediate reward for selecting actions (a, b) is R(a, b) the probability of stopping in each round is S(a, b) . The
value function V (πx, πy) for this game is given by

V =
π⊤
x Rπy

π⊤
x Sπy

.

The two agents cooperate with each other to maximize the value function. From now on, we shall use (x, 1 − x) and
(y, 1− y) to represent both policies. We set parameters as

R =

[
1 0.5
−0.5 1

]
, and R =

[
1 1
0.1 0.1

]
.

Consider the value function as a function of variables x and y , then the stationary point is near (x, y) = (0.5, 0) , at which
the value function is V ≈ 0.46 , which is smaller than the global maximum V = 1.

To solve the problem, we adopt two algorithms: (1) our algorithm with sequential updates and (2) the independent
(policy gradient) learning method. In both algorithms, we use softmax parametrization for policies. In particular, our
log-linear parameterization (2) becomes softmax parametrization by setting ϕ as one-hot representations, i.e., for action a ,
ϕ(a)⊤θ = θa where θa represents the specific entry of θ that corresponds to a .
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Results We test our algorithm with sequential gradient updates and the independent learning method in different settings.
The results are shown in Figure 1. 5 Below we discuss the empirical findings from this simulation study.

First, we find that the independent policy optimization method often struggles around the stationary point (see (a)-(c)) that is
not necessarily globally optimal. In this example, a big stepsize would help alleviate the issue (e.g., in (c), independent PG
escapes the stationary point after 3000 iterations). However, the convergence to global optima is still slower than our method.
We note that noise might help to escape the stationary points (Jin et al., 2017). Our findings align with the theoretical
comparisons we made aforementioned. Even if the independent PG method is not trapped by a stationary point, from (d)-(f),
our algorithm consistently outperforms in terms of maximizing the value function.

In this toy example, the optimization landscape is quite simple: only two agents participate, each with only two possible
actions. No state transition is allowed, which is the main difficulty in performing sequential decision-making. We point
out that, globally, there is only one stationary point. In such an effortless case, our algorithm consistently outperforms
independent PG in mainly two folds. First, our algorithm does not struggle like independent PG when the current policy is
near the stationary point where gradient information is few. Second, our algorithm demonstrates a fast convergence rate
to the global maximum value function. Therefore, when the complexity of the environment increases significantly, for
instance: (1) multiple heterogeneous agents interact with each other and the unknown environment, (2) complex function
approximators are adopted (e.g., deep neural networks), utilizing independent PG would be more problematic in terms of
locating the global optimum because there will be more stationary points in the landscape.

Our findings showcase the necessity and usefulness of the conditional dependency structure, which helps us find a policy
that enjoys a globally sub-optimal value function.

a

fe

b c

d

Figure 1. Performances of our algorithm and the independent learning method. In (a)-(c): policies are initialized close to the stationary
point. In (d)-(f): both policies are uniformly initialized.

5Implementation can be found at https://github.com/zhaoyl18/ratio_game.
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