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Abstract
We study the problem of online learning in a
two-player decentralized cooperative Stackelberg
game. In each round, the leader first takes an
action, followed by the follower who takes their
action after observing the leader’s move. The goal
of the leader is to learn to minimize the cumulative
regret based on the history of interactions. Differ-
ing from the traditional formulation of repeated
Stackelberg games, we assume the follower is om-
niscient, with full knowledge of the true reward,
and that they always best-respond to the leader’s
actions. We analyze the sample complexity of
regret minimization in this repeated Stackelberg
game. We show that depending on the reward
structure, the existence of the omniscient follower
may change the sample complexity drastically,
from constant to exponential, even for linear co-
operative Stackelberg games. This poses unique
challenges for the learning process of the leader
and the subsequent regret analysis.

1. Introduction
The multi-agent learning problem (Ferber & Weiss, 1999;
Wooldridge, 2009; Filar & Vrieze, 2012; Zhang et al., 2021)
has received significant attention reflecting its wide vari-
ety of real-world applications, including autonomous driv-
ing (Shalev-Shwartz et al., 2016; Sallab et al., 2017) and
human-robot interaction (Kober et al., 2013; Lillicrap et al.,
2015; Goodrich et al., 2008; Xie et al., 2021). In a multi-
agent system, it is natural to assume that each agent pos-
sesses a different set of information due to its different view-
point and history of actions. This phenomenon is commonly
referred to as the property of information asymmetry (Yang
et al., 2022). Such information asymmetry poses challenges
to the coordination and cooperation between learning agents.
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In this paper, we study how the information asymmetry af-
fects the sample complexity of learning a two-player de-
centralized cooperative repeated Stackelberg game, with a
focus on the setting when the follower is omniscient and
myopic, and always best-responds to the leader’s actions.

Consider an illustrative example in human-robot interaction
where a robot is required to collaborate with a human to
achieve some shared objective. This can be formulated as a
repeated Stackelberg game where the interactions between
human and robot happen in multiple rounds, and the human
is an omniscient expert who knows the exact target and how
to achieve it. In each round, the robot, as the leader who
hopes to learn the world model and human behavior from
scratch, first takes some action. After seeing the robot’s
action, the human, as an expert follower who possesses
perfect information about the world, always best-responds
to the robot’s action to maximize their reward. The robot
hopes to use as few as possible interactions to learn the
world model and human behavior, and eventually find the
optimal action that maximizes a shared reward.

Concretely, during each round t of the interaction, the leader
first plays an action at ∈ A, and the follower plays another
action bt ∈ B upon (perfectly) observing at. We assume
that the two players share a reward, rt = h⋆(at, bt) + zt,
where zt ∈ R is some zero-mean sub-Gaussian noise,
h⋆ belongs to a family H. We also assume that the fol-
lower has full knowledge of the reward and always best
responds with bt ∈ argmaxb∈B h⋆(at, b). However, the
leader does not know h⋆ and can only explore via taking
actions at and making inferences from past observations
(a1, b1, r1), · · · , (at−1, bt−1, rt−1).1 We are interested in
providing tight bound for the Stackelberg regret, defined as

R(T ) = max
a∈A

E

[
T∑

t=1

(
max
b∈B

h⋆(a, b)−max
bt∈B

h⋆(at, bt)

)]
.

The Stackelberg regret characterizes the gap between the
reward achieved from the optimal leader action and the
reward from the actual leader action at.

Compared with the traditional bandit problem, the extra
observation of bt can be viewed as side information accom-

1For simplicity, we assume in the introduction that the leader
can see b1, · · · , bt−1 without noise. Later we generalize to the
case when the observed bt is also noisy.
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panying the usual action-reward pair. Depending on how
the function family H and side information b are designed,
the complexity of learning for the leader may vary. Here
we briefly summarize several illustrative examples where
the follower may help or harm the leader’s learning process.
We will present a general formalization that encompasses
these examples in the next section.

1. Curse of expertise. Imagine that in a driving system,
the self-driving vehicle (leader) and the human driver
(follower) work together to avoid collisions. For most
of the aggressive actions the leader takes, the final re-
ward for non-collision is high since the human driver
will consistently exert efforts to evade the self-driving
vehicle in order to prevent collisions. From the leader’s
point of view, aggressive actions lead to similar out-
comes as safe actions. The expertise of the human
prevents the leader from learning from failure cases.

2. Imitation Learning. Consider an assembly robot
(leader) that learns to move goods to a destination with
a human expert (follower). This can be modeled by
the robot choosing a drop-off location, from which the
human expert continues to the correct destination. In
this simple example, the robot and the human expert
cooperate in a “linear” fashion—the expert can com-
plete whatever the robot leaves undone, and upon ob-
servation of the expert’s move the robot should simply
imitate the behavior of the human expert in the future.
This corresponds to an “imitation-based” interaction
that can greatly accelerate the learning process.

3. Expert-guided learning. In most cases, the self-
driving vehicle may have some target that is similar but
not exactly the same as the human driver. For example,
they both aim to avoid collision while heading to a
different target. In this case, a pure imitation-based
learning will fail. But the self-driving vehicle can still
glean good driving standards from the human driver.
With the extra observation of the behavior of human
driver, the self-driving vehicle can learn much faster.

Extending beyond robotics applications, our framework is
potentially applicable in various repeated cooperative game
settings where direct communication is hard, unreliable,
or forbidden. For instance, it captures the learning aspect
of language models adjusting to human preferences, per-
sonalized digital healthcare, or other settings of AI-human
interaction where explicit revelation of utility function is
difficult: in such settings, the AI system (e.g., the language
model, or the digital “doctor”) works with a human user to
achieve a common goal without direct communication of
the true preferences or needs; instead, the system must learn
them through repeated interactions with the users.

In this paper, we abstract and formalize these three scenar-
ios into a simple linear Stackelberg game and analyze the
sample complexity of this game. We briefly overview our
main results in the next section.

1.1. Main results

Contrary to the traditional literature on linear bandits, we
show that the worst-case sample complexity for achieving
ϵ-Stackelberg regret is at least exponential even when h⋆

belongs to the linear family Hϕ = {θ · ϕ(a, b)}. The hard
instance corresponds to the ‘curse of expertise’ example
discussed above, where the follower’s best response hurts
the observation, and thus harms the whole learning process.
Theorem 1.1 (Curse of expertise, informal). There exists
some ϕ such that for any algorithm, we can find some h⋆ ∈
Hϕ with the regret being Ω(T (d−3)/(d−2)).

This shows that the leader needs an exponential number
of samples to learn a good policy even when the reward is
linear. We also present an upper bound O(T (d+1)/(d+2))
for linear rewards in Theorem 3.3.

On the other hand, the side information bt can also greatly
improve the sample complexity when the linear family is
structured. We provide an Upper Confidence Bound (UCB)
based algorithm (Auer et al., 2002) that leads to an improved
bound in this setting. In particular, we recover the rate for
imitation learning when the leader can simply mimic the
behavior of the follower.
Theorem 1.2 (Imitation learning, informal). There exists
some ϕ such that for any h⋆ ∈ Hϕ, when bt is observed,
the leader can achieve regret O(log2(T )) by imitating the
follower behavior. However, when bt is not observed, the
regret is Θ(

√
T ).

Similarly, we can also design cases where observing bt helps
reduce the problem to a traditional linear bandit, while not
observing bt suffers from exponential sample complexity.
Theorem 1.3 (Expert-guided, informal). There exists some
ϕ such that for any h⋆ ∈ Hϕ, when bt is observed, the
leader can achieve regret O(

√
T ). However, when bt is not

observed, the regret is Ω(T (d−4)/(d−2)).

In addition to these three examples, we discuss more com-
plicated scenarios where UCB fails and we show that a
careful analysis is necessary to achieve a near-optimal rate.
In particular, we establish such a rate for polynomial bandits,
where the best-response corresponds to a lower degree poly-
nomial, which helps improve the rate when the noise level
for reward and the observed follower behavior is similar.
Theorem 1.4 (Polynomial bandit, informal). There exists
a family of 2k-degree polynomial, such that the regret is
Θ(

√
d2k−1T ) when bt is observed, and Θ(

√
d2kT ) when bt

is not observed.
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1.2. Related work

Decentralized Stackelberg Games. The problem of re-
peated Stackelberg games has been studied extensively (von
Stackelberg, 2010; Marecki et al., 2012; Lauffer et al., 2022;
Kao et al., 2022), in a standard setting where the leader
leads and the myopic follower follows with its best response
for the current round.

Kao et al. (2022) and Lauffer et al. (2022) study a similar
setting to ours, in which a leader and a follower interact
through a cooperative Stackelberg game that comprises a
two-stage bandit problem. However, Kao et al. (2022) re-
strict their focus to the tabular case where both A and B are
finite and the reward h⋆ is uncorrelated for different actions
(a, b). They also assume that both the leader and the agent
are running regret-minimization algorithms independently.
They show that the classic upper confidence bound (UCB)
algorithm for the multi-arm bandit problem can be used
for both the leader and the agent, respectively, to achieve
asymptotically optimal performance (i.e., no-regret). How-
ever, it is unclear that such results can generalize to bandits
with function approximation and the case of omniscient
agents. Indeed, our results show that the general case (or
even just the linear case) is not always statistically tractable.
Note also that Lauffer et al. (2022) show that the regret can
depend exponentially on the dimension of the agent’s utility.

Other examples of Stackelberg games include Stackelberg
security games (Conitzer & Sandholm, 2006; Tambe, 2011),
strategic learning (Hardt et al., 2016; Dong et al., 2018; Liu
& Chen, 2016), dynamic task pricing (Kleinberg & Leighton,
2003) and online contract design (Ho et al., 2014; Zhu et al.,
2022). The problem of online learning in contract theory
considers a decentralized general-sum Stackelberg game
with omniscient agents. It focuses on a special case where
the rewards for the leader and the agent are both linear. It is
shown in Zhu et al. (2022) that one has to pay exponential
sample complexity in this setting to achieve small regret in
the worst case.

Centralized Stackelberg Game. Centralized Stackelberg
games are also well studied in the literature (Zhong et al.,
2021; Bai et al., 2021; Gerstgrasser & Parkes, 2022; Yu
et al., 2022), where the machine learning algorithm has
control over both the leader and the follower. Bai et al.
(2021) consider the repeated Stackelberg game where both
the leader and the agent learn their optimal actions (a Stack-
elberg equilibrium) from samples. However, they assume
a central controller that can determine the actions of both
the leader and the agent. Moreover, they rely on an assump-
tion of a bounded gap between the optimal response and an
ϵ-approximate best response. In contrast, in our framework,
we assume that the agent’s utility is unknown, and that the
agent always takes the best response.

Bandit with side information. There has been significant
effort in studying bandits with side information (Wang et al.,
2005; Langford & Zhang, 2007; Foster et al., 2021). Such
side information is generally assumed to be available before
a decision. Foster et al. (2021) also consider the case when
an extra observation is available after taking the actions.
However, they mainly focus on the setting of reinforcement
learning where the extra observation is the trajectory. Al-
though our observation of follower behavior can also be
viewed as side information, it also alters the reward in the
Stackelberg game, which changes the structure of the multi-
agent problem.

2. Formulation
We consider a two-player cooperative Stackelberg bandit
game with an omniscient follower.

Let A ⊆ Rd1 and B ⊆ Rd2 be compact sets. Up to a
scaling factor, we will assume that A and B reside inside
the unit ball centered at the origin. During each round
t ∈ [T ] of interaction, the leader plays an action at ∈ A,
and the follower plays bt ∈ B upon (perfectly) observing
at. The two players both receive a reward rt = h⋆(at, bt) +
zt, where zt ∈ R is zero-mean σr-sub-Gaussian and is
independent of all past events. We will make the realizability
assumption that h⋆ belongs to a (known) family H of real-
valued functions on Bd1 × Bd2 . As is common in the study
of bandits, we assume that reward function is bounded, i.e.,
there exists C ∈ (0,∞) such that 0 ≤ h ≤ C for all
h ∈ H. We assume C = 1 throughout the paper unless
stated otherwise.

We will assume that the follower, modeled after an ex-
pert human player, has full knowledge of the game and
can always best respond with an optimal action bt ∈
argmaxb∈B h⋆(at, b). The leader then makes a noisy ob-
servation of bt, given by b̂t = bt + wt, where wt ∈ Rd2

is zero-mean σb-sub-Gaussian (e.g., component-wise σb-
sub-Gaussian with independent zero-mean coordinates) and
independent of all past events.

For convenience, we denote the set of best responses to
leader’s action a when the ground truth reward function
is h by b∗h(a). Denote h(a) := maxb∈B h(a, b). The
optimal action, unbeknownst to the leader, is denoted
a∗ := argmaxa∈A h

⋆
(a).

The leader’s objective is to minimize the regret during T
rounds of interactions, defined as

R(T ) = max
a∈A

E

[
T∑

t=1

h(a)− h(at)

]
. (1)

We will also focus on the sample complexity of achieving
low (average) regret; that is, for some ϵ, δ ∈ [0, 1], the
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minimal T ∈ N such that R(T ) ≤ ϵT .

Notations. We use calligraphic letters for sets and opera-
tors, e.g., A. Given a set A, we write |A| for the cardinality
of A. Bd and Sd−1 denote the unit ball and the unit sphere,
both centered at the origin, in d-dimensional Euclidean
space. Vectors are assumed to be column vectors except for
the probability and measure vectors. For a vector v ∈ Rd

and an integer i ∈ N, we use vi to denote the i-th element
of v, and v−i to denote the vector of all elements in v ex-
cept for vi. For two n-dimensional vectors x and y, we
use x · y = x⊤y to denote their inner product. We write
f(x) = O(g(x)) or f(x) ≲ g(x) if there exists some posi-
tive real number M and some x0 such that |f(x)| ≤ Mg(x)

for all x ≥ x0. We use Õ(·) to be the big-O notation ig-
noring logarithmic factors. We write f(x) = Ω(g(x)) or
f(x) ≳ g(x) if there exists some positive real number M
and some x0 such that |f(x)| ≥ Mg(x) for all x ≥ x0. We
write f(x) = Θ(g(x)) if we have both f(x) = O(g(x))
and f(x) = Ω(g(x)). We use ∥ · ∥p to denote the ℓp norm
for p ∈ (0,∞], with ∥ · ∥ denoting the Euclidean (ℓ2) norm
∥ · ∥2.

Parameterized family. In subsequent discussions, we
will consider the parameterized case when H admits a pa-
rameterization over a compact parameter space Θ. The class
is denoted by HΘ = {hθ|θ ∈ Θ}. When the parameteriza-
tion is linear, that is,

hθ(a, b) = θ · ϕ(a, b) (2)

for some feature function ϕ : A× B → Bd, we will denote
the class by HΘ,ϕ. We denote the true parameter by θ⋆. For
instance, when A and B are the sets of standard basis vectors
in R|A| and R|B| with ϕ(a, b) = ab⊤ and θ is bounded in
R|A|×|B|, we recover the tabular case model in Kao et al.
(2022) with finite action sets. In general, however, we will
focus on cases with infinite action sets.

3. Linear Stackelberg games: Curse of
expertise

In this section, we study the sample complexity of learning
in linear Stackelberg game, where the family of reward is
restricted to HΘ,ϕ for some given Θ and ϕ.

3.1. An exponential lower bound

It is well known that the regret for traditional linear bandits
grows as Θ(d

√
T ) (Abbasi-Yadkori et al., 2011). In the case

of a linear Stackelberg game, we present a worst-case lower
bound on the regret that is exponential in dimensionality for
the linear family. This suggests that the leader cannot learn
the task well unless in possession of an exponential num-
ber of samples even when we restrict to linear Stackelberg

games.

Assume the leader makes perfect observations of the fol-
lower’s responses (i.e., σb = 0). We have the following
lower bound.

Theorem 3.1. For any d ≥ 4, there exists some ϕ such that,
for any algorithm that the leader runs, one can find some
instance with hθ ∈ HΘ,ϕ such that

R(T ) ≳ T (d−4)/(d−2). (3)

In other words, the sample complexity for achieving ϵ (aver-
age) regret is at least Ω

(
(1/ϵ)

d−2
2

)
.

The proof is detailed in Appendix A.1. The worst-case
instance presented below can be reduced to the ReLU bandit
problem shown below, which is known to suffer from the
exponential sample complexity (Dong et al., 2021).

Example 3.2. Let A = Bd−1, B = [0, 1] and Θ = {θ |
θ−d ∈ Sd−2, θd = 1 − ∆} for some ∆ ∈ (0, 1). Let the
feature function be ϕ(a, b) = ((1− b)a, b).

One can verify that in this case, one has

hθ(a) = max{1−∆, θ−d · a}. (4)

Thus when a is chosen far from θ−d, the reward will remain
constant.

Theorem 3.1 is no mystery mathematically: the best re-
sponse may destroy linearity for the leader’s observations,
imposing a toll. Conceptually, however, the message from
the theorem is striking: it highlights a “curse of expertise”;
i.e., the potential difficulty to learn with an expert on a de-
centralized bandit learning task with a large action space.
From the classic single-agent bandit learning perspective,
the task the two agents aim to solve is straightforward: a
linear bandit on an action space ϕ(A,B). In other words, if
the expert follower lets the novice leader control the choice
of b, the average regret would steadily decrease at a rate
of Õ(d

√
T ). On the other hand, with a myopic focus, the

follower’s expertise in best responding ironically results in
a significantly higher regret, as it deprives the learner of the
ability to explore.

In the context of autonomous driving, for example, this
can manifest in scenarios where the autonomous vehicle
takes a poor action (e.g., an aggressive lane change) yet
other vehicles or pedestrian immediately respond by slowing
down or steering away to avoid a possible collision, thereby
hiding the potential negative consequences of the action.
The lack of coordination and the constant best response
from the follower, both common in practice, makes it hard
for the leader to efficiently learn the reward landscape or
improve their current policy.
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3.2. An exponential upper bound

For any class H of reward functions on a pair of actions
(a, b), an upper bound on the sample complexity (and regret)
can be obtained using a covering argument.

Theorem 3.3. Let N(ϵ) = N(H, ϵ, ∥ · ∥∞) denote the ℓ∞

covering number of H with radius ϵ > 0. Then we can
achieve

R(T ) ≲ inf
ϵ>0

ϵT +
√
N(ϵ)T . (5)

To achieve this, simply compute an ϵ-covering of H and let
the leader play no-regret algorithms on the ϵ-covering set.
Note that although the covering is constructed for pair of
actions (a, b) ∈ Aϵ × Bϵ, it suffices for the leader to run
no-regret algorithms on actions Aϵ. The detailed algorithm
and proof are given in Appendix A.2.

This upper bound is achieved when the leader does not even
utilize the observations of the follower’s responses. Indeed,
in the worst case (e.g., in Example 3.2), the responses will
not provide information.

As a corollary, in the linear regime with HΘ,ϕ, the cover-
ing number is N(ϵ) = N(Θ, ϵ, ∥ · ∥) ≤ exp

(
O
(
d log 1

ϵ

))
(Wainwright, 2019). Choosing ϵ ≍ T−1/(d+2), Theo-
rem 3.3 reduces to the following upper bound in the linearly
parameterized case.

Corollary 3.4. In the linear case, we can achieve R(T ) ≲
T (d+1)/(d+2).

In other words, the sample complexity for achieving average
regret equal to ϵ is upper bounded by O

((
1/ϵ
)d+2)

. This
upper bound is agnostic to any structural property of the
feature function ϕ, such as smoothness or even continuity.

4. UCB with side observations
Although the worst-case sample complexity for linear Stack-
elberg games is exponential, it is possible to obtain a fine-
grained analysis and improved rate for the family HΘ,ϕ

when ϕ is better structured. A natural choice of algorithm
for the leader is some variant of UCB that incorporates ob-
servations of the follower’s actions. In this section, we will
describe a general recipe for a family of UCB algorithms to
incorporate the side information as well as the challenge in
their design.

4.1. Algorithm description

We consider the following variant of UCB that uses the
follower’s responses as side information to improve the
confidence set.
Remark 4.1. The regression oracles and the sequences
{αt}t∈[T ], {βt}t∈[T ] must be chosen appropriately so that
the following condition holds: Given an error tolerance

δ ∈ (0, 1), we require h⋆ ∈
⋂T

t=1 Ht with probability at
least 1− δ.
Remark 4.2. A common choice for Reg(b) and Reg(r) is the
least-squares regression oracle that computes

h
(b)
t ∈ argmin

h∈H

t−1∑
i=1

∥b∗h(ai)− b̂i∥2 (6)

and

h
(r)
t ∈ argmin

h∈H

t−1∑
i=1

(h(ai)− ri)
2. (7)

When the least-squares computation becomes infeasible un-
der complex response-reward structures (this is common
for (6)), custom oracles need to be designed. A more intri-
cate approach may be to jointly construct the estimate using
both {b̂τ}τ∈[t−1] and {rτ}τ∈[t−1]. We leave it for future
research to study systematic designs of the oracles and the
confidence sets.
Remark 4.3. When the responses are unobserved or ignored
(e.g., by choosing αt = ∞), Algorithm 1 reduces to the
classic Eluder UCB using the least-squares (reward) oracle
with Ht = H(r)

t (Russo & Van Roy, 2013).

The choices of {αt}t∈N and {βt}t∈N can pose another chal-
lenge. An naive attempt to get a generic upper bound on αt

is to use a covering argument as in Russo & Van Roy (2013)
using the following measurement between two functions
h, h′ ∈ H: d(b)(h, h′) = supa ∥b∗h(a)− b∗h′(a)∥. But note
that this does not necessarily define a norm, and further the
covering number of H in this sense can be infinite when the
best response is discontinuous in the leader’s action a. Thus,
such an approach is often not useful and one may have to
determine αt on a per instance basis.

4.2. Examples

While Theorem 3.1 shows that the involvement of the omni-
scient follower can lead to “curse of expertise,” a stark dete-
rioration in the sample complexity, there are many scenarios

Algorithm 1 UCB with side information from expert

Input: Regression oracles Reg(b) and Reg(r) on reward
and response, {αt}t∈[T ], {βt}t∈[T ]

for t = 1 to T do
Compute h

(b)
t = Reg(b)(b̂1, . . . , b̂t−1) and h

(r)
t =

Reg(r)(r1, . . . , rt−1)

Set H(b)
t := {h :

∑t−1
i=1 ∥b∗h(ai)− b∗

h
(b)
t

(ai)∥2 ≤ α2
t }

Set H(r)
t := {h :

∑t−1
i=1

(
h(ai)− h

(r)

t (ai)
)2 ≤ β2

t }
Construct confidence set Ht = H(b)

t ∩H(r)
t

Take action at ∈ argmaxa∈A suph∈Ht
h(a)

Observe (noisy) reward rt and response b̂t
end for
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where the leader’s observation of the follower’s responses
can expedite learning significantly. In this section, we will
explore a few such examples.

4.2.1. AN IMITATION-BASED EXAMPLE

Let us consider a setting where the leader achieves efficient
learning through imitation. Heuristically, imitation arises
when the optimal action for the leader is equal to the best
response for the omniscient follower or a function of it. This
may capture, for instance, real-world robotics applications
where the actions of the robot and the human expert are
exchangeable and the true goal can be easily inferred from
the expert’s action. A simple scenario is when the robot
and the human expert are supposed to carry out the same
task perfectly, in which case the robot should simply treat
the expert as a role model and imitate. The following is a
concrete example.
Example 4.4. Let A = B = Θ = Sd−1 (or Bd equiva-
lently)2. Consider the linearly parameterized function class
HΘ,ϕ with feature function

ϕ(a, b) = a+ b. (8)

Here, the optimal response b∗θ ≡ θ is independent of a, and
hθ(a) = θ · a+ 1.

Construction of confidence sets. The (noisy) observa-
tions of the follower’s best responses simplify the problem
into an imitation learning task. A simple oracle for the best-
response observations is to take the A-projected empirical
average of responses, i.e., θ(b)t = ΠA

(
1

t−1

∑t−1
i=1 b̂i

)
.3 The

response-based confidence set reduces to

Θ
(b)
t =

{
θ ∈ Θ

∣∣∣∥θ − θ
(b)
t ∥ ≤ αt√

t− 1

}
.

Standard sub-Gaussian concentration results suggest that
the (Euclidean) radius of this confidence set shrinks at a rate
of t−1/2.
Lemma 4.5. To ensure θ⋆ ∈

⋂
t∈[T ] Θt with probability at

least 1− δ, it suffices to choose αt = Θ
(
σb

√
d+ log T

δ

)
.

UCB chooses actions on Sd−1 increasingly close to the
empirical estimate θ

(b)
t .4 The regret bound follows from

these choices of confidence sets.
2While it is customary to consider Θ = Bd, we will observe

below that the imitation-based algorithm does not crucially rely
on ∥θ⋆∥ and only incurs smaller regret if ∥θ⋆∥ < 1. This is
because the algorithm asymptotically relies solely on the response
observations, which are invariant under scaling of θ⋆. It is also
without loss of generality to restrict all actions to the sphere.

3Define the projection of y ∈ Rd onto a closed set X ⊆ Rd as
ΠX (y) := argminx∈X ∥y − x∥, breaking ties arbitrarily when
the minimizer is not unique.

4Even simpler, the leader can play the A-projected empirical

Proposition 4.6. In Example 4.4, UCB achieves a regret
bound

RUCB(T ) ≲ σ2
b log T · (d+ log T ). (9)

In other words, the average regret decays at a rate of
Õ(σ2

bd/T ). This has also been analyzed in the setting of
imitation learning (Rajaraman et al., 2021), and the results
are consistent.
Remark 4.7. When the follower’s responses are unobserved
(still assumed to be best responses), this is simply a lin-
ear bandit, where the minimax regret is Ω(σbd

√
T ) ≫

O(σ2
bd log

2 T ). This indicates the value of the bt obser-
vations. When the follower’s response is noiseless, one can
see that a single sample suffices to find the optimal response
since one always observes b⋆θ = θ.
Remark 4.8. Note the gap in the Θ(log T ) regret when the
response observations are used and the Θ(

√
T ) regret when

they are ignored or unavailable, showing the value of those
response observations. In fact, it is easy to modify this
example slightly (e.g., taking ϕ(a, b) = max{|θ⊤a|,∆}b
for some ∆ ∈ (0, 1)) to create an even larger gap: When
the leader uses the response observations, the regret is
Õ(d log T ) with sample complexity Õ

(
d log 1

ϵ

)
; When the

response observations are unavailable, the sample complex-
ity increases to Ω(ϵ−d).

4.2.2. EXPERT-GUIDED EXPLORATION

In many scenarios, the omniscient follower’s actions may
not directly reveal the exact state of the world but still pro-
vide crucial information. The next example illustrates a
simple setting where the follower’s response can signifi-
cantly reduce the sample complexity.

Example 4.9. Let A = B = Sd−1 and

Θ = {(θa, θb) ∈ Sd−1 × Sd−1|θa · θb ≥ ζ}

for some ζ ∈ (0, 1). Consider the parameterized family of
functions HΘ = {hθ|θ ∈ Θ} where

hθ(a, b) = ReLU(θa · a−∆) + θb · b,

for some ∆ ∈ (0, 1). For simplicity, we will assume that the
response observations are noiseless (i.e., σb = 0), although
the noisy case can be analyzed analogously.

Confidences sets. The best response is b∗θ ≡ θb, again
independent of the leader’s action. Upon observing b1 = θb,
the leader should construct confidence sets Θ(b)

t = {θa ∈
Sd−1|θa · b1 ≥ ζ} × {b1}, while Θ(r)

t is chosen as in linear

average of responses. Under our choice of constant α, the analysis
will be the same, with the result differ by at most a constant factor.
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UCB. As a result, all subsequent actions the leader takes
must fall into

A1 := {a ∈ A|a · b1 ≥ ζ}. (10)

This refinement of the action set will reduce the sample
complexity, and depending on the size of ζ relative to ∆,
the reduction can be significant.

Strong reduction. When 1− ζ ≤ (1−∆)/4, the leader
learns that θa · b1 ≥ ζ. In particular, any action a ∈ A1

must satisfy

θa·a =
2− ∥θa − a∥2

2
≥ 2− (∥θa − b1∥+ ∥a− b1∥)2

2

≥ 2− (2
√
2− 2ζ)2

2
= 1− 4(1− ζ) ≥ ∆, (11)

and thus h(a) = θa · a−∆+1 behaves as a linear function
within A1. By playing UCB within A1, the leader reduces
the problem to a linear bandit instance and thus achieves the
following regret bound.

Proposition 4.10. Assume 1 − ζ ≤ (1 − ∆)/4 in Exam-
ple 4.9. UCB achieves

RUCB(T ) ≤ Õ(d
√
T ). (12)

This leads to a sample complexity of Õ(d2/ϵ2), in contrast
to the exponential sample complexity exp(O(d log 1

ϵ )) if
the responses were unobserved. Information from the fol-
lower’s response guides the leader’s exploration to the well
conditioned part of the action space. Given the Ω(d

√
T )

sample complexity of linear bandits, the upper bound (12)
is tight (up to logarithmic terms).

Weak reduction. When ζ is small relative to ∆, the prob-
lem does not immediately reduce to a linear bandit, but we
have the following improved upper bound.

Proposition 4.11. There exists an algorithm Alg that
achieves

RAlg(T ) ≤ O
(
(Cd

ζT
d+1)

1
d+2
)
, (13)

where Cζ :=
√
1− ζ2 ∈ (0, 1).

This bound improves as ζ decreases. The sample complexity
is therefore Õ(Cd

ζ ϵ
−d−2), a Cd

ζ reduction compared with
the original complexity without observing the responses in
Corollary 3.4.

Since the reduced problem is still a ReLU bandit, UCB
will not be suitable. Instead, (13) can be achieved through
discretization of A1 as the upper bound in Theorem 3.3.

5. Beyond UCB
Although the UCB algorithm gives a near-optimal rate in
most of the above examples. We also provide two cases
where UCB fails to achieve the optimal rate. This necessi-
tates a tailored algorithm design in specific settings.

5.1. Nonlinear (polynomial) family

UCB is known to fail to achieve the optimal rate in the
case of the polynomial bandit family (Huang et al., 2021),
where the reward is a polynomial activation on top of a
linear family. We construct an example which utilizes the
structure of the polynomial bandit, formally defined below.

Example 5.1 (Polynomial bandit). Consider the convex
function f(x) = x2k for some k ∈ Z+. Let

A = Bd−1,B = [−1, 1],Θ = Bd−1 × {1}, (14)

and
ϕ(a, b) = (2kba,−f∗(2kb)), (15)

where f∗ is the convex conjugate of f . Consider the nonlin-
early parameterized family

HΘ := {hθ(a, b) = f(θ · ϕ(a, b)) | θ ∈ Θ}. (16)

By properties of the convex conjugate,

hθ(a) = f(θ−d · a) = (θ−d · a)2k (17)

with the best response

b∗θ(a) = argmax
−1≤b≤1

2kbθ−d · a− f∗(2kb)

=
f ′(θ−d · a)

2k
= (θ−d · a)2k−1 ∈ [−1, 1].

This observation allows us to apply results on polynomial
bandits (Huang et al., 2021).

Response-regret structure. Observe the following prop-
erties of the best response function in Example 5.1.

1. The expected reward is a function of the best response,
independent of the true parameter. Namely,

hθ(a) = b∗θ(a)
2k

2k−1 . (18)

This mapping is Lipschitz:∣∣hθ(a)− hθ(a
′)
∣∣ ≤ 2k

2k − 1

∣∣b∗θ(a)− b∗θ(a
′)
∣∣, (19)

and further

argmax
a∈A

b∗θ(a) = θ ∈ argmax
a∈A

hθ(a), (20)

with both maxima being 1.
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2. The response observation, as a degree 2k − 1 polyno-
mial, is more informative than the reward observation,
a degree 2k polynomial, when the noise levels are the
same and θ−d · a is small.

Based on these two observations, the leader may view the
response bt as a proxy reward and aim to minimize the proxy
regret

R̂(T ) :=

T∑
t=1

1− b∗θ(at). (21)

This is consistent with minimizing the true regret R(T ),
which differs from the proxy regret R̂(T ) by at most a
constant factor by (19).

Regret bound. Using the response observations exclu-
sively to minimize the proxy regret R̂(T ) =

∑T
t=1 1 −

b∗θ(at), the leader reduces her task to a polynomial bandit
problem with a degree 2k − 1 polynomial activation func-
tion. By (19), we may focus on bounding the proxy regret.
Corollary 3.16 from Huang et al. (2021) suggests that

R̂(T ) ≤ Õ(
√
d2k−1T ), (22)

or equivalently the sample complexity is Õ(d2k−1/ϵ2) for
achieving ϵ average proxy regret. The following bound on
the true regret follows from (19) and (22).

Proposition 5.2. In example 5.1, there exists an algo-
rithm Alg, using the response observations exclusively, that
achieves

RAlg(T ) ≤ O(
√
d2k−1T ). (23)

Proposition 5.2 suggests an Õ(d2k−1/ϵ2) sample complex-
ity. For instance, the leader can achieve this regret with
the zeroth-order algorithm proposed in Huang et al. (2021,
Algorithm 6).
Remark 5.3 (Lower bound). Since the reward observations
have a higher signal-to-noise-ratio, we should expect that
the sample complexity of Example 5.1 to be the same order
as the sample complexity of achieving ϵ average regret in a
degree 2k−1 polynomial bandit. Huang et al. (2021) shows
that this is lower bounded by Ω(d2k−1/ϵ2). Thus, (23) is
essentially optimal.
Remark 5.4 (Benefit of observing responses). If the leader
does not observe the responses, the problem is equivalent to
a degree 2k polynomial bandit. The optimal regret without
observing the experts actions will lead to an Õ(d2k/ϵ2) sam-
ple complexity. Thus, the response observations contribute
to shaving of a factor of d, which can be significant when
the dimensionality is high.
Remark 5.5 (Suboptimality of UCB). Using the traditional
Eluder UCB algorithm leads to a suboptimal sample com-
plexity of Õ(d2k/ϵ2) when the leader solely uses the re-
sponse observations. Still, this is a factor d improvement

compared to what she can achieve with UCB without the
response observations.

5.2. Failure of the optimism principle

The next example is adapted from the ReLU bandit in Ex-
ample 3.2, and shows that optimism-based method can have
dramatic suboptimality in certain problems.

Example 5.6. Let A = Bd−1,B = Bd−1 × [0, 1], and

Θ = {(θ−d, θd) | θ−d ∈ Bd, θd = 1−∆} (24)

for some ∆ ∈ (0, 1). Consider the linear family HΘ,ϕ with

ϕ(a, b) = ∥a∥((1− bd)a, bd − ∥b−d∥) +
1− ∥a∥

2
(b−d, 0).

(25)

For any θ ∈ Θ with θ−d ∈ Sd−1, the optimal action for the
leader is θ−d, with the follower best responding (0, 0) and
achieving unit expected reward.

When ∥a∥ = 1, this function behaves exactly as in Exam-
ple 3.2, where b∗θ(a) = (0, 1) whenever θ−d · a < 1 −∆;
When a = 0, the best response is b∗θ(0) = (θ−d, bd). Thus,
if the response observations are noiseless, the leader learns
the true parameter and hence the optimal action in one round
by playing a1 = 0.

However, any optimism-based method such as UCB will not
achieve such efficient learning, even when the response are
noiselessly observed. It is straightforward to verify that, for
any action a with ∥a∥ < 1, the optimistic reward satisfies

sup
θ∈Θ

hθ(a) < 1. (26)

Thus, as long as the confidence set contains some θ with
θ−d ∈ Sd−1, which holds under our initial condition, op-
timism causes the leader to only take actions a ∈ Sd−1,
reducing the problem to the worst-case Example 3.2.

6. Conclusions
We have studied a model of online learning in decentralized
cooperative Stackelberg games. We showed that, even with
an omniscient follower who always best responds (myopi-
cally), the worst case sample complexity for a linear family
can be as large as exp(Θ(d log 1

ϵ )). This “curse of expertise”
highlights the challenge caused by miscoordinated explo-
ration. This also raises the question of how a non-myopic
expert follower should respond to the leader’s actions (with-
out knowing the leader’s exact algorithm) to expedite their
learning and maximize their long-term reward.

We considered the UCB-type algorithm that incorporates
response observations. A few examples of various hardness
were considered, ranging from efficient learning through
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imitation and guided exploration to the worst-case linear
family example with an exponential sample complexity.

Besides the examples considered in the paper, there are
numerous scenarios where the roles of the leader and the
follower are more complex to reason about. This poses
unique challenges for both the learning process of the leader
and the subsequent analysis of regret, indicating a fertile
ground for future research. Specifically, our current template
of Algorithm 1 requires designing the confidence sets based
on the specific response-reward structure of each problem.
It remains open to find a general design (or prove the lack
thereof) that systematically synthesizes the response and
reward observations. A general framework of analysis that
can provide a unified yet sharp upper bound on the examples
is also valuable.
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A. Proofs in Section 3
A.1. Proof of Theorem 3.1

Proof. Consider Example 3.2. The expected reward is given by

hθ(a, b) := θ · ϕ(a, b) = (1− b)θ−d · a+ b(1−∆), (27)

Optimizing over b ∈ [0, 1] yields
hθ(a) = max{1−∆, θ−d · a}. (28)

Note that for any a ∈ A such that θ−d · a < 1−∆, the best response of the follower is b = 1, yielding an expected reward
of 1−∆; for any a ∈ A such that θ−d · a ≥ 1−∆, the best response of the follower is b = 0, yielding an expected reward
of θ−d · a. The optimal joint response a = θ−d and b = 0 achieves the optimal expected reward of ∥θ−d∥ = 1 > 1−∆.
From the leader’s perspective, this now reduces to the problem of a ReLU bandit considered in Dong et al. (2021), since the
response provides no information until the average regret falls below ∆.5 Thus we have

inf
π̂

sup
θ∈Θ

R(T ) ≥ Ω(T 1− 2
d−2 ).

A.2. Proof of Theorem 3.3

Proof. Let H(ϵ) be a minimal ϵ-covering of H under the metric ∥ · ∥∞. Let

A(ϵ) =
{
argmax

a∈A
max
b∈B

h(a, b) | h ∈ H(ϵ)
}
,

where we break ties arbitrarily when the optimal action is non-unique. Note that we have |A(ϵ)| ≤ |H(ϵ)| ≤ N(ϵ). Let h⋆

be the true reward function. By the definition of a covering, there exists some hϵ ∈ H(ϵ) such that ∥h⋆ − hϵ∥∞ ≤ ϵ. Thus
we have

R(T ) =

T∑
t=1

E[h⋆
(a∗)− h

⋆
(at)] ≤ ϵT +

T∑
t=1

E[h⋆

ϵ (a
∗)− h

⋆

ϵ (at)].

We know that the optimal action for hϵ must be inside the set A(ϵ). Thus any worst-case optimal no-regret algorithm on the
set A(ϵ) gives a regret of

√
|A(ϵ)|T ≤

√
N(ϵ)T . This gives that

R(T ) ≤ ϵT +
√

N(ϵ)T .

Taking infimum over ϵ finishes the proof.

B. Proofs in Section 4
B.1. Proof of Lemma 4.5

Proof. Recall the notation from Example 4.4: let θ(b)t = ΠA(θ̂t) for t ≥ 2, with θ̂t :=
1

t−1

∑t−1
i=1 b̂i. The first round incurs

at most a constant regret and can be ignored. It suffices to show that, with probability at least 1− δ,

∥θ − θ
(b)
t ∥ ≤ αt√

t
(29)

for αt = Θ
(
σb

√
d+ log T

δ

)
.

5Same as in Dong et al. (2021), we allow the reward and response observations to be noiseless. We believe, however, the proof of
Dong et al. (2021, Theorem 5.1) has a small gap, where the packing number should be computed for radius

√
ϵ instead of ϵ. This lower

bound can be further improved if we assume noisy observations.
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First, we bound the distance between θ̂t and θ. By our assumption,

∥θ̂t − θ∥ =
∥∥∥ 1

t− 1

t−1∑
i=1

wi

∥∥∥,
where w1, . . . , wt are i.i.d. zero-mean σb-sub-Gaussian. We proceed using a covering argument. Construct U ⊆ Sd−1 such
that

inf
v∈Sd−1

sup
u∈U

u · v ≥ 1

2
. (30)

Note that ∥u− v∥ =
√
2− 2u · v for u, v ∈ Sd−1. Hence, equivalently, we may choose U as a minimal 1-covering of Sd−1

in Euclidean metric. Then

log |U | ≤ logN int(Sd−1, 1, ∥ · ∥) ≤ logM(Bd, 1, ∥ · ∥) = Θ(d), (31)

where N int and M denote the internal covering number and the packing number of the space under a given metric. The
choice of U ensures that

∥w∥ ≤ 2 sup
u∈U

u · w (32)

for all w ∈ Rd, and ignoring the constant factor, we may focus on upper bounding supu∈U

∑t−1
i=1 u · wi.

For each choice of u ∈ U , let Zu,i = u · wi, so that Zu,1, . . . , Zu,t−1 are i.i.d. zero-mean σb-sub-Gaussian by definition of
sub-Gaussian random vectors. By Hoeffding’s inequality for sub-Gaussian random variables, we have

P
( t∑

i=1

Zu,i > x

)
≤ exp

(
− x2

2tσ2
b

)
(33)

for all x > 0. Applying union bound over U and using (32) gives

P

(∥∥∥∥ t∑
i=1

wi

∥∥∥∥ ≥ 2x

)
≤ P

(
sup
u∈U

t∑
i=1

Zu,i ≥ x

)
≤ |U | exp

(
− x2

2tσ2
b

)
. (34)

Choosing x = σb

√
2t log(|U |T ) ≲ σb

√
t(d+ log T

δ ) ensures that, by another union bound over t ∈ [T ],

∥θ̂t − θ∥ ≲ σb

√
t−1
(
d+ log

T

δ

)
(35)

with probability at least 1− δ. By the triangle inequality and the definition of projection,

∥θ(b)t − θ∥ ≤ ∥θ(b)t − θ̂t∥+ ∥θ̂t − θ∥ ≤ 2∥θ̂t − θ∥ ≲ σb

√
t−1
(
d+ log

T

δ

)
(36)

with the same probability. This gives (29) and completes the proof.

B.2. Proof of Proposition 4.6

Proof. We will condition upon the validity of the confidence sets, which happens with probability at least 1 − δ per our
choice of {αt}t∈[T ].

UCB always chooses at in the confidence set Θt, with radius of order O
(
σb

√
t−1(d+ log T

δ )
)
. When θ⋆ ∈ Θt, we have

∥at − θ⋆∥ ≲ σb

√
t−1(d+ log T

δ ). Since both at and θ⋆ are unit vectors, we have

RUCB(T ) ≤ 2δT +

T∑
t=1

(
1− θ⋆ · at

)
= 2δT + 2 +

1

2

T∑
t=1

∥θ⋆ − at∥2

≲ 2δT +

T∑
t=2

σ2
b

t

(
d+ log

T

δ

)
= O

(
δT + σ2

b log T ·
(
d+ log

T

δ

))
,

where the term 2δT bounds the contribution of the event that the confidence sets fails to be all valid. Choosing δ = 1/T
gives our desired bound.
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B.3. Proof of Proposition 4.10

Proof. After the first round, the leader’s task reduces to a linear bandit with action space A1: only actions within A1 will be
played, and the reward is linear in this region. As is well known for linear bandit (e.g., (Russo & Van Roy, 2013)), with
probability 1− δ, the regret in this linear stage (i.e., excluding the first round) is upper bounded by

2δT +O
(√

d log T · (d log T + log δ−1) · T
)
.

The first round adds at most a constant to this and can be ignored. By choosing δ = T−1, we have

RUCB(T ) ≤ Õ(d
√
T ). (37)

B.4. Proof of Proposition 4.11

Proof. Let Θ1 = {θa ∈ Sd−1|θa · b1 ≥ ζ} × {b1}, and denote the true parameter by θ⋆ = (θ⋆a, θ
⋆
b ). By our assumption on

the problem structure, we have θ⋆a ∈ Θ(b).

As in the proof of Theorem 3.3, let Θ(ϵ) be a minimal ϵ-covering of Θ1 in Euclidean metric, with ϵ > 0 to be specified
later. In particular, there is some θ̃a ∈ Θ1 with ∥θ̃a − θ⋆a∥ ≤ ϵ. Let A(ϵ) = {argmaxa∈A ReLU(θa · a−∆) | θa ∈ Θ(ϵ)},
where we break tie arbitrarily when the optimal action is non-unique. Note that |A(ϵ)| ≤ |Θ(ϵ)| = N(Θ1, ϵ, ∥ · ∥).

Now, let the leader play UCB on the discrete action set A(ϵ) after the first round. The regret satisfies

R(T ) ≤ 1 +

T∑
t=2

E
[
h
⋆
(a∗)− h

⋆
(at)

]
≤ 1 + T · E

[
h
⋆
(a∗)− h

⋆
(ã∗)

]
+

T∑
t=1

E
[
h
⋆
(ã∗)− h

⋆
(at)

]
, (38)

where a∗ = θ⋆a and ã∗ ∈ argmaxa∈A(ϵ) h
⋆
(a). Note that h

⋆
(ã∗) ≥ h

⋆
(θ̃a) ≥ h

⋆
(a∗) − ϵ by our choice of θ̃a and A(ϵ),

the second term in (38) is at most ϵT . The third term, the regret of UCB on A(ϵ), is bounded by O(
√

N(Θ1, ϵ, ∥ · ∥) · T )
in expectation.

It remains to bound N(Θ1, ϵ, ∥ · ∥). Note that for any θa, θ
′
a ∈ Θ1, we have

θa · θ′a = (θa · b1)(θ′a · b1) + (θa − (θa · b1)b1) · (θ′a − (θ′a · b1)b1)
≥ ζ2 − ∥θa − (θa · b1)b1∥∥θ′a − (θ′a · b1)b1∥
≥ ζ2 − (1− ζ2) = 2ζ2 − 1.

Equivalently, ∥θa − θ′a∥ =
√
2− 2θa · θ′a ≤ 2

√
1− ζ2 = 2Cζ . Thus, the covering number of Θ1 is upper bounded

by
(KCζ

ϵ

d
) for some absolute constant K, which yields a regret bound of 1 + ϵT + O(

√
KdCd

ζT/ϵ
d). Choosing ϵ ≍

(KCζ)
d

d+2T− 1
d+2 reduces this upper bound to O

(
C

d
d+2

ζ T
d+1
d+2

)
as desired.

C. Proofs in Section 5
C.1. Proof of Proposition 5.2

Proof. Let the leader run the phased elimination algorithm Huang et al. (2021, Algorithm 6) using the response b∗θ(at) as
the proxy reward to maximize. This proxy reward, in expectation, is a homogeneous polynomial of degree 2k − 1. By
Corollary 3.16 in Huang et al. (2021), the algorithm achieves

R̂(T ) ≤ Õ
(√

d2k−1T
)
, (39)

where R̂(T ) =
∑T

t=1 1− b∗θ(at) is the proxy regret measured based on the the proxy reward (i.e., absolute response). Note
that the reward is maximized exactly when the proxy reward is maximized. Thus, the Lipschitz property (19) suggests that

R(T ) ≤ 2k

2k − 1
R̂(T ) ≤ Õ(

√
d2k−1T ). (40)
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