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Abstract

A large-scale deep model pre-trained on massive
labeled or unlabeled data transfers well to down-
stream tasks. Linear evaluation freezes parame-
ters in the pre-trained model and trains a linear
classifier separately, which is efficient and attrac-
tive for transfer. However, little work has inves-
tigated the classifier in linear evaluation except
for the default logistic regression. Inspired by
the statistical efficiency of naïve Bayes, the paper
revisits the classical topic on discriminative vs.
generative classifiers (Ng & Jordan, 2001). Theo-
retically, the paper considers the surrogate loss in-
stead of the zero-one loss in analyses and general-
izes the classical results from binary cases to mul-
ticlass ones. We show that, under mild assump-
tions, multiclass naïve Bayes requires O(logn)
samples to approach its asymptotic error while
the corresponding multiclass logistic regression
requires O(n) samples, where n is the feature
dimension. To establish it, we present a multi-
classH-consistency bound framework and an ex-
plicit bound for logistic loss, which are of inde-
pendent interests. Simulation results on a mixture
of Gaussian validate our theoretical findings. Ex-
periments on various pre-trained deep vision mod-
els show that naïve Bayes consistently converges
faster as the number of data increases. Besides,
naïve Bayes shows promise in few-shot cases and
we observe the “two regimes” phenomenon in pre-
trained supervised models. Our code is available
at https://github.com/ML-GSAI/Revisiting-Dis-vs-
Gen-Classifiers.
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1. Introduction
Deep representation learning has achieved great success
in many fields such as computer vision (Ren et al., 2015;
He et al., 2017; Chen et al., 2020a; He et al., 2020; Chen
et al., 2020b; Chen & He, 2021; Grill et al., 2020; He et al.,
2022), natural language processing (Devlin et al., 2019;
Brown et al., 2020; Raffel et al., 2020) and cross-modal
learning (Radford et al., 2021) over the past few years. The
common paradigm behind them is to (pre-)train a large-
scale model on an enormous amount of labeled or unlabeled
data and transfer it to downstream tasks. During the trans-
fer, linear evaluation (Chen et al., 2020a; He et al., 2020;
Chen et al., 2020b; Grill et al., 2020; Radford et al., 2021)
freezes all parameters in the pre-trained model and learns
a linear classifier separately. Theoretically, it is validated
by the (approximate) linear separability of the representa-
tions extracted by pre-trained models (Saunshi et al., 2019;
Lee et al., 2021; Tosh et al., 2021; HaoChen et al., 2021).
Practically, linear evaluation is an efficient and attractive
alternative to fine-tuning, considering the extremely large
and continually growing size of modern pre-trained models.

Although new algorithms and models for deep pre-training
emerge in endlessly, little work has investigated the clas-
sifier except for the default logistic regression. Directly
inspired by the classical work (Efron, 1975; Ng & Jordan,
2001) (detailed in Section 2) on the statistical efficiency of
generative linear classifiers (e.g. naïve Bayes), we revisit
the discriminative vs. generative linear classifiers in the
context of deep representation learning.

In Section 3, we improve the classical theory (Ng & Jor-
dan, 2001) in two aspects for subsequent analysis in deep
representation learning. First, we characterize asymptotic
behaviors of both multiclass naïve Bayes and logistic regres-
sion, generalizing the results in binary classification (Ng &
Jordan, 2001). Second, in logistic regression, we consider
the practically used surrogate loss in our analysis instead
of directly optimizing the zero-one loss as assumed in (Ng
& Jordan, 2001). To establish it, we introduce a general
multiclass H-consistency bound framework upon recent
advances (Awasthi et al., 2022a) and a nontrivial explicit
bound for multiclass logistic regression, which are of in-
dependent interests. We prove that for a fixed number of
classes, the number of samples required to approach the
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corresponding optimal classifier is O(logn) and O(n) for
naïve Bayes and logistic regression respectively, where n is
the feature dimension. We conduct synthetic experiments
with tractableH-optimal classifiers to validate our theory.

In Section 4, we discuss the implications of our theory in
the linear evaluation of pre-trained deep models. We first
analyze the main assumptions in our theory upon deep rep-
resentations. We then perform extensive experiments on
CIFAR10 and CIFAR100 datasets with various representa-
tive pre-trained vision models (He et al., 2016; Dosovitskiy
et al., 2021; Chen et al., 2020d;c; Radford et al., 2021; Xie
et al., 2022; He et al., 2022), which are trained in supervised
or self-supervised manners. The results show that naïve
Bayes consistently converges faster as the number of data
increases in all settings, which agrees with our theory. Be-
sides, naïve Bayes shows promise in few-shot cases and
we observe the “two regimes” phonomenan (Ng & Jordan,
2001) in models pre-trained in a supervised manner, sug-
gesting a distinction between the representations learned by
supervised and self-supervised approaches.

2. Preliminaries
In this section, we present notations and preliminaries on
discriminative vs. generative classifiers andH-consistency.

Let lower, boldface lower and capital case letters denote
scalers (e.g., a), vectors (e.g., a), and matrices (e.g., A),
respectively. For a matrix A, Ai and Aij denote its i-th
row and (i, j)-th element. For a vector a, ai denotes its i-th
element. Similarly, for a vector function f , fi(x) denotes
the i-th element of f(x). We do not distinguish constants
and random variables in notations if there is no confusion.
We denote the KL divergence between distributions p and q
by D(p∥q). We use E, V, ∆k to represent expectation, vari-
ance, and k-dimensional possibility simplex, respectively.

Let X denote the domain set and Y = {1, . . . ,K} denote
the label set, where K is the number of classes. For sim-
plicity, we assume X = {0,1}n when inputs are discrete
and X = [0,1]n otherwise, where n is the feature dimen-
sion. Note that our analysis can be easily extended to the
general case with any bounded features. Let H be a hy-
pothesis set of functions mapping from X ×Y to RK . The
prediction associated by a hypothesis h ∈ H and x ∈ X is
argmaxy∈Y hy(x). In the main paper, we focus on the fam-
ily of constrained linear hypotheses Hlin = {x → h(x) ∶
hy(x) = ⟨wy,x⟩ + by, ∥wy∥2 ≤ W, ∣by ∣ ≤ B,y ∈ Y},
where W,B ∈ R+. We also denote the hypothesis set
of all measurable functions by Hall. Given a hypothe-
sis set H and distribution D, the generalization error and
minimal generalization error of a hypothesis h with re-
spect to the loss function ` ∶ RK × Y → R are defined as
R`(h) = E(x,y)∼D[`(h(x), y)] and R∗

`,H = infh∈HR`(h).

2.1. Discriminative vs. Generative Classifiers

K-class logistic regression is parameterized by
[w1, . . . ,wK ,b], where wi ∈ Rn and b ∈ RK . Its
prediction is given by argmaxy∈Y(⟨wy,x⟩ + by).

It’s well known that the generative counterpart of the logistic
regression is naïve Bayes (with some constraints presented
later) (Ng & Jordan, 2001; Rubinstein & Hastie, 1997).
When inputs are discrete, a naïve Bayes classifier uses a
training set with m i.i.d examples to calculate the empirical
conditional distributions p̂(xi∣y) and empirical marginal
distribution p̂(y) as follows:

p̂(xi = 1∣y = k) = #{xi = 1, y = k} + α
#{y = k} +Kα , (1)

p̂(y = k) = #{y = k} + α
m +Kα , (2)

where #{⋅} is the counting function and α is a positive
Laplace smoothing parameter. Corresponding population
versions are denoted by p(xi∣y) and p(y) respectively. In
case of continuous inputs, we let p̂(xi∣y = k) be a univariate
Gaussian distribution with parameters µ̂ki and σ̂2

i . We note
that σ̂2

i s do not depend on y to keep the linearity of its deci-
sion boundary, otherwise logistic regression and naïve Bayes
are no longer a fair discriminative-generative pair (Xue &
Titterington, 2008). They are calculated as the empirical
version of µki = E[xi∣y = k] and σ2

i = Ey[V(xi∣y)].
Ng & Jordan (2001) proved that in binary classification,
logistic regression enjoys a lower asymptotic error but ap-
proaches it much slower (w.r.t. the sample size) than naïve
Bayes. The theory explains the “two regimes” (Ng & Jordan,
2001) phenomenon in practice. In particular, naïve Bayes
generalizes better with limited data. However, the multi-
class case has not been investigated yet, which is the main
focus of this paper. Besides, prior work (Ng & Jordan, 2001)
assumes that the zero-one loss can be directly optimized
in logistic regression, which is impractical. To weaken the
assumption, we introduce tools fromH-consistency.

2.2.H-consistency

H-consistency (Long & Servedio, 2013) analyzes the re-
lationship between the estimation error of zero-one loss
w.r.t. a hypothesis class H and that of a surrogate loss. It
includes the classical Bayes consistency (Zhang, 2004b;
Bartlett et al., 2006; Tewari & Bartlett, 2007) as a special
case by setting H to Hall. In this paper, we analyze the
linear discriminative vs. generative classifiers upon recent
advances onH-consistency bounds (Awasthi et al., 2022a).

We first introduce some notations. We denote by p(x) the
conditional distribution of Y given x, i.e., py(x) = P(Y =
y∣X = x). We define the conditional risk as C`(h,x) =
∑Ky=1 py(x)`(h(x), y), and note that generalization error
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R`(h) can be rewritten as Ex[C`(h,x)]. We also define its
infimum C∗`,H(x) = infh∈H C`(h,x) and the gap between
them ∆C`,H(h,x) = C`(h,x) − C∗`,H(x). A key quantity
appears in our bounds is M`,H = R∗

`,H − Ex(C∗`,H(x)),
which is difficult to estimate (Awasthi et al., 2022a), but can
be bounded by the approximate error. In addition, for any p
in probability simplex ∆K , we can define C`(h,x,p) =
∑Ky=1 py`(h(x), y) and ∆C`,H(h,x,p) = C`(h,x,p) −
infh∈H C`(h,x,p). Furthermore, we define the ε-regret
of t as ⟨t⟩ε = t1t>ε.
The general H-consistency bound (Awasthi et al., 2022a)
for two loss functions `1 and `2 is defined as follows.

Definition 2.1 (H-consistency bound). H-consistency
bound is in the following form that holds for all h ∈ H,
D ∈ P and some non-decreasing function f ∶ R+ → R+:

R`2(h) −R∗
`2,H ≤ f(R`1(h) −R∗

`1,H). (3)

If P is composed of all distributions over X ×Y , we call it
a distribution-independent bound.

Note that it covers the classical Bayes consistency
bounds (Bartlett et al., 2006) by setting H = Hall. When
`1 is logistic loss `log and `2 is zero-one loss `0−1, Awasthi
et al. (2022a) proved the following H-consistency bound
w.r.t. the bounded linear hypotheses.

Theorem 2.1 (H-consistency bound for binary logistic loss
and zero-one loss, Appendix K.1.2 (Awasthi et al., 2022a)).
Given binary linear hypothesis set H = {x → ⟨w,x⟩ + b ∶
∥w∥2 ≤ W, ∣b∣ ≤ B}, if R`log(h) − R∗

`log,H +M`log,H ≤
1
2
( eB−1
eB+1

)2, then it holds for any distribution thatR`0−1(h)−
R∗
`0−1,H +M`0−1,H ≤

√
2(R`log(h) −R∗

`log,H +M`log,H) 1
2 .

To the best of our knowledge, there is no H-consistency
bound for logistic loss and zero-one loss in multiclass
classification1. In this paper, we extend the binary frame-
work (Awasthi et al., 2022a) to multiclass cases and derive
an explicit bound for logistic loss.

3. Theory
In this section, we present our main theoretical results in
Section 3.1: Under some mild assumptions, for any fixed
class number K, the number of training samples required
by naïve Bayes to approach its asymptotic error is O(logn)
(Theorem 3.2), and that of logistic regression is O(n) (The-
orem 3.4). To establish it, we propose a general multiclass
H-consistency framework (Theorem 3.5) and a nontrivial
multiclassH-consistency bound for logistic loss and zero-
one loss (Theorem 3.3) in Section 3.2. Notably, our theory

1Most recently, the concurrent and independent work of Mao
et al. (2023) also studies this problem and obtains similar results
to ours.

includes the analysis for K = 2 in Appendix B as a special
case.

3.1. On Multiclass Discriminative vs. Generative
Linear Classifiers

Let hDis,m and hGen,m denote the hypothesis returned
by multiclass logistic regression and naïve Bayes with
m i.i.d samples, respectively. Let hDis,∞ and hGen,∞
be the corresponding asymptotic version. We are inter-
ested in comparing the statistical efficiency of naïve Bayes
and logistic regression (Ng & Jordan, 2001). Formally,
we need to bound R`0−1(hGen,m) − R`0−1(hGen,∞) and
R`0−1(hDis,m) −R`0−1(hDis,∞) respectively.

Naïve Bayes. Notably, the solution of Naïve Bayes is in
a closed-form, as presented in Eq. (1&2). Therefore, we
can characterize the gap between parameters in hGen,m
and hGen,∞ to bound R`0−1(hGen,m) − R`0−1(hGen,∞),
similarly to the binary case (Ng & Jordan, 2001).

We make two mild assumptions about the data distribution
similar to Ng & Jordan (2001). We avoid trivial cases where
p(y = k) = 1 or p(y = k) = 0 for some k in Assumption 3.1
and assume that the conditional distribution of x given y
can not be too concentrated in Assumption 3.2.

Assumption 3.1. For some fixed ρ1 ∈ (0, 1
2
], we have that

ρ1 ≤ p(y = k) ≤ 1 − ρ1 for all k ∈ Y .

Assumption 3.2. For some fixed ρ2 ∈ (0, 1
2
], ρ2 ≤ p(xi =

1∣y = k) ≤ 1−ρ2 for all i, k in the discrete case, and σ2
i ≥ ρ2

for all i in the continuous case.

In practice, most deep learning work considers the balanced
case where ρ1 = 1

K
(Deng et al., 2009). Empirically, we

found that ρ2 ∈ [10−5,10−2] on the features extracted by
representative pre-trained vision models in Section 4. For
clarity, we denote ρ0 = min{ρ1, ρ2} throughout the paper.
We now define two key quantities in our proof as follows.

Definition 3.1 (Pair activation function of naïve Bayes).
For every k1, k2 ∈ Y , we define the pair activation function
∆aGen(x, k1, k2) as

∆aGen(x, k1, k2) = aGen(x, k1) − aGen(x, k2), (4)

where aGen(x, k) = ∑ni=1 log p̂(xi∣y = k) + log p̂(y = k).

The paired activation function is important because it con-
nects the estimated parameters and predictions of the hy-
pothesis. For instance, ∆aGen(x, k1, k2) > 0 means that
x is more likely to be predicted as an instance of class k1

than class k2. We can easily bound the gap between the pa-
rameters in hGen,m and hGen,∞ by standard concentration
inequalities. To bound R`0−1(hGen,m) − R`0−1(hGen,∞)
as presented in Theorem 3.1, we further upper bound the
probability of getting “bad training samples”, which are pre-
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dicted as different classes with high probability by hGen,m
and hGen,∞, via the following G̃(τ).

Definition 3.2. We define the function G̃(τ) as follows:

G̃(τ) = max
k1,k2

P(x,y)∼D(∣∆aGen,∞(x, k1, k2)∣ ≤ τn).

Theorem 3.1 (Proof in Appendix D.1). Suppose that As-
sumption 3.1 and 3.2 are valid. Then with probability at
least 1 − δ:

R`0−1(hGen,m) ≤ R`0−1(hGen,∞)

+ K(K − 1)
2

(G̃(O(
√

1

m
log(n

δ
))) + δ).

The core of Theorem 3.1 is the G̃(τ), which must be small
when τ is small in order to obtain meaningful bound about
R`0−1(hGen,m) − R`0−1(hGen,∞). It holds under the fol-
lowing assumptions, similarly to Ng & Jordan (2001).

Assumption 3.3. For all k1, k2(k1 ≠ k2) and k ∈ Y ,
it holds that ∣∑ni=1(D(p(xi∣y = k)∥p(xi∣y = k1)) −
D(p(xi∣y = k)∥p(xi∣y = k2)))∣ = βk1,k2,kn = Ω(n).

Assumption 3.4. For all k1, k2(k1 ≠ k2) and k ∈ Y , it
holds that Vx[∑ni=1 log p(xi∣y=k1)

p(xi∣y=k2) ∣y = k] = αk1,k2,kn =
O(nr) for any r ∈ [1,2).

Intuitively, Assumption 3.3 requires that Ω(1) fraction of
features distinct for any two different classes. Assump-
tion 3.4 is more technical. In fact, it is derived when we
attempt to bound G̃(τ) via Chebyshev’s inequality2. We
empirically analyze both assumptions in Section 4. Propo-
sition 3.1 presents a meaningful bound for G̃(τ), which is
followed by the main result of naïve Bayes in Theorem 3.2.

Proposition 3.1 (Proof in Appendix D.2). Suppose that
Assumption 3.1, 3.3 and 3.4 hold, then G̃(τ) is polynomially
small in n:

G̃(τ) ≤ α

(τ − ζ)2n
,

where α = maxk1,k2,k αk1,k2,k = O(nr−1),
Ex[∆aGen,∞(x, k1, k2)∣y = k] = ζk1,k2,kn,
ζ = mink1,k2,k ∣ζk1,k2,k ∣ = Ω(1) and τ < ζ.

Theorem 3.2 (Results for naïve Bayes, proof in Ap-
pendix D.3). Suppose the precondition of Proposition 3.1
holds. Then, it suffices to pick m = O(logn) training sam-
ples such that R`0−1(hGen,m) ≤ R`0−1(hGen,∞) + ε0 hold
with probability 1 − δ0, for any ε0 ∈ (0,1) and δ0 ∈ (0, ε0

K2 ].

Logistic Regression. To directly compare with naïve Bayes,
we aim to bound R`0−1(hDis,m) − R`0−1(hDis,∞). How-
ever, the optimization of logistic regression does not have

2Indeed, if the naïve Bayes assumption really holds, we can
obtain a stronger guarantee for G̃(τ) by using Chernoff’s bound.
We put the result in Proposition C.2.

an analytic form, making the proof idea of naïve Bayes in-
feasible. Besides, Ng & Jordan (2001) proves the bound by
directly optimizing the zero-one loss, which is impractical.
Instead, we present a bound considering the surrogate lo-
gistic loss in this paper. To establish it, we exploit recent
advances onH-consistency bound (Awasthi et al., 2022a) as
detailed in Defition 2.1. It is worth discussing an alternative
approach based on Bayes consistency bounds (Bartlett et al.,
2006). For a direct comparison with naïve Bayes, we care
about the asymptotic error in Hlin instead of Hall. There-
fore, aH-consistency bound is more natural and potentially
tighter than a Bayes consistency bound. In fact, existing
Bayes consistency bounds (Bartlett et al., 2006) are special
cases of theH-consistency bounds (Awasthi et al., 2022a).

Note that the binary H-consistency bound (Awasthi et al.,
2022a) in Theorem 2.1 does not directly apply to multi-
class cases. We generalize the binary framework (Awasthi
et al., 2022a) to multiclass cases and prove an explicit H-
consistency bound for logistic loss. We present the bound
in Theorem 3.3 and defer the establishment to Section 3.2.
Theorem 3.3 (H-consistency bound for multiclass logis-
tic loss and zero-one loss, proof in Appendix E.4). If
R`log(h) − R∗

`log,Hlin +M`log,Hlin ≤ 1
2
( e2B−1
e2B+K−1

)2, then
for any distribution satisfiying maxy py(x)−miny py(x) ≤
e2B−1

e2B+K−1
for all x, it holds that R`0−1(h) − R∗

`0−1,Hlin +
M`0−1,Hlin ≤

√
2(R`log(h) −R∗

`log,Hlin +M`log,Hlin)
1
2 .

Note that R`0−1(hDis,∞) = R∗
`log,Hlin by the definition.

Besides, when B → +∞, we have e2B−1
e2B+K−1

→ 1, and Theo-
rem 3.3 holds for all distribution. Theorem 3.3 provides a
tool to analyze the asymptotic behavior of multiclass logistic
regression considering the surrogate loss. According to it,
we need to bound the gap R`log(hDis,m) −R`log(hDis,∞)
and M`log,Hlin to guarantee a small R`0−1(hDis,m) −
R`0−1(hDis,∞). The following Proposition characterizes
R`log(hDis,m) −R`log(hDis,∞) by Radmancher complex-
ity (Bartlett et al., 2002; Mohri et al., 2018) and a contraction
lemma (Maurer, 2016).
Proposition 3.2 (Proof in appendix D.4). For any fixed
δ0 ∈ (0,1), with probability at least 1 − δ0, the following
holds:

R`log(hDis,m) ≤ R`0−1(hDis,∞) +O(
√

K3n

m
).

M`,H is a constant determined by the hypothesis setH, loss
function `, and data distributionD. Its value is difficult to es-
timate directly (Awasthi et al., 2022a). However, according
to the definition, M`,H can be bounded by the correspond-
ing approximate error. Prior works (Saunshi et al., 2019;
Lee et al., 2021; Tosh et al., 2021; HaoChen et al., 2021)
prove the (approximate) linear separability of the represen-
tations extracted by deep pre-trained models, suggesting a
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small approximation error for the logistic loss. Therefore,
we make the following assumption, which is validatable in
the context of linear evaluation of deep models.

Assumption 3.5. The approximate error of the logistic loss
is bounded by a small constant ν < 1

2
( e2B−1
e2B+K−1

)2. Namely,
argminh∈Hlin R`log(h) − argminh∈Hall R`log(h) ≤ ν,
which implies that M`log,Hlin ≤ ν.

We characterize the number of samples required to approach
the asymptotic error for logistic regression in Theorem 3.4
by combining Proposition 3.2 and Theorem 3.3.

Theorem 3.4 (Results for multiclass logistic regression,
proof in appendix D.5). Suppose that Assumption 3.5 holds.
Then, it suffices to pickm = O(n) training samples such that
R`0−1(hDis,m) ≤ R`0−1(hDis,∞)+ ε0 hold with probability
1 − δ0, for any fixed ε0 ∈ [

√
2ν, e2B−1

e2B+K−1
] and δ0 ∈ (0,1).

Notably, according to the multiclass fundamental theorem
(Theorem 29.3 of Shalev-Shwartz & Ben-David (2014)),
the sample complexity of Hlin for any algorithm is Ω(n)
because the Natarajan dimension forHlin is Ω(Kn), indi-
cating the upper bound in Thereom 3.2 is tight with respect
to the dimension n.

Theorem 3.2 and Theorem 3.4 show that the O(n) vs.
O(log(n)) result (Ng & Jordan, 2001) still holds in mul-
ticlass cases, which suggests that naïve Bayes is possibly
better than logistic regression when the sample size is lim-
ited. We validate our theory on a mixture of Gaussian dis-
tribution, as presented in Figuire 1. For a fixed feature di-
mension n, we increase the number of samples m until the
two models approach the corresponding asymptotic error,
which is tractable in the experiment. Detailed configurations
of the experiments and additional results are presented in
Appendix H.

3.2. MulticlassH-consistency Framework

We now present the general multiclassH-consistency bound
framework and prove the explicit bound for the logistic
loss in Theorem 3.3, which are of independent interest.
Similarly to the binary case (Awasthi et al., 2022a), we first
introduce the following general multiclass H-consistency
bound between any target loss `2 and surrogate loss `1.

Proposition 3.3 (Distribution-dependent convex bound,
proof in Appendix E.1). For a fixed distribution, if there
exists a convex function g ∶ R+ → R with g(0) ≥ 0 and ε ≥ 0,
and the following holds for any h ∈H and x ∈ X :

g(⟨∆C`2,H(h,x)⟩ε) ≤ ∆C`1,H(h,x). (5)

Then it holds for all h ∈H that

g(R`2(h) −R∗
`2,H +M`2,H)

≤ R`1(h) −R∗
`1,H +M`1,H +max(g(0), g(ε)). (6)

We present the concave counterpart of it as Proposition C.1
of Appendix C. For simplicity, we fix the target loss `2
as the zero-one loss in the following. Note that Proposi-
tion 3.3 is distribution-dependent while an asymptotically
distribution-independent version is necessary for our anal-
ysis in Section 3.1. To this end, we introduce a tool called
multiclassH-estimation error transformation.

Definition 3.3 (Multiclass H-estimation error transfor-
mation). The multiclass H-estimation error transforma-
tion of a surrogate loss ` is defined on t ∈ [0,1] as
J`(t) = inf ŷ∈Y,p∈Pŷ(t),x∈X ,h∈Hŷ(x) ∆C`,H(h,x,p). Here
Hŷ(x) ∶= {h ∈ H ∶ argmaxy∈Y hy(x) = ŷ} is a collection
of hypotheses that predicts x as class ŷ. Pŷ(t) ∶= {p ∈ ∆K ∶
maxy py − pŷ = t} is a subset of K-dimensional simplex
indexed by classes and the gap between the max component
and class-indexed component of p.

J`(t) in Defition 3.3 is carefully derived such that plug-
ging it to the right-hand side of Eq. (5) provides a sufficient
condition such that Eq. (6) holds for any h,x, and p (i.e.,
distribution-independent). It is worth noting that the condi-
tion is actually necessary as well under further assumptions,
as presented later in Theorem 3.6. Defition 3.3 generalizes
the binary freamwork (Awasthi et al., 2022a) by optimiz-
ing p in a collection of subsets Pŷ(t) to handle multiclass
cases. Built upon Defition 3.3, we establish the multiclass
distribution-independent bound for zero-one loss as follows.

Theorem 3.5 (Distribution-independent convex `0−1 bound,
proof in Appendix E.2). Suppose that H satisfies that
{argmaxy∈Y hy(x) ∶ h ∈ H} = {1, . . . ,K} for any x ∈ X .
If there exists a convex function g ∶ R+ → R with g(0) = 0
and g(t) ≤ J`(t). Then it holds for any h ∈ H and any
distribution D that

g(R`0−1(h)−R∗
`0−1,H+M`0−1,H) ≤ R`(h)−R∗

`,H+M`,H.

We present the concave counterpart of it as Theorem C.1 in
Appendix C. This theorem holds for any hypothesis setH
that can divide any sample x into any category, including
the linear hypothesis set and hypotheses of neural network.
Notably, our multiclassH-consistency result degenerates to
the binary one exactly (Awasthi et al., 2022a) with K = 2.
In addition, we note that if J`(t) is convex and J`(0) = 0,
then J` satisfies the condition of g in Theorem 3.5. In fact,
it leads to the tightest multiclassH-consistency bound.

Theorem 3.6 (Tightness, proof in Appendix E.3). If J`(t)
is convex with J`(0) = 0, then for any t ∈ [0,1] and δ > 0,
there exist a distributionD and a hypothesis h ∈H such that
R`0−1(h) − R∗

`0−1,H +M`0−1,H = t and J`(t) ≤ R`(h) −
R∗
`,H +M`,H ≤ J`(t) + δ.

To establish our main result in Section 3.1, we have pre-
sented an asymptotically distribution-independent multi-
classH-consistency bound for the logistic loss in an explicit
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Table 1. Analysis of assumptions on CIFAR10 training dataset.

Method Backbone Pre-training data ρ0 β α

ViT (Dosovitskiy et al., 2021) ViT-B/16 Image-label 2.80E-3 0.004 690
ResNet (He et al., 2016) ResNet50 Image-label 1.70E-3 0.06 11516
CLIP (Radford et al., 2021) ResNet50 Image-text 4.78E-3 0.203 6383
MoCov2 (Chen et al., 2020d) ResNet50 Image 5.03E-5 0.005 26640
SimCLRv2 (Chen et al., 2020c) ResNet50 Image 3.74E-5 0.01 2490
MAE (He et al., 2022) ViT-B/16 Image 6.37E-3 0.032 6919
SimMIM (Xie et al., 2022) ViT-B/16 Image 7.86E-3 0.002 5201

Figure 1. Multiclass (K = 5) simulation results. Empirically, lo-
gistic regression and naïve Bayes require O(n) and O(logn)
samples to approach the corresponding asymptotic error respec-
tively. Error bars show the variance estimated by 5 runs.

form in Theorem 3.3. We mention that the proof of Theo-
rem 3.3 is nontrivial because J`(t) in the multiclass case
involves a much more complex optimization problem than
that in the binary case (Awasthi et al., 2022a).

The proposed framework is not limited to the linear hypoth-
esis class and the logistic loss. In particular, we present a
similar result for the hypothesis class of one-hidden-layer
neural networks in Theorem C.2 of Appendix C. Besides,
the general bound in Theorem 3.5 and the proof idea of
Theorem 3.3 are applicable to hinge loss, exponential loss,
ρ-margin loss, and so on, which are left for future work. Fur-
thermore, the analysis idea can be used to obtain multiclass
Bayes consistency bounds by settingH toHall.

4. Implications in Deep Learning
In this section, we discuss the implications of our theoretical
results in the linear evaluation of pre-trained deep neural
networks. First, as presented in Section 4.1, we empiri-
cally analyze the main assumptions of our theory in various
deep vision models (Dosovitskiy et al., 2021; He et al.,

2016; Radford et al., 2021; Chen et al., 2020d;c; He et al.,
2022; Xie et al., 2022). Second, we systematically com-
pare logistic regression and naïve Bayes on the CIFAR10
and CIFAR100 datasets (Krizhevsky et al., 2009) with vari-
ous models and sample sizes in Section 4.2. Naïve Bayes
always converges much faster, which agrees with our the-
ory. The “two regimes” phenomenon (Ng & Jordan, 2001)
almost happens with models pre-trained in a supervised
manner (Dosovitskiy et al., 2021; He et al., 2016), which
is analyzed in detail in Section 4.3. Details of experiments
can be found in Appendix I.

4.1. Analyzing the Assumptions

We empirically analyze and discuss the main assumptions
made in Section 3 on the CIFAR10 dataset. The results are
summarized in Table 1. We emphasize that the concrete val-
ues of the quantities in the table won’t affect the asymptotic
analyses in Section 3, i.e., O(logn) results for naïve Bayes,
but may affect its performance given a fixed data size.

We consider linear evaluation for transfer learning on top of
pre-trained models, whose parameters are frozen. Therefore,
it is valid to assume that the features extracted on the target
dataset satisfy the i.i.d. assumption.

4.1.1. ASSUMPTION 3.1 AND 3.2

Assumption 3.1 holds naturally because the CIFAR10
dataset is class-balanced. For Assumption 3.2, we calculate
the σ̂i

2 for each dimension of the training representations as
approximations for σ2

i . We present ρ0 = min(mini σ̂i
2, 1

10
)

in Table 1, and Figure 5 in Appendix I.3 plots the histogram
of σ̂i

2. Assumption 3.2 holds for all models.

4.1.2. ASSUMPTION 3.3 AND 3.4

It is hard to directly validate the two assumptions in prac-
tice. Nevertheless, we estimate βk1,k2,k and αk1,k2,k for
all k1, k2(k1 ≠ k2) and k ∈ Y in different models for a
comparison. We note that βk1,k2,k = ζk1,k2,k in our ex-
periments, because the CIFAR10 dataset is class-balanced.
We report the estimated β = ζ = mink1,k2,k ∣βk1,k2,k ∣ and

6



Revisiting Discriminative vs. Generative Classifiers: Theory and Implications

Table 2. Convergence comparison between multiclass logistic re-
gression and naïve Bayes. “NB faster” means naïve Bayes ap-
proaches its asymptotic error faster.

Method Visual results NB faster/ Two regimes
CIFAR10 CIFAR100

ViT Figure 8
√

/
√ √

/
√

ResNet Figure 9
√

/
√ √

/
√

CLIP Figure 10
√

/
√ √

/
√

MoCov2 Figure 11
√

/ × √
/ ×

SimCLRv2 Figure 12
√

/ × √
/
√

MAE Figure 13
√

/
√ √

/ ×
SimMIM Figure 14

√
/ × √

/ ×

α = maxk1,k2,k αk1,k2,k in Table 1. We also present the his-
tograms of ∣βk1,k2,k ∣ and αk1,k2,k in Figure 6 and Figure 7
of Appendix I.3, respectively.

4.1.3. ASSUMPTION 3.5

Assumption 3.5 is hard to validate in practice because the
Bayes-optimal classifier is unknown. However, recent the-
oretical results in prior works (Saunshi et al., 2019; Lee
et al., 2021; Tosh et al., 2021; HaoChen et al., 2021) suggest
that it holds when the number of samples for pre-training is
sufficiently large.

4.2. Empirical Results in Deep Learning

We systematically compare logistic regression and naïve
Bayes on the CIFAR10 and CIFAR100 datasets in various
models, which are trained on image-label pairs (Dosovitskiy
et al., 2021; He et al., 2016), image-text pairs (Radford et al.,
2021), or pure images (Chen et al., 2020d;c; He et al., 2022;
Xie et al., 2022).

For a fair comparison, we keep the linear evaluation set-
ting in (Radford et al., 2021) throughout the experiments.
Specially, we train the logistic regression using scikit-
learn’s (Pedregosa et al., 2011) L-BFGS implementation,
with a maximum of 1000 iterations. We adjust the weight
of `2 regularization of logistic regression carefully to repro-
duce the results reported in (Radford et al., 2021) on both
datasets with full training data. We then adjust the number
of training samples m gradually. For each m, we obtain
training samples randomly 5 times and record the mean test
error of two models.

We plot the convergence curves in all settings in Ap-
pendix I.4, which are linked in Table 2. Notably, naïve
Bayes approaches its asymptotic error much faster than
logistic regression in all settings, like that presented in Fig-
ure 2, which is consistent with our theoretical results.

Figure 2. Comparison between naïve Bayes and logistic regression
with the features extracted by ResNet on the CIFAR100 dataset.
Naïve Bayes approaches its asymptotic error much faster.

Figure 3. Comparison between naïve Bayes and logistic regression
with the features extracted by ViT on the CIFAR100 dataset. The
“two regimes” phenomenon is observed.

4.3. On the “Two Regimes” Phenomenon

Ng & Jordan (2001) suggests that there can often be two
regimes of performance between naïve Bayes and logistic
regression, that is, though logistic regression enjoys lower
asymptotic error, naïve Bayes performs better with smaller
training sets because of its fast convergence rate. They ob-
served this phenomenon on many datasets from the UCI
Machine Learning repository (Dua & Graff, 2017). These
classical datasets are small and the features are mostly low-
dimensional. However, nowadays, people prefer to obtain
representations by using deep neural networks pre-trained
by massive data. The occurrence of the “two regimes” phe-
nomenon in this new setting has not been investigated yet.

We summarize the occurrence of the “two regimes” phe-
nomenon in Table 2. The “two regimes” phenomenon oc-
curs in half of our experiments, which suggests that naïve
Bayes still shows promise when the training data is limited.
We present a typical case in Figure 3 and see Appendix I.4

7



Revisiting Discriminative vs. Generative Classifiers: Theory and Implications

for complete results. Interestingly, the “two regimes” phe-
nomenon almost happens when the deep vision model is
pre-trained in a supervised manner (ViT, ResNet, and CLIP),
which suggests a distinction between representations learned
by supervised learning and self-supervised learning.

We conjecture that representations learned by supervised
methods could have some better properties to make naïve
Bayes converges faster than that learned by self-supervised
methods. As validated in Section 4.2, though our theory
could only prove the fast convergence rate of naïve Bayes,
it does help us to understand this distinction to some extent.
Combining the values presented in Table 1, we can get some
preliminary results.

Representations learned by supervised methods could be
more robust for each dimension. As shown in Table 1, fea-
tures learned by supervised methods (ViT, ResNet, CLIP)
tend to have larger ρ0. In other words, these representa-
tions tend to have larger in-class variance σ2

i than others.
Intuitively, it suggests that data in each dimension could
be more robust to relieve the over-fitting and boost naïve
Bayes learning better in the few-shot case. Besides, ac-
cording to Eq. (7-8) in Appendix D.1 and the derivation in
Appendix D.3, a larger ρ0 implies faster convergence in a
1/ρ2

0 order, which explains it in a certain sense.

Representations learned by supervised methods could be
more separable between different categories. From Table 1,
representations learned by supervised methods (ResNet,
CLIP) are inclined to have larger β than others. Namely,
there exists more distinction between the distributions of
samples in different classes, which are easier to predict.
In addition, by our derivation in Appendix D.3, a larger β
implies faster convergence in a 1/β2 order, which agrees
with our observation.

5. Related Work
5.1. Deep Representative Learning

Deep representation learning aims to learn representations
on the raw unlabeled data and transfer them to the down-
stream tasks. It has made remarkable progress in various
machine learning fields (Ren et al., 2015; He et al., 2017;
Chen et al., 2020a; He et al., 2020; Chen et al., 2020b; Chen
& He, 2021; Grill et al., 2020; He et al., 2022; Xie et al.,
2022; Devlin et al., 2019; Brown et al., 2020; Raffel et al.,
2020). In particular, the promise of linear evaluation (Chen
et al., 2020a; He et al., 2020; Chen et al., 2020b; Grill et al.,
2020; Radford et al., 2021) suggests that representations
extracted by pre-trained models are near to linear separable.
Besides, the performance of such representations in linear
evaluation is guaranteed in recent theoretical works (Saun-
shi et al., 2019; Lee et al., 2021; Tosh et al., 2021; HaoChen
et al., 2021). All of these empirical and theoretical works

encourage us to rethink the role of linear classifiers.

5.2. Discriminative vs. Generative Learning

Comparing discriminative with generative classifiers has
long been an interesting topic (Efron, 1975; Rubinstein &
Hastie, 1997; Ng & Jordan, 2001). Efron (1975) compared
the logistic regression and normal discriminant analysis and
claimed that the latter is only slightly more efficient. Ng &
Jordan (2001) simplified the normal discriminant analysis
to naïve Bayes and concluded that the discriminative model
has lower asymptotic error while the generative classifier
may approach its higher asymptotic error much faster. Ng &
Jordan (2001) assume that one can directly optimize on zero-
one loss. Instead, we weaken the assumption and introduce
the theoretical tools from H-consistency to obtain more
reliable results.

5.3.H-consistency

Most machine learning algorithms depend on optimizing a
surrogate loss function rather than the target loss function.
To find the favorable property of surrogate loss, consistency
has been studied broadly in the last two decades. Classical
Bayes consistency (Zhang, 2004a;b; Bartlett et al., 2006;
Tewari & Bartlett, 2007) analyzes the relationship between
the excess error of zero-one loss and that of a surrogate loss.
Instead,H-consistency (Long & Servedio, 2013) considers
the estimation error w.r.t. a hypothesis setH. It includes the
classical Bayes consistency as a special case by setting H
to Hall. Most recently, Awasthi et al. (2022a) proposed a
novel and solid framework named H-consistency bounds,
which consider the upper bounds on the target estimation
error expressed by surrogate estimation error.

We proposed a novel multiclassH-consistency framework,
which includes the framework in (Awasthi et al., 2022a)
as a special case. We notice that the independent work
of (Awasthi et al., 2022b) also proposed a multiclass H-
consistency framework from the same general theorem
(Proposition 3.3). We highlight the following comparison
that distinguishes our work. First, the proof ideas are totally
different. In particular, we directly generalize the binary
framework in (Awasthi et al., 2022a) to the multiclass case
in Theorem 3.5, which is general and tight (Theorem 3.6).
In contrast, Awasthi et al. (2022b) argues that generalizing
the binary framework is nontrivial and instead provides a
case-by-case analysis for different losses, which does not en-
joy the tightness guarantee. Second, we provide an explicit
bound for logistic loss (Theorem 3.3), which is necessary
for our subsequent analysis, while it is unclear how to derive
such a bound by the prior work (Awasthi et al., 2022b).

Concurrent work. The concurrent and independent work
of Mao et al. (2023) also obtainsH-consistency bounds of
the multiclass logistic loss under a little stronger assumption.
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The multiclassH-estimation error transformation J`(t) de-
rived by them (Theorem 1 of Mao et al. (2023)) is actually
the same as ours in Theorem 3.3, and their bounds also en-
joy the tightness guarantee. However, they assume that the
hypothesis setH is complete, that is, {hy(x) ∶ h ∈H} = R
for any (x, y) ∈ X × Y , which does not hold for bounded
linear hypotheses (W,B < +∞) considered by this paper.

6. Conclusion
We revisit the classical topic of discriminative vs. generative
classifiers (Ng & Jordan, 2001). Specially, we weaken the
assumption in the previous work and extend the analysis
to multiclass cases. As result, under some assumptions,
we prove that multiclass naïve Bayes requires O(logn)
samples to approach its asymptotic error while the logistic
regression needs O(n) samples. Technically, we proposed
a multiclassH-consistency framework, which is of indepen-
dent interest. Experiments with various pre-trained deep
vision models verify our theory and show the potential of
the generative linear head in the few-shot cases. Finally, our
experiments suggest differences between representations
learned by supervised and self-supervised methods.

Social Impact: This is mainly theoretical work and we do
not see a direct social impact of our theory. The experiments
on Naïve Bayes may benefit applications with a few training
data such as medical analysis.
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A. Detailed Notations and Definitions
Let lower, boldface lower and capital case letters denote scalers (e.g., a), vectors (e.g., a), and matrices (e.g., A) respectively.
For a matrix A, Ai and Aij denote its i-th row and (i, j)-th element. For a vector a, ai denotes its i-th element. Similarly,
for a vector function f , fi(x) denotes the i-th element of f(x). Let X denote the domain set and Y denote the label set. For
simplicity, we assume X = {0,1}n when inputs are discrete and X = [0,1]n otherwise, where n is the feature dimension.
Let Y = {0,1} be the binary label space and Y = {1, . . . ,K} be the multiclass label space, where K is the number of
classes. D denotes the distribution on X ×Y and P denotes set of distribution. We denote the KL Divergence between two
distributions p and q by D(p∥q). We use E and V to represent expectation and variance, respectively.

For the binary case, letH be a hypothesis set of functions mapping from X to R. The prediction associated by a hypothesis
h ∈ H and x ∈ X is sign(h(x)). In this paper, we mainly focus on the family of constrained binary linear hypotheses
Hlin = {x → wTx + b ∶ ∥w∥2 ≤ W, ∣b∣ ≤ B}, where W,B ∈ R+. The generalization error and minimal generalization
error of a hypothesis h w.r.t. the loss function ` ∶ R × Y → R are defined as R`(h) = E(x,y)∼D[`(h(x), y))] and
R∗
`,H = infh∈HR`(h), whereH is a hypothesis set and D is data distribution. We denote the empirical generalization error

by R̂`(h). Furthermore, given a family of functions G mapping from Z to R, the empirical Rademacher complexity of G
for a sample S = (z1, . . . , zm) is defined by R̂S(G) = Eσ[ 1

m
supg∈G∑mi=1 σig(zi)], where σ = (σ1, . . . , σm) is a vector of

i.i.d. independent uniform random variables taking values in {−1,+1}. The Rademacher complexity of G is defined as
Rm(G) = ES[R̂S(G)].
Notations listed in the following will be useful to analyze the H-consistency bounds. For binary label space, let η(x)
denote the conditional distribution P(Y = 1∣X = x) and ∆η(x) the η(x) − 1

2
. We rewrite the generalization error as

R`(h) = Ex[C`(h,x)], where C`(h,x) = η(x)`(h, (x,1)) + (1 − η(x))`(h, (x,0)) is called as conditional risk. We can
also define the minimal conditional risk as C∗`,H(x) = infh∈H C`(h,x). We use the shorthand for the gap ∆C`,H(h,x) =
C`(h,x) − C∗`,H(x) and conditional ε-regret of ` ⟨∆C`,H(h,x)⟩ε = ∆C`,H(h,x)1C`,H(h,x)>ε. For any t ∈ [0,1], we also
define C`(h,x, t) = t`(h, (x,1))+(1−t)`(h, (x,0)) and ∆C`,H(h,x, t) = C`(h,x, t)− infh∈H C`(h,x, t). It is worthwhile
to note that a key quantity appears in the article is the M`,H = R∗

`,H −Ex(C∗`,H(x)), which is hard to estimate.

For the multiclass case, letH be a hypothesis set of functions mapping from X ×Y to RK . The prediction associated by
a hypothesis h ∈ H and x ∈ X is argmaxy∈Y hy(x). In the main paper, we mainly focus on the family of constrained
linear hypotheses Hlin = {x → h(x) ∶ hy(x) = wT

y x + by, ∥wy∥2 ≤ W, ∣by ∣ ≤ B,y ∈ Y}, where W,B ∈ R+. We also
giveH-consistency bound for family of one-hidden-layer neural network hypotheses with ReLU activation function (⋅)+
HNN = {x → h(x) ∶ hy(x) = ∑nj=1Uyj(⟨wj ,x⟩ + b)+}, where U ∈ RK×n, wj ∈ Rn and b ∈ R. The generalization
error and minimal generalization error of a hypothesis h w.r.t. the loss function ` ∶ RK × Y → R are defined as R`(h) =
E(x,y)∼D[`(h(x), y)] and R∗

`,H = infh∈HR`(h), where H is a hypothesis set and D is data distribution. We denote by
p(x) the conditional distribution of y when given x, i.e., py(x) = P(Y = y∣X = x). Similarly to the binary classification,
we have C`(h,x) = ∑Ky=1 py(x)`(h(x), y), C∗`,H(x) = infh∈H C`(h,x), ∆C`,H(h,x) = C`(h,x)−C∗`,H(x) and M`,H =
R∗
`,H −Ex(C∗`,H(x)). Furthermore, for any p in probability simplex ∆K , we can define C`(h,x,p) = ∑Ky=1 py`(h(x), y)

and ∆C`,H(h,x,p) = C`(h,x,p) − infh∈H C`(h,x,p).

B. On Binary Discriminative vs. Generative Linear Classifiers
In this section, we focus on the binary case and obtain results that are similar to (Ng & Jordan, 2001), under weaker
assumptions. Let hGen,m and hDis,m be logistic regression and naïve Bayes trained with m i.i.d samples, hGen,∞ and
hDis,∞ be their asymptotic/population versions. Proofs of this section can be found in Appendix F.

We will compare the sample complexity of logistic regression with that of naïve Bayes. Consider optimizing the practicable
logistic loss rather than zero-one loss, the estimation error of the logistic regression can be bounded by making use of the
definition of Rademacher complexity from classical statistical learning techniques.

Proposition B.1 (Proof in Appendix F.1). With a high probability of at least 1 − δ0, the following holds

R`log(hDis,m) ≤ R`log(hDis,∞) +O(
√

n

m
).

Theorem 2.1 means that we can bound the estimation error of the zero-one loss by the estimation error of the logistic loss,
which makes it possible to obtain an upper bound of the sample complexity with respect to zero-one loss.
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Theorem B.1 (Proof in Appendix F.2). Suppose that Assumption 3.5 is valid. Then, it suffices to pick m = O(n) training
samples such that R`0−1(hDis,m) ≤ R`0−1(hDis,∞) + ε0 hold with probability 1 − δ0, for any ε0 ∈ [

√
2ν, e

B−1
eB+1

] and
δ0 ∈ (0,1).

By further using the Theorem 9.3 in (Shalev-Shwartz & Ben-David, 2014) and binaryH-consistency bound Theorem 2.1,
which states that for n-dimension logistic regression, it needs at least Ω(n) training samples to guarantee the estimation
error is small enough with high probability, we know the result in Theorem B.1 is tight.

In the rest of this subsection, we will discuss the sample complexity of naïve Bayes. The sketch of proofs has been adopted
by (Ng & Jordan, 2001). However, their results are somewhat ambiguous and without detailed derivation, which is very
important to the extended analysis in Section 3.1 for multiclass classification. Thus, we present the proof for completeness.

Definition B.1. We define the G(τ) which will be useful to bound the generalization error of binary naïve Bayes as

G(τ) = P(x,y)∼D(∣∆aGen,∞(x,1,0)∣ ≤ τn).

Theorem B.2 (Proof in Appendix F.3). Suppose that Assumption 3.1 and 3.2 hold. Then with probability at least 1 − δ:

R`0−1(hGen,m) ≤ R`0−1(hGen,∞) +G(O(
√

1

m
log(n

δ
))) + δ.

The key quantity in this Theorem is the G(τ) , which must be small when τ is small in order to bound R`0−1(hGen,m) −
R`0−1(hGen,∞). This property holds when we introduce the Assumption B.1 and B.2.

Assumption B.1. For k1, k2 ∈ {0,1}(k1 ≠ k2), it holds that ∑ni=1D(p(xi∣y = k1)∥p(xi∣y = k2)) = βk1,k2n = Ω(n).

It means that samples from different classes (y = 0 and y = 1) should have different distributions on at least Ω(1) fraction of
their features.

Assumption B.2. For all k ∈ {0,1}, it holds that Vx[∑ni=1 log p(xi∣y=1)
p(xi∣y=0) ∣y = k] = αkn = O(nr), where r < 2..

Proposition B.2 (Proof in Appendix F.4). Suppose that Assumption 3.1, B.1 and B.2 hold, then G(τ) is polynomially small
in n:

G(τ) ≤ α

(τ − ζ)2n
,

where α = mink ∣αk ∣ = O(nr−1), Ex[∆aGen,∞(x,1,0)∣y = k] = ζkn, ζ = mink ∣ζk ∣ = Ω(1) and τ < ζ.

Indeed, if the naïve Bayes assumption really holds, that is, feature values are independent given the label, we can obtain a
much stronger guarantee for G(τ).

Proposition B.3 (Proof in Appendix F.5). Suppose that Assumption 3.1, 3.2, B.1 and the naïve Bayes assumption hold, then
G(τ) is exponentially small in n, that is,

G(τ) ≤ exp−O((τ − β)2n),

where Ex[∆aGen,∞(x,1,0)∣y = k] = ζkn, ζ = mink ∣ζk ∣ = Ω(1) and τ < ζ.

Using the results from Theorem B.2, we can obtain the sample complexity of naïve Bayes as follows.

Theorem B.3 (Proof in Appendix F.6). Suppose that either precondition of Proposition B.2 or Proposition B.3 holds. Then,
it suffices to pick m = O(logn) training samples such that R`0−1(hGen,m) ≤ R`0−1(hGen,∞) + ε0 hold with probability
1 − δ0, for any ε0 ∈ (0,1) and δ0 ∈ (0, ε0

2
].

Compare Corollary B.1 with B.3, we revisit the results in (Ng & Jordan, 2001). But we highlight that our results are obtained
based on different assumptions and novelH-consistency bound.

C. Deferred Results
Proofs of results in this section can be found in Section G.
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Proposition C.1 (Distribution-dependent concave bound, proof in G.1). For a fixed distribution, if there exists a concave
function s ∶ R+ → R and ε ≥ 0 such that the following holds for any h ∈H and x ∈ X :

⟨∆C`2,H(h,x)⟩ε ≤ s(∆C`1,H(h,x)).

Then it holds for all h ∈H that

R`2(h) −R∗
`2,H +M`2,H ≤ s(R`1(h) −R∗

`1,H +M`1,H) + ε.

Theorem C.1 (Distribution-independent concave `0−1 bound, proof in Appendix G.2). Suppose that H satisfies that
{argmaxy∈Y hy(x) ∶ h ∈H} = {1, . . . ,K} for any x ∈ X . If there exists a non-decreasing concave function s ∶ R+ → R+
with t ≤ s(J`(t)). Then it holds for all h ∈H and any distribution D that

R`0−1(h) −R∗
`0−1,H +M`0−1,H ≤ s(R`(h) −R∗

`,H +M`,H).

Theorem C.2 (Multiclass H-consistency bound for `log with one-hidden-layer neural network, proof in Appendix G.3).
Given family of one-hidden-layer neural network hypotheses with ReLU activation function (⋅)+ HNN = {x → h(x) ∶
hy(x) = ∑nj=1Uyj(⟨wj ,x⟩ + b)+}, where U ∈ RK×n, wj ∈ Rn and b ∈ R, then it holds for any distribution that
R`0−1(h) −R∗

`0−1,HNN +M`0−1,HNN ≤
√

2(R`log(h) −R∗
`log,HNN +M`log,HNN ) 1

2 .

Proposition C.2 (Proof in Appendix G.4). Suppose that Assumption 3.1, 3.2,3.3 and naïve Bayes assumption hold, then
G̃(τ) is exponentially small in n:

G̃(τ) ≤ exp−O((τ − ζ)2n),

where Ex[∆aGen,∞(x, k1, k2)∣y = k] = ζk1,k2,kn, ζ = mink1,k2,k ∣ζk1,k2,k ∣ = Ω(1) and τ < ζ.

D. Proofs of Section 3.1
D.1. Proof of Theorem 3.1

The proof is very similar to the proof of binary case (Theorem B.2). Similarly, there are some lemmas to bound the
∣∆aGen(x, k1, k2) −∆aGen,∞(x, k1, k2)∣ with high probability.

Lemma D.1. In case of discrete inputs, and suppose that Assumption 3.2 holds, then with probability at least 1 − δ, for
every fixed k1, k2 the following holds:

∣∆aGen(x, k1, k2) −∆aGen,∞(x, k1, k2)∣ ≤
4(n + 1)
ρ0

√
1

ρ0m
log(2(4n + 2)

δ
) = O(n

√
1

m
log(n

δ
)). (7)

Proof. The proof is almost the same as the proof of the binary case (Lemma F.5). Just replace the label {0,1} with {k1, k2}
and notice that ∣ log p̂(y = k1) − log p(y = k1)∣ ≤ ε no longer implies that ∣ log p̂(y = k2) − log p(y = k2)∣ ≤ ε.

Lemma D.2. In case of continuous inputs, and suppose that Assumption 3.2 holds, then with probability at least 1 − δ, the
following holds:

∣∆aGen(x, k1, k2) −∆aGen,∞(x, k1, k2)∣ ≤ 4( n

3ρ0
( 4

ρ2
0

+ 3

ρ0
+
√

2

ρ0
) + 1

ρ0
)
√

1

ρ0m
log(2(5n + 2)

δ
) (8)

= O(n
√

1

m
log(n

δ
)). (9)

Proof. The proof is almost the same as the proof of the binary case (Lemma F.7). Just replace the label {0,1} with {k1, k2}
and notice that ∣ log p̂(y = k1) − log p(y = k1)∣ ≤ ε no longer implies that ∣ log p̂(y = k2) − log p(y = k2)∣ ≤ ε.

Based on Lemma D.1 and D.2, we are ready to prove Theorem 3.1.
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Proof. Let δ and ε = O(n
√

1
m

log(n
δ
)) are what claimed in the Lemma D.1 for discrete case and Lemma D.2 for the

continuous case.We calculate the ∣R`0−1(hGen,m) −R`0−1(hGen,∞)∣ for multiclass naïve Bayes as follows:

∣R`0−1(hGen,m) −R`0−1(hGen,∞)∣
= ∣E(x,y)∼D[`0−1(hGen,m, (x, y)) − `0−1(hGen,∞, (x, y))]∣
≤ E(x,y)∼D ∣`0−1(hGen,m, (x, y)) − `0−1(hGen,∞, (x, y))∣
= P(x,y)∼D(argmax

k
aGen(x, k) ≠ argmax

k
aGen,∞(x, k))

≤ P(x,y)∼D(∪k1,k2∆aGen(x, k1, k2)∆aGen,∞(x, k1, k2) < 0)
≤ ∑
k1≠k2

P(x,y)∼D(∆aGen(x, k1, k2)∆aGen,∞(x, k1, k2) < 0)

≤ K(K − 1)
2

max
k1,k2

P(x,y)∼D(∆aGen(x, k1, k2)∆aGen,∞(x, k1, k2) < 0)

≤ K(K − 1)
2

max
k1,k2

(P(∆aGen(x, k1, k2)∆aGen,∞(x, k1, k2) < 0∣∣∆aGen(x, k1, k2) −∆aGen,∞(x, k1, k2)∣ ≤ ε) + δ)

≤ K(K − 1)
2

max
k1,k2

(P(∣∆aGen,∞(x, k1, k2)∣ ≤ O(n
√

1

m
log(n

δ
)))) + δ)

= K(K − 1)
2

(G̃(O(
√

1

m
log(n

δ
))) + δ).

The proof of Theorem 3.1 is complete.

D.2. Proof of Proposition 3.1

The following lemma states that the expectation of ∆aGen,∞(x, k1, k2) condition on y is always large, which is essential to
the proof of Proposition 3.1.

Lemma D.3. Suppose that Assumption 3.3 holds, then for every k1, k2 and k ∈ Y , it holds that ∣Ex[∑ni=1 log p(xi∣y=k1)
p(xi∣y=k2) ∣y =

k]∣ = Ω(n), which implies that ∣E[∆aGen,∞(x, k1, k2)∣y = k]∣ = Ω(n).

Proof. We calculate ∣Ex[∑ni=1 log p(xi∣y=k1)
p(xi∣y=k2) ∣y = k]∣ directly:

∣Ex[
n

∑
i=1

log
p(xi∣y = k1)
p(xi∣y = k2)

∣y = k]∣

= ∣
n

∑
i=1

Exi[log
p(xi∣y = k1)
p(xi∣y = k2)

∣y = k]∣

= ∣
n

∑
i=1

∑
xi

(p(xi∣y = k) log
p(xi∣y = k1)
p(xi∣y = k2)

)∣

= ∣
n

∑
i=1

∑
xi

(p(xi∣y = k) log
p(xi∣y = k)
p(xi∣y = k2)

− p(xi∣y = k) log
p(xi∣y = k)
p(xi∣y = k1)

)∣

= ∣
n

∑
i=1

(D(p(xi∣y = k)∥p(xi∣y = k2)) −D(p(xi∣y = k)∥p(xi∣y = k1)))∣

= βk2,k1,kn = Ω(n). (Assumption 3.3)

17



Revisiting Discriminative vs. Generative Classifiers: Theory and Implications

Furthermore, we can obtain

∣Ex[∆aGen,∞(x, k1, k2)∣y = k]∣

= ∣Ex[
n

∑
i=1

log
p(xi∣y = k1)
p(xi∣y = k2)

+ log
p(y = k1)
p(y = k2)

∣y = k]∣

= ∣
n

∑
i=1

Exi[log
p(xi∣y = k1)
p(xi∣y = k2)

∣y = k] + log
p(y = k1)
p(y = k2)

∣

≥ βk2,k1,kn − ∣ log
p(y = k1)
p(y = k2)

∣

≥ βk2,k1,kn − ∣ log
ρ0

1 − ρ0
∣ (Assumption 3.1)

= Ω(n),

which implies that ∣Ex[∆aGen,∞(x, k1, k2)∣y = k]∣ = Ω(n). Then the lemma is proved.

Built upon Lemma D.3, we prove Theorem B.2 as follows.

Proof. For k1, k2 and k which satisfies ζk1,k2,k > 0, to bound P(∣∆aGen,∞(x, k1, k2)∣ ≤ τn∣y = k) with τ ∈ (0, ζ). we can
write:

P(∣∆aGen,∞(x, k1, k2)∣ ≤ τn∣y = k)
≤ P(∆aGen,∞(x, k1, k2) ≤ τn∣y = k)
= P(∆aGen,∞(x, k1, k2) − ζk1,k2,kn ≤ τn − ζk1,k2,kn∣y = k)

= P(
n

∑
i=1

log
p(xi∣y = k1)
p(xi∣y = k2)

−Ex(
n

∑
i=1

log
p(xi∣y = k1)
p(xi∣y = k2)

) ≤ (τ − ζk1,k2,k)n∣y = k)

≤ P(∣
n

∑
i=1

log
p(xi∣y = k1)
p(xi∣y = k2)

−Ex(
n

∑
i=1

log
p(xi∣y = k1)
p(xi∣y = k2)

)∣ ≥ (ζk1,k2,k − τ)n∣y = k)

≤
V[∑ni=1 log p(xi∣y=k1)

p(xi∣y=k2) ∣y = k]
(τ − ζk1,k2,k)2n2

(Chebyshev inequality)

= αk1,k2,kn

(τ − ζk1,k2,k)2n2
(Assumption 3.4)

= αk1,k2,k

(τ − ζk1,k2,k)2n
.

Similar to the above discussion, we have P(∣∆aGen,∞(x, k1, k2)∣ ≤ τn∣y = k) ≤ αk1,k2,k
(τ−∣ζk1,k2,k ∣)2n

for k1, k2 and k which
satisfies ζk1,k2,k < 0. Finally, we can conclude that:

G̃(τ) = max
k1,k2

K

∑
k=1

p(y = k)P(∣∆aGen,∞(x, k1, k2)∣ ≤ τn∣y = k)

≤ max
k1,k2

K

∑
k=1

p(y = k) αk1,k2,k

(τ − ∣ζk1,k2,k ∣)2n

≤ max
k1,k2

maxk αk1,k2,k

(τ −mink ∣ζk1,k2,k ∣)2n

= maxk1,k2,k αk1,k2,k

(τ −mink1,k2,k ∣ζk1,k2,k ∣)2n
= α

(τ − ζ)2n
.
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D.3. Proof of Theorem 3.2

Proof. In the case that precondition of Proposition 3.1 holds, combining Theorem 3.1 and Proposition 3.1, we know that

there exist positive c = Θ(1) and large enough m such that when c
√

1
m

log(n
δ
) < ζ, with probability at least 1 − δ, we have

R`0−1(hGen,m) ≤ R`0−1(hGen,∞) + K(K − 1)
2

( α

(c
√

1
m

log(n
δ
) − ζ)2n

+ δ)

≤ R`0−1(hGen,∞) + K
2

2
( α

(c
√

1
m

log(n
δ
) − ζ)2n

+ δ).

For fixed ε0 ∈ (0,1), the logical relations listed in the following is correct:

R`0−1(hGen,m) ≤ R`0−1(hGen,∞) + ε0 with probability at least 1 - δ

⇐ c

√
1

m
log(n

δ
) < ζ ∧ 0 < δ < 1 ∧ K

2

2
( α

(c
√

1
m

log(n
δ
) − ζ)2n

+ δ) ≤ ε0

⇔ c

√
1

m
log(n

δ
) < ζ ∧ 0 < δ < 1 ∧ α

(c
√

1
m

log(n
δ
) − ζ)2n

≤ 2ε0
K2

− δ

⇔ c

√
1

m
log(n

δ
) < ζ ∧ 0 < δ < 1 ∧ 2ε0

K2
− δ > 0 ∧ (c

√
1

m
log(n

δ
) − ζ)2 ≥ α

( 2ε0
K2 − δ)n

⇔ c

√
1

m
log(n

δ
) < ζ ∧ 0 < δ < 2ε0

K2
∧ (c

√
1

m
log(n

δ
) − ζ)2 ≥ α

( 2ε0
K2 − δ)n

⇔ 0 < δ < 2ε0
K2

∧ ζ − c
√

1

m
log(n

δ
) ≥

√
α

( 2ε0
K2 − δ)n

⇔ 0 < δ < 2ε0
K2

∧ ζ −
√

α

( 2ε0
K2 − δ)n

> 0 ∧ (ζ −
√

α

( 2ε0
K2 − δ)n

)2 ≥ c2 1

m
log(n

δ
)

⇐ 0 < δ < 2ε0
K2

− α

ζ2n
∧ 2ε0
K2

− α

ζ2n
> 0 ∧m ≥ c2

(ζ −
√

α

( 2ε0
K2 −δ)n

)2
log(n

δ
)

⇐ 0 < δ ≤ ε0
K2

∧ 2ε0
K2

− α

ζ2n
> ε0
K2

∧m ≥ c2

(ζ −
√

α

( 2ε0
K2 −δ)n

)2
log(n

δ
)

⇔ 0 < δ ≤ ε0
K2

∧K <
√

ε0ζ2n

α
∧m ≥ c2

(ζ −
√

α

( 2ε0
K2 −δ)n

)2
log(n

δ
)

⇐ 0 < δ ≤ ε0
K2

∧ 2K <
√

ε0ζ2n

α
∧m ≥ c2

(ζ −
√

αK2

ε0n
)2

log(n
δ
)

⇐ 0 < δ ≤ ε0
K2

∧ 2K <
√

ε0ζ2n

α
∧m ≥ c2

(ζ − ζ
2
)2

log(n
δ
)

⇐ 0 < δ ≤ ε0
K2

∧ 2K <
√

ε0ζ2n

α
∧m = O(log(n)).

We note that in the case that precondition of Proposition C.2 holds, the O(log(n)) result is correct as well. Combining
Theorem 3.1 and Proposition C.2, we know that there exist positive b, c = Θ(1) and large enough m such that when
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c
√

1
m

log(n
δ
) < ζ, with probability at least 1 − δ, we have

R`0−1(hGen,m) ≤ R`0−1(hGen,∞) + K(K − 1)
2

(exp(−b(c
√

1

m
log(n

δ
) − ζ)2n) + δ)

≤ R`0−1(hGen,∞) + K
2

2
(exp(−b(c

√
1

m
log(n

δ
) − ζ)2n) + δ).

For fixed ε0 ∈ (0,1), the logical relations listed in the following is correct:

R`0−1(hGen,m) ≤ R`0−1(hGen,∞) + ε0 with probability at least 1 - δ

⇐ c

√
1

m
log(n

δ
) < ζ ∧ 0 < δ < 1 ∧ K

2

2
(exp(−b(c

√
1

m
log(n

δ
) − ζ)2n) + δ) ≤ ε0

⇔ c

√
1

m
log(n

δ
) < ζ ∧ 0 < δ < 1 ∧ exp(−b(c

√
1

m
log(n

δ
) − ζ)2n) ≤ 2ε0

K2
− δ

⇔ c

√
1

m
log(n

δ
) < ζ ∧ 0 < δ < 1 ∧ 2ε0

K2
− δ > 0 ∧ −b(c

√
1

m
log(n

δ
) − ζ)2n ≤ log(2ε0

K2
− δ)

⇔ c

√
1

m
log(n

δ
) < ζ ∧ 0 < δ < 2ε0

K2
∧ (c

√
1

m
log(n

δ
) − ζ)2 ≥ 1

bn
log( 1

2ε0
K2 − δ

)

⇐ c

√
1

m
log(n

δ
) < ζ ∧ 0 < δ < 2ε0

K2
∧ ζ − c

√
1

m
log(n

δ
) ≥

¿
ÁÁÀ 1

bn
log( 1

2ε0
K2 − δ

)

⇔ 0 < δ < 2ε0
K2

∧ ζ −
¿
ÁÁÀ 1

bn
log( 1

2ε0
K2 − δ

) ≥ c
√

1

m
log(n

δ
)

⇔ 0 < δ < 2ε0
K2

∧ ζ −
¿
ÁÁÀ 1

bn
log( 1

2ε0
K2 − δ

) > 0 ∧ (ζ −
¿
ÁÁÀ 1

bn
log( 1

2ε0
K2 − δ

))2 ≥ c2 1

m
log(n

δ
)

⇐ 0 < δ < 2ε0
K2

− exp(−bζ2n) ∧ 2ε0
K2

− exp(−bζ2n) > 0 ∧m ≥ c2

(ζ −
√

1
bn

log( 1
2ε0
K2 −δ

))2
log(n

δ
)

⇐ 0 < δ ≤ ε0
K2

∧ 2ε0
K2

− exp(−bζ2n) > ε0
K2

∧m ≥ c2

(ζ −
√

1
bn

log( 1
2ε0
K2 −δ

))2
log(n

δ
)

⇔ 0 < δ ≤ ε0
K2

∧K < √
ε0 exp(bnζ

2

2
) ∧m ≥ c2

(ζ −
√

1
bn

log( 1
2ε0
K2 −δ

))2
log(n

δ
)

⇐ 0 < δ ≤ ε0
K2

∧ 2K < √
ε0 exp(bnζ

2

2
) ∧m ≥ c2

(ζ −
√

1
bn

log(K2

ε0
))2

log(K
2n

ε0
)

⇐ 0 < δ ≤ ε0
K2

∧ 2K < √
ε0 exp(bnζ

2

2
) ∧m ≥ c2

ζ2(1 − log(K2/ε0)
log(4K2/ε0))

2
log(K

2n

ε0
)

⇔ 0 < δ ≤ ε0
K2

∧ 2K < √
ε0 exp(bnζ

2

2
) ∧m = O(log(n)).

D.4. Proof of Proposition 3.2

We first present the following lemmas to show Proposition 3.2.

Lemma D.4 ((Mohri et al., 2018), Theorem 3.3). Let G be a family of functions mapping from Z to [0, c]. Then, for any δ
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> 0, with probability at least 1 − δ over the draw of an i.i.d. sample S of size m, the following holds for all g ∈ G:

E[g(z)] ≤ 1

m

m

∑
i=1

g(zi) + 2Rm(G) + c
√

1

2m
log(2

δ
),

whereRm(G) is the Rademacher complexity of G.

Lemma D.5 ((Maurer, 2016), Corollary 4). Let X be any set, S = (x1, ...,xm) ∈ Xm, σ1, . . . , σm be Rademacher random
variables, H be a class of functions h ∶ X → `2 and let Φ ∶ `2 → R have Lipschitz norm L, where `2 is Hilbert space of
square summable sequences of real numbers. Then we have

Rm(Φ ○H) = 1

m
ES,σ sup

h
∑
i

σiΦ(h(xi)) ≤
√

2L
1

m
ES,σ sup

h
∑
i,k

σikhk(xi).

where σik is an independent doubly indexed Rademacher sequence and hk(xi) is the k-th component of h(xi).

Lemma D.6. Let X = [0,1]n, S = (x1, ...,xm) ∈ Xm,H = {x→ h(x) ∶ hy(x) =wT
y x+ by, ∥wy∥2 ≤W, ∣by ∣ ≤ B,y ∈ Y}

and σik be independent doubly indexed Rademacher sequence. Then we have

1

m
ES,σ sup

h
∑
i,k

σikhk(xi) ≤WK

√
n

m
.

Proof.
1

m
ES,σ sup

h
∑
i,k

σikhk(xi) =
1

m
ES,σ sup

h
∑
i,k

σik(⟨wk,xi⟩ + bk)

= 1

m
ES,σ sup

h
∑
i,k

σik⟨wk,xi⟩

≤
K

∑
k=1

1

m
ES,σ sup

hk

m

∑
i=1

σik⟨wk,xi⟩

=
K

∑
k=1

1

m
ES,σ sup

hk

⟨wk,
m

∑
i=1

σikxi⟩

≤
K

∑
k=1

1

m
ES,σ sup

hk

∥wk∥2∥
m

∑
i=1

σikxi∥2

≤
K

∑
k=1

W

m
ES,σ∥

m

∑
i=1

σikxi∥2

≤
K

∑
k=1

W

m

¿
ÁÁÀES,σ∥

m

∑
i=1

σikxi∥2
2

=
K

∑
k=1

W

m

¿
ÁÁÀ

m

∑
i=1

∥xi∥2
2

≤ WK

m

√
m × n =WK

√
n

m

Lemma D.7. Let X = [0,1]n, Y = {1, . . . ,K}, S = ((x1, y1), ..., (xm, ym)) ∈ (X ,Y)m, H = {x → h(x) ∶ hy(x) =
wT
y x + by, ∥wy∥2 ≤W, ∣by ∣ ≤ B,y ∈ Y} and Π1(H) = {(x, y)→ hy(x), y ∈ Y,h ∈H}. Then we have

1

m
ES,σ[sup

h

m

∑
i=1

σihyi(xi)] ≤KRm(Π1(H)).

21



Revisiting Discriminative vs. Generative Classifiers: Theory and Implications

Proof.
1

m
ES,σ[sup

h

m

∑
i=1

σihyi(xi)]

= 1

m
ES,σ[sup

h

m

∑
i=1

σi ∑
y∈Y

hy(xi)1yi=y]

≤ 1

m
∑
y∈Y

ES,σ[sup
h

m

∑
i=1

σihy(xi)1yi=y]

= ∑
y∈Y

1

m
ES,σ[sup

h

m

∑
i=1

σihy(xi)(
εi
2
+ 1

2
)] (εi = 2 × 1yi=y − 1 ∈ {−1,+1})

≤ ∑
y∈Y

1

2m
ES,σ[sup

h

m

∑
i=1

σihy(xi)εi] +
1

2m
ES,σ[sup

h

m

∑
i=1

σihy(xi)]

= ∑
y∈Y

1

m
ES,σ[sup

h

m

∑
i=1

σihy(xi)]

≤KRm(Π1(H)).

Lemma D.8. Let X = [0,1]n, Y = {1, . . . ,K}, S = ((x1, y1), ..., (xm, ym)) ∈ (X ,Y)m, H = {x → h(x) ∶ hy(x) =
wT
y x + by, ∥wy∥2 ≤W, ∣by ∣ ≤ B,y ∈ Y} and Π1(H) = {(x, y)→ hy(x), y ∈ Y,h ∈H}. Then we have

Rm(Π1(H)) ≤W
√

n

m
.

Proof.

Rm(Π1(H)) = 1

m
ES,σ[sup

h,y

m

∑
i=1

σihy(xi)] =
1

m
ES,σ[sup

h,y

m

∑
i=1

σi(⟨wy,xi⟩ + by)]

= 1

m
ES,σ[sup

h,y

m

∑
i=1

σi⟨wy,xi⟩] =
1

m
ES,σ[sup

h,y
⟨wy,

m

∑
i=1

σixi⟩]

≤ W
m

ES,σ[∥
m

∑
i=1

σixi∥2] ≤
W

m

¿
ÁÁÀES,σ[∥

m

∑
i=1

σixi∥2
2]

= W
m

¿
ÁÁÀ

m

∑
i=1

∥xi∥2
2 ≤

W

m

√
m × n =W

√
n

m
.

Lemma D.9 ((Shalev-Shwartz & Ben-David, 2014), Lemma B.6). Let Z1, . . . , Zm be a sequence of i.i.d. random variables
and let Z̄ = 1

m ∑
m
i=1Zi. Assume that E[Z̄] = µ and P [a ≤ Zi ≤ b] = 1 for every i. Then, for any ε > 0:

P[∣Z̄ − µ∣ > ε] ≤ 2 exp(− 2mε2

(b − a)2
).

Based on the above lemmas, we now prove Proposition 3.2 as follows.

Proof. We first rewrite R`log(hDis,m) −R`log(hDis,∞).

R`log(hDis,m) −R`log(hDis,∞)
= R`log(hDis,m) − R̂`log,S(hDis,m) + R̂`log,S(hDis,m) − R̂`log,S(hDis,∞) + R̂`log,S(hDis,∞) −R`log(hDis,∞)
≤ (R`log(hDis,m) − R̂`log,S(hDis,m)) + (R̂`log,S(h∗) −R`log(hDis,∞)).
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We consider the first summand now. By Lemma D.4, with probability of at least 1 − δ, we have:

R`log(hDis,m) − R̂`log,S(hDis,m)

≤ 2Rm(`log ○ (H,Y)) + log(1 + (K − 1) exp 2(W
√
n +B))

√
1

2m
log(2

δ
)

We define Π1(H) = {(x, y)→ hy(x), y ∈ Y,h ∈H} and Φ = {h→ log(∑Ky=1 exp (hy)),h ∈H(x) ⊆ RK}. We can bound
Rm(`log ○ (H,Y)) as follows:

Rm(`log ○ (H,Y)) =
1

m
ES,σ[sup

h

m

∑
i=1

σi`log(h(xi), yi)]

= 1

m
ES,σ[sup

h

m

∑
i=1

σi(log(
K

∑
i=1

exp (hk(xi))) − hyi(xi))]

≤ 1

m
ES,σ[sup

h

m

∑
i=1

σi log(
K

∑
i=1

exp (hk(xi)))] +
1

m
ES,σ[sup

h

m

∑
i=1

σihyi(xi)]

=Rm(Φ ○H) + 1

m
ES,σ[sup

h

m

∑
i=1

σihyi(xi)].

We will boundRm(Φ ○H) by using Lemma D.5. Before that, we note Φ has Lipschitz norm
√
K. Because ∂Φ

∂hi
≤ 1 for any

i ∈ {1, . . . ,K}. Then, for any h1,h2 ∈ RK , we have

∣Φ(h1) −Φ(h2)∣ ≤ ∣
K

∑
k=1

∣h1k −h2k ∣∣ ≤
√
K∥h1 −h2∥2.

Then we can boundRm(Φ ○H) as the following

Rm(Φ ○H) ≤
√

2
√
K

1

m
ES,σ[sup

h
∑
i,k

σikhk(xi)] (by Lemma D.5)

≤
√

2KWK

√
n

m
=W

√
2K3n

m
. (by Lemma D.6)

We can also bound 1
m
ES,σ[suph∑mi=1 σihyi(xi)] as follows

1

m
ES,σ[sup

h

m

∑
i=1

σihyi(xi)] ≤KRm(Π1(H)) (by Lemma D.7)

≤KW
√

n

m
=W

√
K2n

m
. (by Lemma D.8)

Therefore, we can obtain

R`log(hDis,m)−R̂`log,S(hDis,m) ≤ 2W (
√

2K3n

m
+
√

K2n

m
)+log(1+(K−1) exp 2(W

√
n +B))

√
1

2m
log(2

δ
). (10)

For the second summand, we use the fact that R`log(hDis,∞) does not depend on S; hence by Lemma D.9, we obtain its
bound:

P(∣R̂`log,S(hDis,∞) −R`log(hDis,∞)∣ > ε) ≤ 2 exp(− 2mε2

(c − 0)2
) = 2 exp(−2mε2

c2
),

where c = log(1 + (K − 1) exp 2(W√
n +B)). It implies that with the probability of at least 1 − δ, we have:

R̂`log,S(hDis,∞) −R`log(hDis,∞) ≤ c
√

1

2m
log(2

δ
). (11)
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At last, we make use of the union bound for Eq. (10) and (11) to get the final result. With probability at least 1 − δ, the
following holds:

R`log(hDis,m) −R`log(hDis,∞)

≤ 2W (
√

2K3n

m
+
√

K2n

m
) + log(1 + (K − 1) exp 2(W

√
n +B))

√
1

2m
log(4

δ
) + c

√
1

2m
log(4

δ
)

= 2W (
√

2K3n

m
+
√

K2n

m
) + 2 log(1 + (K − 1) exp 2(W

√
n +B))

√
1

2m
log(4

δ
)

= O(
√

K3n

m
).

Therefore, for R`log(hDis,m) ≤ R`log(hDis,∞) + ε0 to hold with high probability 1 − δ0 (here, ε0 and δ0 are some fixed
constant), it suffices to pick m = O(n) samples.

D.5. Proof of Theorem 3.4

Proof. By Theorem 3.3 we know that for R`0−1(hDis,m) ≤ R`0−1(hDis,∞) + ε0, it is sufficient to ensure that
R`log(hDis,m) ≤ R`log(hDis,∞) + 1

2
ε20. Then by Proposition 3.2, it suffices to sample m = O(K3n

ε40
) = O(K3n).

E. Proofs of Section 3.2
E.1. Proof of Proposition 3.3

Proof. Fix h ∈H, because g(⟨∆C`2,H(h,x)⟩ε) < ∆C`1,H(h,x) for all x ∈ X , we have:

g(R`2(h) −R∗
`2,H +M`2,H)

= g(Ex[C`2(h,x)] −R∗
`2,H +R∗

`2,H −Ex[C∗`2,H(x)])
= g(Ex[C`2(h,x) − C∗`2,H(x)])
≤ Ex[g(C`2(h,x) − C∗`2,H(x))] (Jensen’s inequality)
= Ex[g(∆C`2,H(h,x))]
= Ex[g(∆C`2,H(h,x)1C`2,H(h,x)>ε +∆C`2,H(h,x)1C`2,H(h,x)≤ε)]
≤ Ex[g(∆C`2,H(h,x)1C`2,H(h,x)>ε) + g(∆C`2,H(h,x)1C`2,H(h,x)≤ε)] (g(0) ≥ 0)
≤ Ex[∆C`1,H(h,x) + sup

t∈[0,ε]
g(t)] (assumption)

= R`1(h) −R∗
`1,H +M`1,H +max(g(0), g(ε)). (g is convex)

E.2. Proof of Theorem 3.5

Lemma E.1 (Character of conditional ε-regret for `0−1). Suppose that H satisfies that {argmaxy∈Y hy(x) ∶ h ∈ H} =
{1, . . . ,K} for any x ∈ X , then the minimal conditional zero-one loss `0−1 is

C∗`0−1,H(x) = C∗`0−1,Hall(x) = 1 −max
y
py(x).

Furthermore, the conditional ε-regret for `0−1 can be characterized as

⟨∆C`0−1,H(h,x)⟩ε = ⟨max
y
py(x) − pŷ(x)⟩ε,

where ŷ = argmaxy∈Y hy(x).
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Proof. By the definition of C`0−1(h,x), we have:

C`0−1(h,x) =
K

∑
y=1

py(x)`0−1(h(x), y) =
K

∑
y=1

py(x)1ŷ≠y.

By the assumption, we know that there exists h∗ ∈ H which satisfies argmaxy∈Y h
∗
y(x) = argmaxy∈Y py(x). Therefore,

we have
C∗`0−1,H(x) = inf

h∈H
C`0−1(h,x) = C`0−1(h∗,x) = 1 −max

y
py(x).

Then we can find the characteristic of conditional ε-regret for `0−1 as follows:

∆C`0−1,H(h,x) = C`0−1(h,x) − C∗`0−1,H(x)

=
K

∑
y=1

py(x)1ŷ≠y − (1 −max
y
py(x))

= ∑
y≠ŷ

py(x) − ∑
y≠ymax

py(x)

= max
y
py(x) − pŷ(x).

Lemma E.2 (Distribution-dependent convex `0−1 bound). Suppose that H satisfies that {argmaxy∈Y hy(x) ∶ h ∈ H} =
{1, . . . ,K} for any x ∈ X , and there exists a convex function g ∶ R+ → R with g(0) = 0 and ε ≥ 0 that the following holds
for any ŷ ∈ Y , x ∈ X and h ∈Hŷ(x):

g(⟨max
y
py(x) − pŷ(x)⟩ε) ≤ inf

h∈Hŷ(x)
∆C`,H(h,x).

Then it holds for all h ∈H that

g(R`0−1(h) −R∗
`0−1,H +M`0−1,H) ≤ R`(h) −R∗

`,H +M`,H +max(0, g(ε)).

Proof. For any x0 ∈ X and h0 ∈H, let ŷ be the index of the largest element of h0(x). Then by the precondition, we have

g(⟨∆C`0−1,H(h0,x0)⟩ε) = g(⟨max
y
py(x0) − pŷ(x0)⟩ε) ≤ inf

h∈Hŷ(x0)
∆C`,H(h,x0) ≤ ∆C`,H(h0,x0).

Combining the condition in Proposition 3.3 we can see that this lemma is correct.

Built upon the above lemmas, we can prove Theorem 3.5 as follows.

Proof. For any x0 ∈ X , p(x0) ∈ ∆K , ŷ0 ∈ Y , and h ∈Hŷ0(x0), we can write:

g(max
y
py(x0) − pŷ0(x0))

≤ inf
ŷ∈Y,x∈X ,h∈Hŷ(x),p∈Pŷ(maxy py(x0)−pŷ0(x0))

∆C`,H(h,x,p) (Assumption)

≤ inf
x∈X ,h∈Hŷ0(x),p∈Pŷ0(maxy py(x0)−pŷ0(x0))

∆C`,H(h,x,p)

≤ inf
x∈X ,h∈Hŷ0(x)

∆C`,H(h,x,p(x0))

≤ inf
h∈Hŷ0(x0)

∆C`,H(h,x0,p(x0)) = inf
h∈Hŷ0(x0)

∆C`,H(h,x0).

Combining the result of Lemma E.2, we conclude the proof of Theorem 3.5.
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E.3. Proofs of Theorem 3.6

Proof. By Theorem 3.5, if J`(t) is convex with J`(0) = 0, the first inequality holds. For any t ∈ [0,1], denote that
the solution of inf ŷ∈Y,p∈Pŷ(t),x∈X ,h∈Hŷ(x) ∆C`,H(h,x,p) by x∗,h∗,p∗, ŷ∗. We then consider the distribution that is
supported on the single point x0 = x∗ and satisfy that p(x0) = p∗. Thus,

inf
ŷ∈Y,p∈Pŷ(t),x∈X ,h∈Hŷ(x)

∆C`,H(h,x,p) = inf
h∈Hŷ∗(x0)

∆C`,H(h,x0,p(x0)) = inf
h∈Hŷ∗(x0)

∆C`,H(h,x0).

For any δ > 0, take h0 ∈H such that h0 ∈Hŷ∗(x0) and

∆C`,H(h0,x0) ≤ inf
h∈Hŷ∗(x0)

∆C`,H(h,x0) + δ = inf
ŷ∈Y,p∈Pŷ(t),x∈X ,h∈Hŷ(x)

∆C`,H(h,x,p) + δ.

Then, we have

R`0−1(h0) −R∗
`0−1,H +M`0−1,H = R`0−1(h0) −Ex[C∗`0−1,H(x)]

= ∆C`0−1,H(h0,x0)
= max

y
py(x0) − pŷ∗(x0)

= t,
R`(h0) −R∗

`,H +M`,H = R`(h0) −Ex[C∗`,H(x)]
= ∆C`,H(h0,x0)
≤ inf
ŷ,p∈Pŷ(t),x∈X ,h∈Hŷ(x)

∆C`,H(h,x,p) + δ

= J`(t) + δ,

which completes the proof.

E.4. Proof of Theorem 3.3

To prove the Theorem 3.3, we first list the following lemmas.
Lemma E.3 (Convexity of C`(h,x,p)). C`(h,x,p) = ∑Ky=1 py(−hy + log(∑Kj=1 exp (hj)) is convex with respect to h.

Proof. For any fixed x and p, we have

∂C`(h,x,p)
∂hi

= −pi +
exp (hi)

∑Kk=1 exp (hk)
.

Let Aij = ∂2C`(h,x,p)
∂hi∂hj

, we have

Aij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

− exp (hi) exp (hj)
(∑Kk=1 exp (hk))2 , i ≠ j,

exp (hj)∑Kk=1,k≠j exp (hk)
(∑Kk=1 exp (hk))2 , i = j.

To prove C`(h,x,p) is convex with respect to h, it’s sufficient to show that A is positive semidefinite, which equals to
xTAx ≥ 0 for any x ∈ Rn. We can calculate it as follows:

xTAx = A11x
2
1 + ⋅ ⋅ ⋅ +Annx2

n +∑
i≠j
Aijxixj

= 1

(∑Kk=1 exp (hk))2
[
K

∑
i=1

exp (hi)x2
i (

K

∑
k=1,k≠i

exp (hk)) −
K

∑
i=1

exp (hi)xi(
K

∑
j=1,j≠i

exp (hj)xj)]

= 1

(∑Kk=1 exp (hk))2
[
K

∑
i=1

exp (hi)xi(
K

∑
j=1,j≠i

exp (hj)(xi − xj))]

= 1

(∑Kk=1 exp (hk))2
[∑
i<j

exp (hi) exp (hj)(xi − xj)2] ≥ 0.

which proves this lemma.

26



Revisiting Discriminative vs. Generative Classifiers: Theory and Implications

Lemma E.4 (Property ofM`0−1,H). Suppose thatH satisfies that {argmaxy∈Y hy(x) ∶ h ∈H} = {1, . . . ,K} for any x ∈ X .
Then M`0−1,H coincides with the approximation error R∗

`0−1,H −R∗
`0−1,Hall .

Proof.
M`0−1,H = R∗

`0−1,H −Ex[C∗`0−1,H(x)]
= R∗

`0−1,H −Ex[ inf
h∈H

C`0−1(h,x,p(x)]

= R∗
`0−1,H −Ex[1 −max

y
py(x)] (Lemma E.1)

= R∗
`0−1,H −R∗

`0−1,Hall .

Lemma E.5. Given x, and p ∈ ∆K , the following statements are equivalent:

(1)Optimation problem (14) can reach the global optimum,

(2)maxy py −miny py ≤ exp(W ∥x∥+B)−exp (−(W ∥x∥+B))
exp(W ∥x∥+B)+(K−1) exp (−(W ∥x∥+B)) .

Proof. First, we prove that (1) implies (2). By the solutions of KKT conditions in (16), (1) means that ∃h ∈ RK ,
∣hi∣ ≤W ∥x∥ +B, and pi = exp(hi)

∑Kj=1 exp(hj) . We can directly write

max
y
py −min

y
py =

maxy exp(hy) −miny exp(hy)
∑Kj=1 exp(hj)

≤ maxy exp(hy) −miny exp(hy)
maxy exp(hy) + (K − 1)miny exp(hy)

≤ exp(W ∥x∥ +B) −miny exp(hy)
exp(W ∥x∥ +B) + (K − 1)miny exp(hy)

(increasing w.r.t max
y

exp(hy))

≤ exp(W ∥x∥ +B) − exp(−(W ∥x∥ +B))
exp(W ∥x∥ +B) + (K − 1) exp(−(W ∥x∥ +B)) (decreasing w.r.t min

y
exp(hy))

Second, we prove that (2) implies (1). We suppose that if (1) does not hold, then in this case, let I2 = {y ∶ py > exp (W ∥x∥+B)
∑Kk=1 exp (h∗

k
) },

I3 = {y ∶ py < exp (−W ∥x∥−B)
∑Kk=1 exp (h∗

k
) } and I1 = {1, . . . ,K} − I2 − I3. We note that #I2,#I3 > 0. By (15) we know that

K

∑
i=1

−pi +
exp (h∗i )

∑Kk=1 exp (h∗k)
+ λ∗i − µ∗i =

K

∑
i=1

(λ∗i − µ∗i ) = 0 (12)

Because either I2 or I3 must be non-empty. We assume that I2 is not empty, then there exists y1 such that λ∗y1−µ
∗
y1 = λ

∗
y1 > 0.

To make (12) hold, there should exists y2 such that λ∗y2 − µ
∗
y2 < 0, which implies that y2 ∈ I3. Thus, for any h, we have

maxy py ≥ exp(W ∥x∥+B)
∑Ki=j exp(hj) and miny py ≤ exp(−(W ∥x∥+B))

∑Ki=j exp(hj) . Then maxy py −miny py ≥ exp(W ∥x∥+B)−exp(−(W ∥x∥+B))
∑Ki=j exp(hj) for any

h. Therefore, maxy py −miny py ≥ exp(W ∥x∥+B)−exp(−(W ∥x∥+B))
exp(W ∥x∥+B)+(K−1) exp (−(W ∥x∥+B)) , which leads to a confliction.

Lemma E.6. For any ŷ ≠ ymax, it holds that infh∈Hŷ(x) C`(h,x,p)) ≥ −(pmax + pŷ) log(pmax+pŷ
2

) −
∑y∉{ymax,ŷ} py log(py), where ymax = argmaxy∈Y py and ŷ = argmaxy∈Y hy(x).

Proof. For all h ∈H and x ∈ X , we have

C`(h,x,p)) =
K

∑
y=1

py`(y,h(x)) =
K

∑
y=1

py(−hy + log(
K

∑
j=1

exp (hj))),
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where we use hj to denote hj(x) for simplicity. To get the infh∈Hŷ(x) C`(h,x,p)), we consider the following problem

min
h∈H(x)

K

∑
y=1

py(−hy + log(
K

∑
j=1

exp (hj))),

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

hi − (W ∥x∥ +B) ≤ 0, ∀i,
−hi − (W ∥x∥ +B) ≤ 0, ∀i,
hi − hŷ ≤ 0, ∀i ≠ ŷ.

We drop some constraints, and consider another problem, whose optimum is lower than the above:

min
h∈H(x)

K

∑
y=1

py(−hy + log(
K

∑
j=1

exp (hj))),

s.t. hi − hŷ ≤ 0,∀i ≠ ŷ.

Due to the convexity of C`(h,x,p)) by Lemma E.3, we could write its KKT conditions to obtain the necessary conditions
to reach the optimum. They are listed as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hi − hŷ ≤ 0, ∀i ≠ ŷ,
λ∗i ≥ 0, ∀i ≠ ŷ,
λ∗i (hi − hŷ) = 0, ∀i ≠ ŷ,

− pi +
exp (h∗i )

∑Kk=1 exp (h∗k)
+ λ∗i = 0, ∀i ≠ ŷ,

− pŷ +
exp (h∗ŷ)

∑Kk=1 exp (h∗k)
−∑
i≠ŷ
λ∗i = 0.

(13)

If λ∗i = 0 for all i ∈ {1, . . . ,K}, then h∗i = log(pi(∑Kk=1 exp(h∗k))). It means that h∗ymax ≥ h∗ŷ, which conflicts with the
precondition that ŷ ≠ ymax. Thus, there exists a ym ≠ ŷ, λ∗ym = 0, and h∗ym = hŷ . It implies that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h∗i = log(pi
K

∑
k=1

exp (h∗k)), i ∉ {ym, ŷ},

h∗ŷ = h∗ym ,
exp (h∗ym) + exp (h∗ŷ)
∑Kk=1 exp (h∗k)

= pym + pŷ.

Then we have h∗ŷ = h∗ym = log(pym+pŷ
2 ∑Kk=1 exp (h∗k)). If ym ≠ ymax, then h∗ŷ = log(pym+pŷ

2 ∑Kk=1 exp (h∗k)) <
log(pmax∑Kk=1 exp (h∗k)) = h∗ymax , which conflicts with ŷ ≠ ymax. Thus, we conclude that ym = ymax. We define
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s = exp(h∗ŷ) = exp(h∗ymax) for simplicity, then we can obtain that

inf
h∈Hŷ(x)

C`(h,x,p)) = inf
h∈Hŷ(x)

K

∑
y=1

py`(h(x), y)

= inf
h∈Hŷ(x)

K

∑
y=1

py(−hy + log(
K

∑
j=1

exp (hj)))

≥ pymax(−h∗ymax + log(
K

∑
j=1

exp (h∗j ))) + pŷ(−h∗ŷ + log(
K

∑
j=1

exp (h∗j ))) + ∑
y∉{ymax,ŷ}

py(−h∗y + log(
K

∑
j=1

exp (h∗j )))

= −(pymax + pŷ)(log(s) − log(
K

∑
j=1

exp (h∗j ))) − ∑
y∉{ymax,ŷ}

py log(py)

= −(pymax + pŷ) log( s

∑Kj=1 exp (h∗j )
) − ∑

y∉{ymax,ŷ}
py log(py)

= −(pymax + pŷ) log(
exp (h∗ymax) + exp (h∗ŷ)

2∑Kk=1 exp (h∗k)
) − ∑

y∉{ymax,ŷ}
py log(py)

= −(pymax + pŷ) log(pymax + pŷ
2

) − ∑
y∉{ymax,ŷ}

py log(py),

which completes the proof.

Lemma E.7 (Technical lemma 1). For all x ∈ [0,1− t] and fixed t ∈ R+, it holds that −(2x+ t) log( 2x+t
2

)+ (x+ t) log(x+
t) + x log(x) ≥ u(1 − t) = −(2 − t) log( 2−t

2
) + (1 − t) log(1 − t).

Proof. We first prove that u(x) = −(2x + t) log( 2x+t
2

) + (x + t) log(x + t) + t log(t) is decreasing on x ∈ [0,1], which
could be obtained by du

dx
= log( 4x(x+t)

(2x+t)2 ) ≤ 0. Thus we have u(x) ≥ u(1 − t) = −(2 − t) log( 2−t
2

) + (1 − t) log(1 − t), which
complete the proof.

Lemma E.8 (Technical lemma 2). For all t ∈ [0,1], it holds that 1+t
2

log(1 + t) + 1−t
2

log(1 − t) ≥ t2

2
.

Proof. We define u(t) = 1+t
2

log(1+ t)+ 1−t
2

log(1− t)− t2

2
. Then we calculate du

dt
= 1

2
log( 1+t

1−t)− t and d2u
dt2

= 1
1−t2 − 1 ≥ 0.

We have du
dt

= 1
2

log( 1+t
1−t) − t ≥

1
2

log( 1+0
1−0

) − 0 = 0. Thus, u(x) is increasing on [0,1] and u(x) ≥ u(0) = 0, which proves
the lemma.

We now are ready to prove the Theorem 3.3 as follows.

Proof. We first rewrite the J`(t) as follows.

J`(t) = inf
ŷ∈Y,p∈Pŷ(t),x∈X ,h∈Hŷ(x)

∆C`,H(h,x,p)

= inf
ŷ∈Y

inf
p∈Pŷ(t)

inf
x∈X

inf
h∈Hŷ(x)

∆C`,H(h,x,p)

= inf
ŷ∈Y

inf
p∈Pŷ(t)

inf
x∈X

inf
h∈Hŷ(x)

(C`(h,x,p) − inf
h∈H

C`(h,x,p))

= inf
ŷ∈Y

inf
p∈Pŷ(t)

inf
x∈X

( inf
h∈Hŷ(x)

C`(h,x,p) − inf
h∈H

C`(h,x,p)).

For all h ∈H and x ∈ X , we have

C`(h,x,p)) =
K

∑
y=1

py`(y,h(x)) =
K

∑
y=1

py(−hy + log(
K

∑
j=1

exp (hj))).
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To get the infh∈H C`(h,x,p)), we consider the following problem

min
h

K

∑
y=1

py(−hy + log(
K

∑
j=1

exp (hj))),

s.t. { hi − (W ∥x∥ +B) ≤ 0,∀i,
−hi − (W ∥x∥ +B) ≤ 0,∀i.

(14)

By Lemma E.3, we know that this problem is convex, we can make use of KKT conditions (Boyd et al., 2004) to find the
points that are primal and dual optimal, which can be listed as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h∗i − (W ∥x∥ +B) ≤ 0, i = 1, . . . ,K,

− h∗i − (W ∥x∥ +B) ≤ 0, i = 1, . . . ,K,

λ∗i ≥ 0, µ∗i ≥ 0, i = 1, . . . ,K,

λ∗i (h∗i −W ∥x∥ −B) = 0, i = 1, . . . ,K,

µ∗i (−h∗i −W ∥x∥ −B) = 0, i = 1, . . . ,K,

− pi +
exp (h∗i )

∑Kk=1 exp (h∗k)
+ λ∗i − µ∗i = 0, i = 1, . . . ,K.

(15)

It implies that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h∗i =W ∥x∥ +B, pi ≥
exp (W ∥x∥ +B)
∑Kk=1 exp (h∗k)

,

h∗i = −(W ∥x∥ +B), pi ≤
exp (−(W ∥x∥ +B))
∑Kk=1 exp (h∗k)

,

h∗i = log(pi
K

∑
k=1

exp (h∗k)), otherwise.

(16)

By the precondition of Theorem 3.3, we have

t = pmax − pŷ ≤ pmax − pmin ≤
exp(B) − exp (−B)

exp(B) + (K − 1) exp (−B) ≤ exp(W ∥x∥ +B) − exp (−(W ∥x∥ +B))
exp(W ∥x∥ +B) + (K − 1) exp (−(W ∥x∥ +B)) . (17)

In addition, in this case, by Lemma E.5, the global optimum could be reached, so we can omit the boundary situation

inf
h∈H

C`(h,x,p)) =
K

∑
y=1

py(−h∗y + log(
K

∑
j=1

exp (h∗j ))) = −
K

∑
y=1

py log(py),

which is the entropy of distribution p. Denote the index of the largest element of p by ymax. When t > 0, because
pymax − pŷ = t > 0, then ymax ≠ ŷ. By Lemma E.6, we know that

inf
h∈Hŷ(x)

C`(h,x,p)) ≥ −(pymax + pŷ) log(pymax + pŷ
2

) − ∑
y∉{ymax,ŷ}

py log(py).

Then we have

inf
h∈Hŷ(x)

C`(h,x,p) − inf
h∈H

C`(h,x,p) ≥ −(pymax + pŷ) log(pymax + pŷ
2

) + pymax log(pymax) + pŷ log(pŷ). (18)

To make (17) holds for all x ∈ X , we need t ≤ minx
exp(W ∥x∥+B)−exp (−(W ∥x∥+B))

exp(W ∥x∥+B)+(K−1) exp (−(W ∥x∥+B)) =
exp(B)−exp (−B)

exp(B)+(K−1) exp (−B) . Then, in
this case, we can take infimum with regard to x as follows.

inf
x∈X

( inf
h∈Hŷ(x)

(C`(h,x,p) − inf
h∈H

C`(h,x,p))) ≥ −(pymax + pŷ) log(pymax + pŷ
2

) + pymax log(pymax) + ppŷ log(ppŷ).
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Now, we meet the following problem

min
p

−(pymax + pŷ) log(pymax + pŷ
2

) + pymax log(pymax) + pŷ log(pŷ),

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

pymax − pŷ = t,∀i.
∑Ki=1 pi = 1,
pi ≥ 0,∀i,

which is equivalent to find the minimum of −(2pŷ + t) log( 2pŷ+t
2

) + (pŷ + t) log((pŷ + t)) + pŷ log(pŷ) when pŷ ∈ [0, 1−t
2

].
By Lemma E.7, we know it is 1+t

2
log(1 + t) + 1−t

2
log(1 − t). Thus

J`(t) = inf
ŷ∈Y

inf
p∈Pŷ(t)

inf
x∈X

( inf
h∈Hŷ(x)

C`(h,x,p) − inf
h∈H

C`(h,x,p))

≥ inf
ŷ∈Y

−(2 − t) log(2 − t
2

) + (1 − t) log(1 − t)

= 1 + t
2

log(1 + t) + 1 − t
2

log(1 − t)

≥ t
2

2
. (Lemma E.8)

It is worthwhile to note that when the number of classes is 2, then the derivations and results above coincide with that in
binary case (Awasthi et al., 2022a). Let g(t) = t2

2
in Theorem 3.5, we have

1

2
(R`0−1(h) −R∗

`0−1,H +M`0−1,H)2 ≤ R`log(h) −R∗
`log,H +M`log,H,

which implies

R`0−1(h) −R∗
`0−1,H +M`0−1,H ≤

√
2(R`log(h) −R∗

`log,H +M`log,H) 1
2 ,

whenR`log(h)−R∗
`log,H+M`log,H ≤ 1

2
( exp(2B)−1

exp(2B)+K−1
)2. By Lemma E.4, we haveM`0−1,H coincides with the approximation

error R∗
`0−1,H −R∗

`0−1,Hall . We also note that M`log,H coincides with R∗
`log,H −R∗

`log,Hall because

M`log,H = R∗
`log,H −Ex[C∗`log,H(x)]

= R∗
`log,H −Ex[ inf

h∈H
C`log(h,x,p(x)]

= R∗
`log,H −Ex[−

K

∑
y=1

py(x) log(py(x))]

= R∗
`log,H −R∗

`log,Hall .

Finally, we can conclude that

R`0−1(h) −R∗
`0−1,H ≤ R`0−1(h) −R∗

`0−1,H +M`0−1,H ≤
√

2(R`log(h) −R∗
`log,Hall)

1
2 .

F. Proofs of Appendix B
F.1. Proof of Proposition B.1

We first present the following lemmas to show Proposition B.1.

Lemma F.1 ((Mohri et al., 2018), Lemma 5.7, Talagrand’s lemma). Let Φ be L-Lipschitz functions from R → R and
σ1, . . . , σm be Rademacher random variables. Then, for any hypothesis set H of real-valued functions, the following
inequality holds:

Rm(Φ ○H) ≤ LRm(H).
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Lemma F.2 (Rademacher complexity of constrained linear hypotheses). Let S = {x1, . . . , xm} where xi ∈ [0,1] for all
i ∈ {1, . . . ,m} andH = {x→ ⟨w,x⟩ + b ∶ ∥w∥2 ≤W, ∣b∣ ≤ B}. Then, the Rademacher complexity ofH can be bounded as
follows:

Rm(H) ≤W
√

n

m
.

Proof.

Rm(H) = 1

m
ES,σ[sup

h

m

∑
i=1

σih(xi)] =
1

m
ES,σ[sup

h

m

∑
i=1

σi(⟨w,xi⟩ + b)]

= 1

m
ES,σ[sup

h

m

∑
i=1

σi⟨w,xi⟩ + b
m

∑
i=1

σi] ≤
1

m
ES,σ[sup

w

m

∑
i=1

σi⟨w,xi⟩ + sup
b
b
m

∑
i=1

σi]

= 1

m
ES,σ[sup

w

m

∑
i=1

σi⟨w,xi⟩] =
1

m
ES,σ[sup

w
⟨w,

m

∑
i=1

σixi⟩]

≤ W
m

ES,σ[∥
m

∑
i=1

σixi∥2] ≤
W

m

¿
ÁÁÀES,σ[∥

m

∑
i=1

σixi∥2
2]

= W
m

¿
ÁÁÀES,σ[

m

∑
i,j=1

σiσj⟨xi, xj⟩] =
W

m

¿
ÁÁÀ

m

∑
i=1

∥xi∥2
2 ≤

W

m

√
m × n

=W
√

n

m
.

Lemma F.3 (Rademacher complexity of H̃). Let H̃ = {z = (x, y)→ yh(x) ∶ h ∈H}. Then, the Rademacher complexity of
H̃ satisfies:

Rm(H̃) =Rm(H).

Proof.

Rm(H̃) = 1

m
ES,σ[sup

h

m

∑
i=1

σiyih(xi)]

= 1

2m
ES,σ[sup

h

m

∑
i=1

σi(2yi − 1)h(xi) +
m

∑
i=1

σih(xi)]

= 1

2m
ES,σ[sup

h

m

∑
i=1

σih(xi) +
m

∑
i=1

σih(xi)] (2yi − 1 ∈ {−1,+1})

= 1

m
ES,σ[sup

h

m

∑
i=1

σih(xi)]

=Rm(H).

We now prove Proposition B.1 by using the above lemmas.

Proof. We first rewrite the R`log(hDis,m) −R`log(hDis,∞).

R`log(hDis,m) −R`log(hDis,∞)
= R`log(hDis,m) − R̂`log,S(hDis,m) + R̂`log,S(hDis,m) − R̂`log,S(hDis,∞) + R̂`log,S(hDis,∞) −R`log(hDis,∞)
≤ (R`log(hDis,m) − R̂`log,S(hDis,m)) + (R̂`log,S(hDis,∞) −R`log(hDis,∞).
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The first summand on the right-hand side can be bounded by making use of Lemma D.4,F.1,F.2 and F.3 in sequence. Let
H̃ = {z = (x, y)→ yh(x) ∶ h ∈H} and Φ = {`log ○ h̃ ∶ h̃ ∈ H̃} With probability of at least 1 − δ, we have:

R`log(hDis,m) − R̂`log,S(hDis,m)

≤ 2Rm(`log ○ H̃) + log(1 + exp (W
√
n +B))

√
1

2m
log(2

δ
) (`log ○ H̃ is bounded, Lemma D.4)

≤ 2Rm(H̃) + log(1 + exp (W
√
n +B))

√
1

2m
log(2

δ
) (`log is 1-Lipschitz, Lemma F.1)

= 2Rm(H) + log(1 + exp (W
√
n +B))

√
1

2m
log(2

δ
) (by Lemma F.3)

≤ 2W

√
n

m
+ log(1 + exp (W

√
n +B))

√
1

2m
log(2

δ
) (by Lemma F.2).

For the second summand, we use the fact that R`log(hDis,∞) does not depend on sampled training dataset S; hence by
Lemma D.9, we obtain its bound:

P(∣R̂`log,S(hDis,∞) −R`log(hDis,∞)∣ > ε) ≤ 2 exp(− 2mε2

(c − 0)2
) = 2 exp(−2mε2

c2
),

where c = log(1 + exp (W√
n +B)). It implies that with the probability of at least 1 − δ, we have:

R̂`log,S(hDis,∞) −R`log(hDis,∞) ≤ c
√

1

2m
log(2

δ
).

At last, we use the union bound to get the final result. With probability at least 1 − δ, the following holds:

R`log(hDis,m) −R`log(hDis,∞)

≤ 2W

√
n

m
+ log(1 + exp (W

√
n +B))

√
1

2m
log(4

δ
) + c

√
1

2m
log(4

δ
)

= 2W

√
n

m
+ (c + log(1 + exp (W

√
n +B)))

√
1

2m
log(4

δ
)

= 2W

√
n

m
+ +2 log(1 + exp (W

√
n +B))

√
1

2m
log(4

δ
)

= O(
√

n

m
).

Therefore, for R`log(hDis,m) ≤ R`log(hDis,∞) + ε0 to hold with high probability 1 − δ0 (here, ε0 and δ0 are some fixed
constant in [0,1]), it suffices to pick m = O(n) samples.

F.2. Proof of Theorem B.1

Proof. By Theorem 2.1 we know that forR`0−1(hDis,m) ≤ R`log(hDis,∞)+ε0, it is sufficient to ensure thatRlog(hDis,m) ≤
R`log(hDis,∞) + 1

2
ε20. Then by Proposition B.1, it suffices to sample m = O( n

ε40
) = O(n).

F.3. Proof of Theorem B.2

To show Theorem B.2, we first present the following lemmas.

Lemma F.4. In terms of binary naïve Bayes, let any ε, δ > 0 and any Laplace smoothing parameter α ≥ 0 be fixed. Assume
that Assumption 3.1 holds. Let m = O(( 1

ε2
)log(n

δ
)), then with the probability of at least 1 − δ:

1. In case of discrete inputs, ∣p̂(xi∣y = k) − p(xi∣y = k)∣ ≤ ε and ∣p̂(y = k) − p(y = k)∣ ≤ ε for all i ∈ {1, . . . n} and
k ∈ {0,1}.
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2. In case of continuous inputs, ∣µ̂ki − µki∣ ≤ ε, ∣σ̂2
i − σ2

i ∣ ≤ ε and ∣p̂(y = k) − p(y = k)∣ ≤ ε for all i ∈ {1, . . . n} and
k ∈ {0,1}.

Proof. First, we consider the discrete case, and let α = 0 for now. Let ε ≤ ρ0/2. By the Lemma D.9, with probability at least
1 − δ1 = 1 − 2 exp(−2mε2) we have ∣p̂(y = k) − p(y = k)∣ ≤ ε. It implies that p̂(y = k) ≥ p(y = k) − ε ≥ ρ0 − ε = γ = Ω(1).
So #{y = k} ≥ γm with probability at least 1 − δ1.To bound the ∣p̂(xi∣y = k) − p(xi∣y = k)∣, for fixed i, k, the following
holds:

P[∣p̂(xi∣y = k) − p(xi∣y = k)∣ > ε]
= P(∣p̂(xi∣y = k) − p(xi∣y = k)∣ > ε∣#{y = k} ≥ γm)P(#{y = k} ≥ γm)
+ P(∣p̂(xi∣y = k) − p(xi∣y = k)∣ > ε∣#{y = k} < γm)P(#{y = k} < γm)
≤ 2 exp(−2ε2#{y = k})∣#{y=k}≥γm + δ1
≤ 2 exp(−2ε2γm) + δ1 = δ2.

Then we use the union bound to get the first result on the condition that α = 0:

P(∪1
k=0(∣p̂(y = k) − p(y = k)∣ > ε) ∪ (∪ni=1 ∪1

k=0 ∣p̂(xi∣y = k) − p(xi∣y = k)∣ > ε))
= P((∣p̂(y = 1) − p(y = 1)∣ > ε) ∪ (∪ni=1 ∪1

k=0 ∣p̂(xi∣y = k) − p(xi∣y = k)∣ > ε))
≤ δ1 + 2nδ2

= 2 exp(−2mε2) + 2n(2 exp(−2ε2γm) + δ1)
= (2n + 1)2 exp(−2mε2) + 2n × 2 exp(−2ε2γm)
≤ 2(4n + 1) exp(−2γmε2).

Therefore, for Lemma F.4.1 to hold with probability at least 1 − δ, it suffices to pick m samples that

m = 1

2γε2
log(2(4n + 1)

δ
) ≤ 1

ρ0ε2
log(2(4n + 1)

δ
) = O( 1

ε2
log(n

δ
)).

Second, we consider the discrete case, and let α > 0. To bound ∣p̂(y = k) − p(y = k)∣, we calculate it based on the above
condition as follows:

P(∣p̂(y = k) − p(y = k)∣ > ε)
= P(∣p̂(y = k) − p̂(y = k)∣α=0 + p̂(y = k)∣α=0 − p(y = k)∣ > ε)
≤ P(∣p̂(y = k) − p̂(y = k)∣α=0∣ + ∣p̂(y = k)∣α=0 − p(y = k)∣ > ε),

where the ∣p̂(y = k)∣α=0 − p(y = k)∣ has been discussed above, so we only need to bound ∣p̂(y = k) − p̂(y = k)∣α=0∣. We
have,

∣p̂(y = k) − p̂(y = k)∣α=0∣ = ∣#{y = k} + α
m + 2α

− #{y = k}
m

∣ = ∣α(m −#{y = k})
m(m + 2α) ∣ = O( 1

m
).

So

P(∣p̂(y = k) − p(y = k)∣ > ε) ≤ P(∣p̂(y = k)∣α=0 − p(y = k)∣ > ε −O( 1

m
))

≤ 2 exp(−2m(ε −O( 1

m
))2) = δ1.

In the same way, we can write

∣p̂(xi∣y = k) − p̂(xi∣y = k)∣α=0∣ =
α(#{y = k} − ∣#{xi, y = k})
#{y = k}(#{y = k} + 2α) ∣ = O( 1

#{y = k}) = O( 1

m
),

and

P(∣p̂(xi∣y = k) − p(xi∣y = k)∣ > ε) ≤ P(∣p̂(xi∣y = k)∣α=0 − p(xi∣y = k)∣ > ε −O( 1

m
))

≤ δ1 + 2 exp(−2γm(ε −O( 1

m
))2).
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Besides,

m = 1

2γ(ε −O( 1
m
))2

log(2(4n + 1)
δ

) ≤ 1

ρ0(ε −O( 1
m
))2

log(2(4n + 1)
δ

) = O( 1

ε2
log(n

δ
)).

In the following proofs, we will not consider Laplace smoothing anymore due to its small influence on the results.

Third, we consider the continuous case. In the same way as discrete case, with probability at least 1−δ1 = 1−2 exp(−2mε2)
we have ∣p̂(y = k) − p(y = k)∣ ≤ ε, and #{y = k} ≥ γm. We only need to bound ∣µ̂ki − µki∣ and ∣σ̂2

i − σ2
i ∣. Fix i, k, the

following holds:

P[∣µ̂ki − µki∣ > ε] = P(∣µ̂ki − µki∣ > ε∣#{y = k} ≥ γm)P(#{y = k} ≥ γm)
+ P(∣µ̂ki − µki∣ > ε∣#{y = k} < γm)P(#{y = k} < γm)
≤ 2 exp(−2ε2#{y = k})∣#{y=k}≥γm + δ1
≤ 2 exp(−2ε2γm) + δ1 = δ2,

where the first inequality use the fact that xi ∈ [0,1]. For ∣σ̂2
i − σ2

i ∣, because (xi∣y=k −µki)2 ∈ [0,1], by Lemma D.9, we can
write:

P[∣σ̂2
i − σ2

i ∣ > ε] ≤ 2 exp(−2mε2) = δ3.
Finally, we use the union bound to get the result for the continuous case:

P((∣p̂(y = k) − p(y = k)∣ > ε) ∪ (∪ni=1(∣σ̂2
i − σ2

i ∣ > ε) ∪ (∪2
k=1∣µ̂ki − µki∣ > ε)))

≤ δ1 + n(2δ2 + δ3)
= (3n + 1)2 exp(−2mε2) + 2n × 2 exp(−2ε2γm)
≤ 2(5n + 1) exp(−2ε2γm).

Thus, for Lemma F.4.2 to hold with probability at least 1 − δ, it suffices to pick m samples which satisfies

m = 1

2γε2
log(2(5n + 1)

δ
) ≤ 1

ρ0ε2
log(2(5n + 1)

δ
) = O( 1

ε2
log(n

δ
)).

The proposition’s proof is complete.

Lemma F.5. In case of discrete inputs, and suppose that Assumption 3.2 holds, then with probability at least 1 − δ, the
following holds

∣∆aGen(x,1,0) −∆aGen,∞(x,1,0)∣ ≤ 4(n + 1)
ρ0

√
1

ρ0m
log(2(4n + 1)

δ
) = O(n

√
1

m
log(n

δ
)).

Proof. By the derivation of Lemma F.4, let ε < ρ0/2, then with probability at least 1 − δ = 1 − 2(4n + 1) exp(−2γmε2),
where γ = ρ0 − ε the following holds:

∣∆aGen(x,1,0) −∆aGen,∞(x,1,0)∣

= ∣
n

∑
i=1

log
p̂(xi∣y = 1)p(xi∣y = 0)
p̂(xi∣y = 0)p(xi∣y = 1) + log

p̂(y = 1)p(y = 0)
p̂(y = 0)p(y = 1) ∣

= ∣
n

∑
i=1

(log p̂(xi∣y = 1) − log p(xi∣y = 1)) +
n

∑
i=1

(log p(xi∣y = 0) − log p̂(xi∣y = 0))

+ log p̂(y = 1) − log p(y = 1) + log p(y = 0) − log p̂(y = 0)∣

≤
n

∑
i=1

∣ log p̂(xi∣y = 1) − log p(xi∣y = 1)∣ +
n

∑
i=1

∣ log p(xi∣y = 0) − log p̂(xi∣y = 0)∣

+ ∣ log p̂(y = 1) − log p(y = 1)∣ + ∣ log p(y = 0) − log p̂(y = 0)∣

≤ 1

γ
(
n

∑
i=1

ε +
n

∑
i=1

ε + ε + ε) ≤ 4(n + 1)
ρ0

ε.
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The penultimate inequality makes use of Lemma F.4 and the concavity of log() together. Replace ε with the expressions
with respect to δ, we can write:

∣∆aGen(x,1,0) −∆aGen,∞(x,1,0)∣ ≤ 4(n + 1)
ρ0

√
1

2γm
log(2(4n + 1)

δ
)

≤ 4(n + 1)
ρ0

√
1

ρ0m
log(2(4n + 1)

δ
) = O(n

√
1

m
log(n

δ
)).

Lemma F.6. Let ε < ρ0/2, assume that Assumption 3.2 holds, ∣σ̂2
i − σ2

i ∣ ≤ ε and ∣µ̂ki − µki∣ ≤ ε for all i, k. Then we have:

∣σiµ̂ki − σ̂iµki∣ ≤ (1 + 2

3ρ0
)ε.

Proof. On the one hand, we can write:

σiµ̂ki − σ̂iµki ≤ σi(µki + ε) − σ̂iµki = (σi − σ̂i)µki + εσi.

On the other hand, we have:

σiµ̂ki − σ̂iµki ≥ σi(µki − ε) − σ̂iµki = (σi − σ̂i)µki − εσi.

We conclude that:

∣σiµ̂ki − σ̂iµki∣ ≤ ∣(σi − σ̂i)µki∣ + ∣εσi∣ ≤ ∣σi − σ̂i∣ + ε

= ∣σ
2
i − σ̂2

i

σi + σ̂i
∣ + ε ≤ ε

ρ0 + ρ0 − ε
+ ε ≤ (1 + 2

3ρ0
)ε.

Lemma F.7. In case of continuous inputs, and suppose that Assumption 3.2 holds, then with probability at least 1 − δ, the
following holds:

∣∆aGen(x,1,0) −∆aGen,∞(x,1,0)∣ ≤ 4( n

3ρ0
( 4

ρ2
0

+ 3

ρ0
+
√

2

ρ0
) + 1

ρ0
)
√

1

ρ0m
log(2(5n + 1)

δ
) = O(n

√
1

m
log(n

δ
)).

Proof. The following holds:

∣∆aGen(x,1,0) −∆aGen,∞(x,1,0)∣

= ∣
n

∑
i=1

log
p̂(xi∣y = 1)p(xi∣y = 0)
p̂(xi∣y = 0)p(xi∣y = 1) + log

p̂(y = 1)p(y = 0)
p̂(y = 0)p(y = 1) ∣

= ∣
n

∑
i=1

(log p̂(xi∣y = 1) − log p(xi∣y = 1)) +
n

∑
i=1

(log p(xi∣y = 0) − log p̂(xi∣y = 0))

+ log p̂(y = 1) − log p(y = 1) + log p(y = 0) − log p̂(y = 0)∣

≤
n

∑
i=1

1

∑
k=0

∣ log p̂(xi∣y = k) − log p(xi∣y = k)∣ +
1

∑
k=0

∣ log p̂(y = k) − log p(y = k)∣.

To bound ∣ log p̂(xi∣y = k) − log p(xi∣y = k)∣, let ε < ρ0/2, then by Lemma F.4, with probability at least 1 − δ = 1 − 2(5n +
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1) exp(−2ε2γm), where γ = ρ0 − ε, we can write:

∣ log p̂(xi∣y = k) − log p(xi∣y = k)∣

= ∣ log(σi) − log(σ̂i) +
1

2σ̂2
i σ

2
i

(σ̂2
i (xi − µki)2 − σ2

i (xi − µ̂ki)2)∣

≤ ∣ log(σi) − log(σ̂i)∣ +
1

2σ̂2
i σ

2
i

∣σ̂2
i (xi − µki)2 − σ2

i (xi − µ̂ki)2∣

≤ 1

min(σi, σ̂i)
∣σi − σ̂i∣ +

1

2ρ0σ̂2
i

∣σ̂i(xi − µki) + σi(xi − µ̂ki)∣∣σ̂i(xi − µki) − σi(xi − µ̂ki)∣

≤ 1

min(σi, σ̂i)
∣σi − σ̂i∣ +

1

ρ0σ̂2
i

∣σ̂i(xi − µki) − σi(xi − µ̂ki)∣

≤ 1

min(σi, σ̂i)
∣σi − σ̂i∣ +

1

ρ0σ̂2
i

(∣σ̂i − σi∣ + ∣σiµ̂ki − σ̂iµki∣)

≤ 1
√
γ

2ε

3ρ0
+ 1

ρ0γ
( 2ε

3ρ0
+ (1 + 2

3ρ0
)ε)

≤
√

2

ρ0

2ε

3ρ0
+ 2

ρ2
0

( 2ε

3ρ0
+ (1 + 2

3ρ0
)ε) = 2

3ρ0
( 4

ρ2
0

+ 3

ρ0
+
√

2

ρ0
)ε.

The last two inequalities make use of Lemma F.4 the concavity of log() together. At the same time, we have:

∣ log p̂(y = k) − log p(y = k)∣ ≤ 1

γ
∣p̂(y = k) − p(y = k)∣ ≤ 2

ρ0
∣p̂(y = k) − p(y = k)∣ ≤ 2

ρ0
ε.

At last, combining the above findings and replace ε with the expressions with respect to δ, we can get:

∣∆aGen(x,1,0) −∆aGen,∞(x,1,0)∣ ≤ 2n
2

3ρ0
( 4

ρ2
0

+ 3

ρ0
+
√

2

ρ0
)ε + 2

2

ρ0
ε

= 4( n

3ρ0
( 4

ρ2
0

+ 3

ρ0
+
√

2

ρ0
) + 1

ρ0
)
√

1

ρ0m
log(2(5n + 1)

δ
)

= O(n
√

1

m
log(n

δ
)).

Now, we are ready to prove Theorem B.2.

Proof. Let ε = O(n
√

1
m

log(n
δ
)) which are claimed in the Lemma F.5 for discrete case and Lemma F.7 for continuous case.

Then we simplify the ∣R`0−1(hGen,m) −R`0−1(hGen,∞)∣ as follows:

∣R`0−1(hGen,m) −R`0−1(hGen,∞)∣
= ∣E(x,y)∼D[`0−1(hGen,m, (x, y)) − `0−1(hGen,∞, (x, y))]∣
≤ E(x,y)∼D ∣`0−1(hGen,m, (x, y)) − `0−1(hGen,∞, (x, y))∣
= P(x,y)∼D(hGen,m(x) ≠ hGen,∞(x))
= (P(hGen,m(x) ≠ hGen,∞(x)∣∣∆aGen(x,1,0) − aGen,∞(x)∣ ≤ ε)P(∣∆aGen(x,1,0) − aGen,∞(x)∣ ≤ ε)
+ P(hGen,m(x) ≠ hGen,∞(x)∣∣∆aGen(x,1,0) − aGen,∞(x)∣ > ε)P(∣∆aGen(x,1,0) − aGen,∞(x)∣ > ε))

≤ P(hGen,m(x) ≠ hGen,∞(x)∣∣∆aGen(x,1,0) − aGen,∞(x)∣ ≤ ε) + δ

≤ P(∣aGen,∞(x)∣ ≤ O(n
√

1

m
log(n

δ
))) + δ

= G(O(
√

1

m
log(n

δ
))) + δ.
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F.4. Proof of Proposition B.2

Lemma F.8. Suppose that Assumption B.1 holds, then E[∆aGen(x,1,0)∣y = 1] = Ω(n), and E[−∆aGen(x,1,0)∣y = 0] =
Ω(n).

Proof. We calculate E[∆aGen(x,1,0)∣y = 1] straightly:

Ex[∆aGen(x,1,0)∣y = 1] = Ex[
n

∑
i=1

log
p(xi∣y = 1)
p(xi∣y = 0) + log

p(y = 1)
p(y = 0) ∣y = 1]

=
n

∑
i=1

Exi[log
p(xi∣y = 1)
p(xi∣y = 0) ∣y = 1] + log

p(y = 1)
p(y = 0) .

We note that Exi[log p(xi∣y=1)
p(xi∣y=0) ∣y = 1] is the KL Divergence D(p(xi∣y = 1)∥p(xi∣y = 0)). It is nonnegative and equals 0

if and only if p(xi∣y = 1) = p(xi∣y = 0) for all xi ∈ Xi ({0,1} in case of discrete inputs and [0,1] in case of continuous
inputs). By assumption B.1, we obtain that

Ex[∆aGen(x,1,0)∣y = 1] =
n

∑
i=1

D(p(xi∣y = 1)∥p(xi∣y = 0)) + log
p(y = 1)
p(y = 0)

= β1,0n + log
p(y = 1)
p(y = 0)

≥ β1,0n + log( ρ0

1 − ρ0
),

which implies that E[∆aGen(x,1,0)∣y = 1] = Ω(n). In the same way, we can know that E[−∆aGen(x,1,0)∣y = 0] = Ω(n)
as well. Then the proposition has been proved.

Based on Lemma F.8, we can prove Proposition B.2.

Proof. For convenience, we denote E[∆aGen(x,1,0)∣y = k] by ζk. To bound G(τ)∣y=1 = P(∣∆aGen,∞(x,1,0)∣ ≤ τn∣y =
1), the following holds:

P(∣∆aGen,∞(x,1,0)∣ ≤ τn∣y = 1)
≤ P(∆aGen,∞(x,1,0) ≤ τn∣y = 1)
= P(∆aGen,∞(x,1,0) − ζ1n ≤ τn − ζ1n∣y = 1)

= P(
n

∑
i=1

log
p(xi∣y = 1)
p(xi∣y = 0) −Ex(

n

∑
i=1

log
p(xi∣y = 1)
p(xi∣y = 0)) ≤ (τ − ζ1)n∣y = 1)

= P(∣
n

∑
i=1

log
p(xi∣y = 1)
p(xi∣y = 0) −Ex(

n

∑
i=1

log
p(xi∣y = 1)
p(xi∣y = 0))∣ ≥ (ζ1 − τ)n∣y = 1)

≤
V[∑ni=1 log p(xi∣y=1)

p(xi∣y=0) ∣y = 1]
(τ − ζ1)2n2

(Chebyshev inequality)

= α1n

(τ − ζ1)2n2
(Assumption B.2)

= α1

(τ − ζ1)2n
.

Similar to the above discussion, we have: G(τ)∣y=0 ≤ α0

(τ−∣ζ0∣)2n . Finally, we can conclude that:

G̃(τ) = p(y = 1)G(τ)∣y=1 + p(y = 0)G(τ)∣y=0

≤ p(y = 1) α1

(τ − ζ1)2n
+ p(y = 0) α0

(τ − ∣ζ0∣)2n

≤ α

(τ − ζ)2n
.
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F.5. Proof of Proposition B.3

Proof. Based on the results from Lemma F.8, we first consider the discrete condition and the event that a test sample x with
label 1. To bound G(τ)∣y=1 = P(∣∆aGen,∞(x,1,0)∣ ≤ τn∣y = 1), the following holds:

G(τ)∣y=1 = P(∣∆aGen,∞(x,1,0)∣ ≤ τn∣y = 1)
≤ P(∆aGen,∞(x,1,0) ≤ τn∣y = 1)
= P(∆aGen,∞(x,1,0) − ζ1n ≤ τn − ζ1n∣y = 1)

= P(
n

∑
i=1

log
p(xi∣y = 1)
p(xi∣y = 0) −Ex(

n

∑
i=1

log
p(xi∣y = 1)
p(xi∣y = 0)) ≤ (τ − ζ1)n∣y = 1)

≤ exp(− 2(τ − ζ1)2n2

n(log 1−ρ0
ρ0

− log ρ0
1−ρ0 )

2
) = exp(− (τ − ζ1)2n

2(log 1−ρ0
ρ0

)2
). (by Lemma D.9)

Similar to the above discussion, we have: G(τ)∣y=0 ≤ exp(− (τ−ζ2)2n
2(log

1−ρ0
ρ0

)2
). Finally, we can conclude that:

G(τ) = p(y = 1)G(τ)∣y=1 + p(y = 0)G(τ)∣y=0

≤ p(y = 1) exp(− (τ − ζ1)2n

2(log 1−ρ0
ρ0

)2
) + p(y = 0) exp(− (τ − ζ2)2n

2(log 1−ρ0
ρ0

)2
)

≤ exp(− (τ − ζ)2n

2(log 1−ρ0
ρ0

)2
) = exp (−O((τ − ζ)2n)).

Second, we consider the continuous case, the only difference from the discrete case is that the range of log p(xi∣y=1)
p(xi∣y=0) . For all

i, it satisfies:

∣ log
p(xi∣y = 1)
p(xi∣y = 0) ∣ = ∣ log

1√
2πσi

exp(− (xi−µ1i)2
2σ2
i

)
1√

2πσi
exp(− (xi−µ0i)2

2σ2
i

)
∣

= ∣µ1i − µ0i

σ2
i

xi +
µ2

0i − µ2
1i

2σ2
i

∣

≤ ∣µ1i − µ0i

σ2
i

xi∣ + ∣ (µ0i − µ1i)(µ0i + µ1i)
2σ2

i

∣

≤ 1

ρ0
+ 2

2ρ0
= 2

ρ0
.

So we can get:

G(τ) ≤ exp(−2(τ − ζ)2n

( 4
ρ0

)2
) = exp (−O((τ − ζ)2n)).

F.6. Proof of TheoremB.3

Proof. In the case that precondition of Proposition B.2 holds, combining Theorem B.2 and Proposition B.2, we know that

there exist positive c = Θ(1) such that when c
√

1
m

log(n
δ
) < ζ, with probability at least 1 − δ, we have

R`0−1(hGen,m) ≤ R`0−1(hGen,∞) + α

(c
√

1
m

log(n
δ
) − ζ)2n

+ δ.
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For fixed ε0 ∈ (0,1), the logical relations listed in the following is correct:

R`0−1(hGen,m) ≤ R`0−1(hGen,∞) + ε0 with probability at least 1 - δ

⇐ c

√
1

m
log(n

δ
) < ζ ∧ 0 < δ < 1 ∧ α

(c
√

1
m

log(n
δ
) − ζ)2n

+ δ ≤ ε0

⇔ c

√
1

m
log(n

δ
) < ζ ∧ 0 < δ < 1 ∧ α

(c
√

1
m

log(n
δ
) − ζ)2n

≤ ε0 − δ

⇔ c

√
1

m
log(n

δ
) < ζ ∧ 0 < δ < 1 ∧ ε0 − δ > 0 ∧ (c

√
1

m
log(n

δ
) − ζ)2 ≥ α

(ε0 − δ)n

⇔ c

√
1

m
log(n

δ
) < ζ ∧ 0 < δ < ε0 ∧ (c

√
1

m
log(n

δ
) − ζ)2 ≥ α

(ε0 − δ)n

⇔ 0 < δ < ε0 ∧ ζ − c
√

1

m
log(n

δ
) ≥

√
α

(ε0 − δ)n

⇔ 0 < δ < ε0 ∧ ζ −
√

α

(ε0 − δ)n
> 0 ∧ (ζ −

√
α

(ε0 − δ)n
)2 ≥ c2 1

m
log(n

δ
)

⇐ 0 < δ < ε0 −
α

ζ2n
∧ ε0 −

α

ζ2n
> 0 ∧m ≥ c2

(ζ −
√

α
(ε0−δ)n)

2
log(n

δ
)

⇐ 0 < δ ≤ ε0
2
∧ ε0 −

α

ζ2n
> ε0

2
∧m ≥ c2

(ζ −
√

α
(ε0−δ)n)

2
log(n

δ
)

⇔ 0 < δ ≤ ε0
2
∧ n < 2α

ε0ζ2
∧m ≥ c2

(ζ −
√

α
(ε0−δ)n)

2
log(n

δ
)

⇐ 0 < δ ≤ ε0
2
∧ n < 2

2α

ε0ζ2
∧m ≥ c2

(ζ −
√

2α
ε0n

)2
log(n

δ
)

⇐ 0 < δ ≤ ε0
2
∧ n < 4α

ε0ζ2
∧m ≥ c2

(ζ −
√

1
2
ζ)2

log(n
δ
)

⇐ 0 < δ ≤ ε0
2
∧ n < 4α

ε0ζ2
∧m = O(log(n)).

In the case that precondition of Proposition B.3 holds, then by Theorem B.2 and Proposition B.3, we know that there exist

positive constant b, c = Θ(1) such that when c
√

1
m

log(n
δ
) < ζ, with probability at least 1 − δ, we have

R`0−1(hGen,m) ≤ R`0−1(hGen,∞) + exp(−b(c
√

1

m
log(n

δ
) − ζ)2n) + δ.
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For fixed ε0 ∈ (0,1), the logical relations listed in the following is correct:

R`0−1(hGen,m) ≤ R`0−1(hGen,∞) + ε0 with probability at least 1 - δ

⇐ c

√
1

m
log(n

δ
) < ζ ∧ 0 < δ < 1 ∧ exp(−b(c

√
1

m
log(n

δ
) − ζ)2n) + δ ≤ ε0

⇔ c

√
1

m
log(n

δ
) < ζ ∧ 0 < δ < 1 ∧ exp(−b(c

√
1

m
log(n

δ
) − ζ)2n) ≤ ε0 − δ

⇔ c

√
1

m
log(n

δ
) < ζ ∧ 0 < δ < 1 ∧ ε0 − δ > 0 ∧ −b(c

√
1

m
log(n

δ
) − ζ)2n ≤ log(ε0 − δ)

⇔ c

√
1

m
log(n

δ
) < ζ ∧ 0 < δ < ε0 ∧ (c

√
1

m
log(n

δ
) − ζ)2 ≥ 1

bn
log( 1

ε0 − δ
)

⇐ c

√
1

m
log(n

δ
) < ζ ∧ 0 < δ < ε0 ∧ ζ − c

√
1

m
log(n

δ
) ≥

√
1

bn
log( 1

ε0 − δ
)

⇔ 0 < δ < ε0 ∧ ζ −
√

1

bn
log( 1

ε0 − δ
) ≥ c

√
1

m
log(n

δ
)

⇐ 0 < δ < ε0 ∧ ζ −
√

1

bn
log( 1

ε0 − δ
) > 0 ∧ (ζ −

√
1

bn
log( 1

ε0 − δ
))2 ≥ c2 1

m
log(n

δ
)

⇐ 0 < δ < ε0 − exp(−bζ2n) ∧ ε0 − exp(−bζ2n) > 0 ∧m ≥ c2

(ζ −
√

1
bn

log( 1
ε0−δ ))

2
log(n

δ
)

⇐ 0 < δ ≤ ε0
2
∧ ε0 − exp(−bζ2n) > ε0

2
∧m ≥ c2

(ζ −
√

1
bn

log( 1
ε0−δ ))

2
log(n

δ
)

⇔ 0 < δ ≤ ε0
2
∧ ε0 exp(bζ2n) > 2 ∧m ≥ c2

(ζ −
√

1
bn

log( 1
ε0−δ ))

2
log(n

δ
)

⇐ 0 < δ ≤ ε0
2
∧ ε0 exp(bζ2n) > 3 ∧m ≥ c2

(ζ −
√

1
bn

log( 2
ε0
))2

log(2n

ε0
)

⇐ 0 < δ ≤ ε0
2
∧ ε0 exp(bζ2n) > 3 ∧m ≥ c2

ζ2(1 − log(2/ε0)
log(3/ε0))

2
log(2n

ε0
)

⇔ 0 < δ ≤ ε0
2
∧ ε0 exp(bζ2n) > 3 ∧m = O(log(n)).
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G. Proofs of Appendix C
G.1. Proof of Proposition C.1

Proof. Because ⟨∆C`2,H(h,x)⟩ε < s(∆C`1,H(h,x)) for all x ∈ X , we have:

R`2(h) −R∗
`2,H +M`2,H

= Ex[C`2(h,x)] −R∗
`2,H +R∗

`2,H −Ex[C∗`2,H(x)] (by definition)

= Ex[C`2(h,x) − C∗`2,H(x)]
= Ex[∆C`2,H(h,x)]
= Ex[∆C`2,H(h,x)1C`2,H(h,x)>ε +∆C`2,H(h,x)1C`2,H(h,x)≤ε]
≤ Ex[s(∆C`1,H(h,x))] + ε
≤ s(Ex[∆C`1,H(h,x)]) + ε (Jensen’s inequality)
= s(R`1(h) −R∗

`1,H +M`1,H) + ε.

G.2. Proof of Theorem C.1

Lemma G.1 (Distribution-dependent concave `0−1 bound). Suppose thatH satisfies that {argmaxy∈Y hy(x) ∶ h ∈H} =
{1, . . . ,K} for any x ∈ X , and there exists a non-decreasing concave function s ∶ R+ → R+ and ε ≥ 0 that the following
holds for any ŷ ∈ Y , x ∈ X and h ∈Hŷ(x):

⟨max
y
py(x) − pŷ(x)⟩ε ≤ s( inf

h∈Hŷ(x)
∆C`,H(h,x)).

Then it holds for all h ∈H that

R`0−1(h) −R∗
`0−1,H +M`0−1,H ≤ s(R`(h) −R∗

`,H +M`,H) + ε.

Proof. For any x0 ∈ X and h0 ∈H, let ŷ be the index of the largest element of h0(x). Then by the precondition, we have

⟨∆C`0−1,H(h0,x0)⟩ε = ⟨max
y
py(x0) − pŷ(x0)⟩ε ≤ s( inf

h∈Hŷ(x0)
∆C`,H(h,x0)) ≤ s(∆C`,H(h0,x0)).

where we use the assumption that s is non-decreasing. Combining the condition in Proposition C.1 we can conclude the
proof.

Built upon Lemma G.1, we can prove Theorem C.1 as follows.

Proof. For any x0 ∈ X , p(x0) ∈ ∆K , ŷ0 ∈ Y , and h ∈Hŷ0(x0), we can write:

max
y
py(x0) − pŷ0(x0)

≤ s( inf
ŷ∈Y,x∈X ,h∈Hŷ(x),p∈Pŷ(maxy py(x0)−pŷ0(x0))

∆C`,H(h,x,p)) (Assumption)

≤ s( inf
x∈X ,h∈Hŷ0(x),p∈Pŷ0(maxy py(x0)−pŷ0(x0))

∆C`,H(h,x,p))

≤ s( inf
x∈X ,h∈Hŷ0(x)

∆C`,H(h,x,p(x0)))

≤ s( inf
h∈Hŷ0(x0)

∆C`,H(h,x0,p(x0)))

= s( inf
h∈Hŷ0(x0)

∆C`,H(h,x0)).

Combining the result of Lemma G.1 we can prove Theorem C.1.
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G.3. Proofs of Theorem C.2

Proof. The proof is essentially the same as that of Theorem 3.3. We use H, ` to replace the HNN , `log in the following
proof, which will not bring ambiguity. We can rewrite the J`(t) as follows:

J`(t) = inf
ŷ∈Y

inf
p∈Pŷ(t)

inf
x∈X

( inf
h∈Hŷ(x)

C`(h,x,p) − inf
h∈H

C`(h,x,p)).

For all h ∈H and x ∈ X , we have

C`(h,x,p)) =
K

∑
y=1

py`(y,h(x)) =
K

∑
y=1

py(−hy + log(
K

∑
j=1

exp (hj))).

To get the infh∈H C`(h,x,p)), we consider the following problem

min
h

K

∑
y=1

py(−hy + log(
K

∑
j=1

exp (hj))).

By Lemma E.3, we know that this problem is convex, we can make use of KKT conditions (Boyd et al., 2004) to find the
points that are primal and dual optimal, which can be written as follows

−pi +
exp (h∗i )

∑Kk=1 exp (h∗k)
= 0 i = 1, . . . ,K. (19)

It implies that h∗i = log(pi∑Kk=1 exp (h∗k). Thus, we have

inf
h∈H

C`(h,x,p)) =
K

∑
y=1

py(−h∗y + log(
K

∑
j=1

exp (h∗j ))) = −
K

∑
y=1

py log(py).

which is the entropy of distribution p. By Lemma E.6, we know that

inf
h∈Hŷ(x)

C`(h,x,p)) ≥ −(pmax + pŷ) log(pmax + pŷ
2

) − ∑
y∉{ymax,ŷ}

py log(py).

Then we have

inf
h∈Hŷ(x)

C`(h,x,p) − inf
h∈H

C`(h,x,p) ≥ −(pmax + pŷ) log(pmax + pŷ
2

) + pymax log(pymax) + pŷ log(pŷ),

and

inf
x∈X

( inf
h∈Hŷ(x)

(C`(h,x,p) − inf
h∈H

C`(h,x,p))) ≥ −(pymax + pŷ) log(pymax + pŷ
2

) + pymax log(pymax) + ppŷ log(ppŷ).

Now, we meet the following problem

min
p

−(pymax + pŷ) log(pymax + pŷ
2

) + pymax log(pymax) + pŷ log(pŷ)

s.t.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

pymax − pŷ = t,∀i,
∑Ki=1 pi = 1,
pi ≥ 0,∀i,

which is equivalent to find the minimum of −(2pŷ + t) log( 2pŷ+t
2

) + (pŷ + t) log((pŷ + t)) + pŷ log(pŷ) when pŷ ∈ [0, 1−t
2

].
By Lemma E.7, we know it is 1+t

2
log(1 + t) + 1−t

2
log(1 − t). Thus,

J`(t) = inf
ŷ≠ymax

inf
p∈{p∶p∈∆k,pmax−pŷ=t}

inf
x∈X

( inf
h∈Hŷ(x)

C`(h,x,p) − inf
h∈H

C`(h,x,p))

≥ inf
ŷ≠ymax

−(2 − t) log(2 − t
2

) + (1 − t) log(1 − t)

= 1 + t
2

log(1 + t) + 1 − t
2

log(1 − t)

≥ t
2

2
. (Lemma E.8)
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Let g(t) = t2

4
in Theorem 3.5, we have

1

2
(R`0−1(h) −R∗

`0−1,H +M`0−1,H)2 ≤ R`log(h) −R∗
`log,H +M`log,H,

which implies

R`0−1(h) −R∗
`0−1,H +M`0−1,H ≤

√
2(R`log(h) −R∗

`log,H +M`log,H) 1
2 .

By Lemma E.4, we have M`0−1,H coincides with the approximation error R∗
`0−1,H −R∗

`0−1,Hall . We also note that M`log,H
coincides with R∗

`log,H −R∗
`log,Hall because

M`log,H = R∗
`log,H −Ex[C∗`log,H(x)]

= R∗
`log,H −Ex[ inf

h∈H
C`log(h,x,p(x)]

= R∗
`log,H −Ex[−

K

∑
y=1

py(x) log(py(x))]

= R∗
`log,H −R∗

`log,Hall .

Finally, we can conclude that

R`0−1(h) −R∗
`0−1,H ≤ R`0−1(h) −R∗

`0−1,H +M`0−1,H ≤
√

2(R`log(h) −R∗
`log,Hall)

1
2 .

G.4. Proof of Proposition C.2

Proof. Based on the results of Lemma D.3, for k1, k2 and k which satisfies ζk1,k2,k > 0, to bound P(∣∆aGen,∞(x, k1, k2)∣ ≤
τn∣y = k), we can write:

P(∣∆aGen,∞(x, k1, k2)∣ ≤ τn∣y = k)
≤ P(∆aGen,∞(x, k1, k2) ≤ τn∣y = k)
= P(∆aGen,∞(x, k1, k2) − ζk1,k2,kn ≤ τn − ζk1,k2,kn∣y = k)

= P(
n

∑
i=1

log
p(xi∣y = k1)
p(xi∣y = k2)

−Ex(
n

∑
i=1

log
p(xi∣y = k1)
p(xi∣y = k2)

) ≤ (τ − ζk1,k2,k)n∣y = k)

≤ exp(− 2(τ − ζk1,k2,k)2n2

n(log 1−ρ0
ρ0

− log ρ0
1−ρ0 )

2
) = exp(−(τ − ζk1,k2,k)2n

2(log 1−ρ0
ρ0

)2
). (Assumption 3.2 and Lemma D.9)

Similar to the above discussion, we have P(∣∆aGen,∞(x, k1, k2)∣ ≤ τn∣y = k) ≤ exp(− (τ−∣ζk1,k2,k ∣)
2n

2(log
1−ρ0
ρ0

)2
) for k1, k2 and k

which satisfies βk1,k2,k < 0. Finally, we can conclude that:

G̃(τ) = max
k1,k2

K

∑
k=1

p(y = k)P(∣∆aGen,∞(x, k1, k2)∣ ≤ τn∣y = k)

≤ max
k1,k2

K

∑
k=1

p(y = k) exp(−(τ − ∣ζk1,k2,k ∣)2n

2(log 1−ρ0
ρ0

)2
)

≤ max
k1,k2

exp(−(τ −mink ∣ζk1,k2,k ∣)2n

2(log 1−ρ0
ρ0

)2
)

= exp(− (τ − ζ)2n

2(log 1−ρ0
ρ0

)2
) = exp (−O((τ − ζ)2n)).
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Second, we consider the continuous case, the only difference from the discrete case is that the range of log p(xi∣y=k1)
p(xi∣y=k2) is

[− 2
ρ0
, 2
ρ0

]. So we can get:

G̃(τ) ≤ exp(−(τ − ζ)2n

2( 4
ρ0

)2
) = exp (−O((τ − ζ)2n)).

The proof is complete.

H. Details of Simulation Experiments
H.1. Implementation of Logistic Regression

We train the logistic regression using scikit-learn’s (Pedregosa et al., 2011) L-BFGS implementation, with a maximum of
1000 iterations. The weight of `2 regularization of logistic regression is fixed as 1. All experiments are done on a single
GeForce RTX 3090 GPU.

H.2. Sythentic Dataset

We construct a simulated multiclass balanced mixture Gaussian distribution dataset, which also satisfies all assump-
tions. The simulated data distribution satisfies p(x∣y = 1) ∼ N (x;{−1}n, diag{{n}n2 ,{1}n2 }) and p(x∣y = k) ∼
N (x;{2k−2}n, diag{{n}n2 ,{1}n2 }) for k > 1, where N is Gaussian distribution, diag(a) means a matrix whose diagonal
is a, and {a}n means a vector whose length is n and all its elements are a.

H.3. Discussion about the synthetic dataset

First, we note that the optimal classifier is a linear function, which means that Assumption 3.5 is valid with ν = 0.

Binary case. The data distribution satisfies p(x∣y = 0) ∼ N (x;{−1}n, diag{{n}n2 ,{1}n2 }) and p(x∣y = 1) ∼
N ({1}n, diag{{n}n2 ,{1}n2 }). The boundary of Bayes classifier ∆aGen(x,1,0) can be calculated as follows:

∆aGen(x,1,0) =
n

∑
i=1
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1√
2πσi
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2σ2
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)
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∑
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q
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n/2
∑
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2

n
xi +

n

∑
i=n2 +1

2xi.

It is a linear function. In addition, the Bayes error BE can be obtained as follows.

BE = 1
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2
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nxi+∑ni=n

2
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n
+
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∑
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= 1
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2
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n
2
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n
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2
+1 zi+n+12 <0

N (z; 0,I)dz,

which approaches 0 quickly as n increases and can be approximated by the Monte Caro method efficiently.
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Multiclass case. The boundary of Bayes classifier a(x, k1, k2) for class k1 = 1 and k2 can be calculated as follows:

∆aGen(x, k1, k2) =
n

∑
i=1

log

1√
2πσi

exp(− (xi−µk1i)
2
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In addition, the boundary of Bayes classifier a(x, k1, k2) for class k1 ≠ 1 and k2 ≠ 1 can be calculated as follows:

∆aGen(x, k1, k2) =
n

∑
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4

The Bayes error is not easy to obtain in an analytic version. However, the test error can decrease to less than 10−4 in our
multiclass experiments, so we set 0 as the estimated asymptotic error.

Second, Assumption 3.3 holds in this case, that is, for all k1, k2(k1 ≠ k2) and k ∈ Y , it holds that ∣∑ni=1(D(p(xi∣y =
k)∥p(xi∣y = k1)) −D(p(xi∣y = k)∥p(xi∣y = k2)))∣ = βk1,k2,kn = Ω(n). For all k1, k2(k1 ≠ k2) ∈ Y , we have

n
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∣
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2
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Third, Assumption 3.4 holds as well. This can be obtained by the property of conditional independence directly, that is, for
all k1, k2(k1 ≠ k2) and k ∈ Y , it holds that Vx[∑ni=1 log p(xi∣y=k1)

p(xi∣y=k2) ∣y = k] = ∑
n
i=1 Vx[log p(xi∣y=k1)

p(xi∣y=k2) ∣y = k] = O(n).

Finally, we note that we can directly scale this dataset because scaling will not influence the establishment of the above
assumptions. In our multiclass experiments (K > 2), we scale the dataset to boost logistic regression converging faster. The
scale function we use is f(x) = x

2K−3 − 1, which can make the mean of each class to [−1,1].

H.4. The number of samples required to converge

For a fixed K, we traversal n from 100 to 1000 gradually. For each selected n, we randomly generate 1 × 104 samples as a
test set. We increase the training dataset size m gradually until the errors of two classifiers approach their asymptotic error.
Specially, we conduct 5 random repeats to keep the stability of our results. We record the training set size mconv when the
gap between the error and the estimation of asymptotic error is less than ε0 = 0.01 for the first time.
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H.5. Additional Results of Simulations

We present results with K = 2,3,7 here. Consistently, logistic regression and naïve Bayes require O(n) and O(logn)
samples to approach the estimated asymptotic error respectively. Error bars represent the variance estimated by 5 runs.

(a) K = 2 (b) K = 3 (c) K = 7

Figure 4. Additional results of simulations with K = 2,3,7.

I. Details of Deep Learning Experiments
I.1. Models

ViT. We include ViT-B/16 (Dosovitskiy et al., 2021) checkpoint pretrained on the ImageNet-21k dataset (Deng et al., 2009).

ResNet. We add the ResNet50 checkpoint released by Pytorch (Paszke et al., 2019).

CLIP image encoder. We use the image encoder released by CLIP (Radford et al., 2021) project with ResNet50 backbone.

MoCov2. We include the MoCov2 (Chen et al., 2020d) checkpoint trained with 800 epochs on the ImageNet dataset. The
backbone is ResNet50.

SimCLRv2. The SimCLRv2 (Chen et al., 2020c) project released various pre-trained and fine-tuned models. We use the
pretrain-only checkpoint with selective Kernels. The backbone is ResNet50.

MAE. We adopt pre-trained checkpoint in (He et al., 2022). The backbone is ViT-B/16.

SimMIM.We use the checkpoint pre-trained on the ImageNet-1K dataset with 800 epochs released in (Xie et al., 2022).
The backbone is ViT-B/16.

The used codes and their licenses are listed as follows.

Table 3. The used codes and licenses.

URL citations License

https://github.com/google-research/vision_transformer (Dosovitskiy et al., 2021) Apache-2.0 License
https://github.com/pytorch/pytorch (Paszke et al., 2019) License

https://github.com/openai/CLIP (Radford et al., 2021) MIT License
https://github.com/facebookresearch/moco (Chen et al., 2020d) MIT License
https://github.com/google-research/simclr (Chen et al., 2020c) Apache-2.0 License

https://github.com/Separius/SimCLRv2-Pytorch - GPL-3.0 license
https://github.com/facebookresearch/mae (He et al., 2022) License

https://github.com/microsoft/SimMIM (Xie et al., 2022) MIT License
https://github.com/scikit-learn/scikit-learn (Pedregosa et al., 2011) BSD-3-Clause License
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I.2. Feature preprocessing

For the reason that our theory assumes that X = [0,1]n, we scale each dimension of features to [0,1]. It is implemented by
using the MinMaxScaler supported in scikit-learn’s (Pedregosa et al., 2011). Empirically, we note this transformation will
not influence the happening of the “two regimes” phenomenon in practice.

I.3. Additional Results of Validating the Assumptions
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(a) ViT (b) ResNet

(c) CLIP (d) MoCov2

(e) SimCLRv2 (f) MAE

(g) SimMIM

Figure 5. Distribution histogram of σ2
i
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(a) ViT (b) ResNet

(c) CLIP (d) MoCov2

(e) SimCLRv2 (f) MAE

(g) SimMIM

Figure 6. Distribution histogram of ∣βk1,k2,k ∣.
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(a) ViT (b) ResNet

(c) CLIP (d) MoCov2

(e) SimCLRv2 (f) MAE

(g) SimMIM

Figure 7. Distribution histogram of αk1,k2,k.
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I.4. Additional Results of Deep Learning

(a) CIFAR10, small m (b) CIFAR10, all m

(c) CIFAR100, small m (d) CIFAR100, all m

Figure 8. Comparison between naïve Bayes and logistic regression trained on features extracted by ViT.
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(a) CIFAR10, small m (b) CIFAR10, all m

(c) CIFAR100, small m (d) CIFAR100, all m

Figure 9. Comparison between naïve Bayes and logistic regression trained on features extracted by ResNet50.
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(a) CIFAR10, small m (b) CIFAR10, all m

(c) CIFAR100, small m (d) CIFAR100, all m

Figure 10. Comparison between naïve Bayes and logistic regression trained on features extracted by CLIP.
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(a) CIFAR10, small m (b) CIFAR10, all m

(c) CIFAR100, small m (d) CIFAR100, all m

Figure 11. Comparison between naïve Bayes and logistic regression trained on features extracted by MoCov2.
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(a) CIFAR10, small m (b) CIFAR10, all m

(c) CIFAR100, small m (d) CIFAR100, all m

Figure 12. Comparison between naïve Bayes and logistic regression trained on features extracted by SimCLRv2.
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(a) CIFAR10, small m (b) CIFAR10, all m

(c) CIFAR100, small m (d) CIFAR100, all m

Figure 13. Comparison between naïve Bayes and logistic regression trained on features extracted by MAE.
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(a) CIFAR10, small m (b) CIFAR10, all m

(c) CIFAR100, small m (d) CIFAR100, all m

Figure 14. Comparison between naïve Bayes and logistic regression trained on features extracted by SimMIM.
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