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Abstract
Medical image captioning alleviates the burden
of physicians and possibly reduces medical errors
by automatically generating text descriptions to
describe image contents and convey findings. It
is more challenging than conventional image cap-
tioning due to the complexity of medical images
and the difficulty of aligning image regions with
medical terms. In this paper, we propose an evi-
dential interactive learning framework that lever-
ages evidence-based uncertainty estimation and
interactive machine learning to improve image
captioning with limited labeled data. The interac-
tive learning process involves three stages: key-
word prediction, caption generation, and model
updates. First, the model predicts a list of key-
words with evidence-based uncertainty estima-
tion and selects the most informative keywords
to seek user feedback. Second, user-approved
keywords are used as model input to guide the
model to generate satisfactory captions. Third,
the model is updated based on user-approved key-
words and captions, where evidence-based un-
certainty is used to allocate different weights to
different data instances. Experiments on two med-
ical image datasets illustrate that the proposed
framework can effectively learn from human feed-
back and improve performance in the future.

1. Introduction
Medical image captioning aims to automatically generate
text descriptions for medical images to describe image con-
tents and key findings. It typically integrates a computer
vision model to extract semantic features from medical im-
ages and a language model to generate readable text captions
(Pavlopoulos et al., 2022). Compared with conventional cap-
tioning tasks on natural images, medical image captioning is
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Figure 1: An illustrative example showing keywords helps
improve the quality of medical image caption generation.

usually more challenging because of its highly specialized
domain (Li et al., 2019). Meanwhile, the tolerance for er-
ror is low because wrong predictions could result in severe
consequences.

Keyword-driven medical image captioning is an approach to
address the above challenges (Biswal et al., 2020). Its main
idea is to leverage additional keywords provided by the user
as side information. According to (Pavlopoulos et al., 2019),
keywords commonly exist in the doctors’ textual diagnosis
records in the early diagnosis process. Keywords are criti-
cal for medical image captioning because they are usually
highly informative in describing a disease’s morphology and
potential indications. With correct keywords, the generated
captions are more likely to capture the essence of the image
and incur fewer mistakes, as shown in the illustrative exam-
ple in Figure 1. Particularly, if the distribution of the testing
image is different from the training data or the quality of
the image is low, leveraging only the image data may be
insufficient for a model to infer satisfactory captions. Addi-
tional keywords would help the model learn the context and
retrieve other relevant words for caption generation.

Compared with conventional image captioning with only
one input modality (i.e., image), keyword-driven captioning
is multi-modal (i.e., image and user-specified keywords),
and it can be formulated as an interactive process that in-
volves humans in the loop. While existing keyword-driven
models have achieved noticeable success (Huang et al.,
2019; Maksoud et al., 2019; Huang et al., 2021), they always
require keywords as additional inputs, which may incur an
excessive burden on the user. In fact, if the model cannot
make a satisfactory prediction and requires additional user
inputs as guidance, it indicates that the model is not cali-
brated well on the current data. In this case, an ideal solution
is to make the model learn from users during the interaction
process, so that the model can perform better in future cap-
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Figure 2: Workflow of the interactive learning framework.
During interactive learning, the model predicts a list of
keywords with evidence-based uncertainty and selects the
most informative keywords to seek user feedback. Based
on user-approved keywords, the model generates several
candidate captions to seek user feedback. The model is
updated using user-approved keywords and captions so that
it can perform better in the future.

tioning tasks even without the aid from users. Specifically,
during the interaction process, the keywords specified by
the users can be considered as ground truth and leveraged
as additional supervision to update the model. However, the
size of keyword vocabulary could be large. When selecting
appropriate keywords, the user needs to evaluate whether
each candidate keyword is relevant to the image. This may
incur excessive burdens on the user, especially in expert do-
mains such as medicine, where examing an image requires
much effort. In addition, the conventional model training
process requires a large amount of annotated data, which
may also incur annotation burdens.

To address the above challenges, we propose an interactive
learning framework that effectively involves user interac-
tions to improve the model’s performance. Our framework
involves three stages: keyword prediction, caption gener-
ation, and model updates. In the first stage, the model
evaluates the uncertainty of candidate keywords that are
potentially relevant to the image, and queries keywords with
the highest uncertainty to the user. The user then determines
whether the query keywords are correct, and provide feed-
back to the model. In the second stage, our model leverages
the keywords as the side information to generate captions
and uncertainty estimation. The user then selects the cap-
tions as feedback to the model. In the last stage, users’
feedback is used as weak supervision for model updates,
and the updated model is expected to perform better in the
future. The workflow is summarized in Figure 2.

Uncertainty plays a critical role in the interactive learning
process. First, our model queries keywords from users in a
selective way, which provides two major benefits: 1) The

user only needs to focus on a few query keywords with
the highest uncertainty (rather than all keywords), which
greatly reduces the user’s burden. 2) User feedback on
selected keywords can provide the model with the most
helpful information for model updates. Intuitively, an effec-
tive model training strategy shall effectively calibrate the
model on the data with which the model was initially uncer-
tain. For uncertainty estimation, our framework introduces
an evidence-learning paradigm. By leveraging evidence
learning under the subjective logic framework (Josang et al.,
2018), we focus on two important sources of uncertainty: 1)
vacuity, which is caused by lack of evidence; and 2) disso-
nance, which is caused by the conflict of strong evidence.
Evidential learning provides insights into the sources of
uncertainty, which is instrumental for model updates.

Second, we provide a theoretical analysis to integrate the
two sources of uncertainty systemically. Specifically, in
evidential learning, a model typically assigns a low belief
mass to the ground-truth class of an unfamiliar data instance.
Our analysis unveils important connections between the
belief mass and the integrated uncertainty. On top of that, we
propose an integrated uncertainty quantification method to
effectively select keywords with the highest total uncertainty
for user interaction and dynamically balance the two sources
of uncertainty during the interactive learning process.

Third, evidence-based uncertainty estimation can also be
leveraged for model updates. Once the model generates
candidate captions, the user can rank the generated captions
to provide feedback to the model. During model updates,
the top-ranked caption can be treated as the ground truth.
However, using only the top-ranked caption for updates may
incur overfitting, because an image can usually be described
in multiple ways. To address this issue, we can treat other
candidate captions predicted by the model as noisy data,
which can be used for model updates with a lower weight.
The uncertainty estimation can be used as the weighting
mechanism. As a result, this training scheme can effectively
mitigate overfitting while being robust to the noise.

Our contributions are summarized as follows:

• An interactive medical image captioning framework
that effectively involves human users in the loop to
predict accurate keywords and captions;

• A theoretical analysis of evidence-based uncertainty to
integrate two sources of uncertainty;

• An evidential uncertainty-guided keyword sampling
strategy that queries most informative keywords for
user interaction to reduce users’ burden;

• An evidential uncertainty-guided update strategy that
trains the model in an annotation-efficient way based
on sparse user feedback.
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2. Related Works
Medical Image Captioning: Medical image captioning
is a specialized domain that applies image captioning meth-
ods to analyze medical images (Pavlopoulos et al., 2022).
It can generally be grouped into automatic generation ap-
proaches and template-based retrieval approaches. For ex-
ample, (Jing et al., 2017) presented a basic co-attention
model to implement automatic medical report generation.
(Li et al., 2018) integrates a template-based method with
the generation framework in a reinforcement learning fash-
ion. (Li et al., 2019) proposes a knowledge-driven encod-
ing with a graph transformer to capture the relationship
among abnormality concepts. (Zhang et al., 2020) proposes
pre-constructed graph embedding based on multiple dis-
ease terms. For keyword-driven medical image captioning,
(Huang et al., 2019) encodes keyword information by a
multi-layer perception, adding to the topic representation
for caption generation. (Biswal et al., 2020) develops a
template-based retrieval model that accepts keywords as
additional inputs. (Huang et al., 2021) encodes multiple
keywords through a contextualized encoder as the loose
guidance for sentence generation. (Alfarghaly et al., 2021)
leverages a conditioned transformer-based captioning model
to integrate image features and keyword embeddings. (You
et al., 2021) proposes to match visual regions from med-
ical images and candidate keywords to enhance caption
generation. (Wu et al., 2023) proposes an attention-based
strategy to match expert-defined keywords with local im-
age patches. Our work advances the approaches mentioned
above by learning from user feedback, and using uncertainty
estimation for effective user interaction.

Uncertainty Estimation: Uncertainty quantifies the de-
gree to which a machine learning model is uncertain about
its predictions and implies whether users can trust the re-
sults. For deep learning, Bayesian neural network with
Monte Carlo dropout (Gal & Ghahramani, 2016), Bayes-by
Backprop (Blundell et al., 2015), and deep ensembles (Lak-
shminarayanan et al., 2017) are representative approaches
to evaluate uncertainty. In natural language processing do-
mains, (Xiao & Wang, 2019) explores uncertainty estima-
tion via Bayesian neural network on sentiment analysis
tasks, named entity recognition and language modeling,
and (Wang et al., 2019) explores uncertainty estimation via
Bayesian neural network on machine translation with back-
translation technique. (Siddhant & Lipton, 2018) leverages
uncertainty estimates provided by dropout and Bayes-by
Backprop for active learning. (Ott et al., 2019) and (Xu
et al., 2020) investigate prediction entropy for uncertainty
estimation on neural language generation tasks. (Xiao &
Wang, 2021) quantifies epistemic and aleatoric uncertainty
in natural language generation tasks to address the halluci-
nation issues. In summary, most existing works leverage
Monte-Carlo dropout or Bayes-by Backprop approaches,

which require stochastic sampling. In contrast, evidence-
based uncertainty estimation predicts model uncertainty in
a deterministic way, which is more efficient and accurate.

Additional discussion about interactive machine learning
are provided in the Appendix.

3. Preliminaries
We discuss the preliminaries of evidential theory, which is
the building block for uncertainty estimation in our frame-
work. The evidential theory is a generalization of Bayesian
theory to subjective logic. For classification tasks with K
mutually exclusive classes, subjective logic assigns a belief
mass bk to each possible class k for a data instance and
introduces an overall uncertainty mass u. The belief mass
values and uncertainty mass sum up to one,

u+
∑K

k=1
bk = 1 (1)

The belief mass is calculated using the evidence ek where

bk =
ek
S
, u =

K

S
, S =

∑K

k=1
(ek + 1) (2)

Evidence ek measures the amount of information that sup-
ports a data instance to be classified into class k. The belief
mass assignment corresponds to a K-dimensional Dirichlet
distribution Dir(p|a) where a = (a1, ..., aK)⊤ quantifies
the strength over K classes and ak = ek + 1. The expected
probability assigned to class k is the mean of the Dirichlet:

E[pk] =
ak
S

(3)

where ak is usually referred to as the opinion for class k.

According to the subjective logic, there are two primary
sources of uncertainty (Josang et al., 2018): vacuity and
dissonance, that are applicable in classification tasks for our
research problem. They are defined as

vac = u, diss =
∑
k

bk

∑
j ̸=k bj(1−

|bj−bk|
bj+bk

)∑
j ̸=k bj

(4)

Intuitively, vacuity measures the lack of evidence in the
data instance, and dissonance measures the contradictory
evidence for different classes.

4. Methodology
The proposed framework formulates interactive medical im-
age captioning in three stages: keyword prediction, caption
generation, and model updates. In the first stage, the model
leverages the image information to predict the evidence of
candidate keywords and quantifies the uncertainty. Based
on uncertainty estimation, the model selectively queries po-
tential keywords to the user. In the second stage, the model
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Figure 3: Architecture of the proposed framework. Given a
medical image, the model outputs the evidence of keywords
and captions, which serves as the foundation for keyword
prediction, caption generation and uncertainty estimation.

leverages users’ feedback and uncertainty estimation to gen-
erate masked embedding of keywords. The image feature
vectors and masked embedding are integrated to predict
the evidence of the words in captions. In the last stage,
users’ feedback on keywords and captions is used as weak
supervision for model updates. The overall architecture
is illustrated in Figure 3. The mathematical notations are
summarized in the Appendix.

4.1. Keyword prediction

Keyword prediction is formulated as a multi-label classi-
fication problem with the goal of predicting a set of rel-
evant keywords (i.e., labels) for an input image. Let X
be an image, and Y be a ground truth set of L binary
labels Y = {yl}Ll=1, yl ∈ {0, 1}. Conventional multi-
label classification aims to construct a classifier f to pre-
dict the probability of each label l given an image so that:
(p1, ..., pL)

⊤ = f(X). However, in the propsoed setting,
the model predicts the evidence el of each potential key-
word, which is the building block for uncertainty estimation.

Given an input image X , we leverage a convolutional neural
network to extract feature maps V img ∈ Rh×w×d, where
h, w, and d are the output height, width, and channel, re-
spectively. We can then consider each vector vimg

i ∈ Rd

with i ∈ [1, h × w] to be representative of a sub-region
that maps back to patches in the original image space. In
addition, we consider keywords as a set of embeddings
V key = {vkey

1 , ...,vkey
L } with vkey

l ∈ Rd, which are the out-
puts of an embedding layer.

The keyword embeddings and image feature vectors are
then fed to transformer blocks (Vaswani et al., 2017) for
attention. Let V = {vimg

1 , ...,vimg
h×w,v

key
1 , ...,vkey

L } denote
the image feature vectors and keyword embeddings. They
are fed to the transformer block, where each member in
H is transformed into query, key, and value vectors. A
multi-head self-attention is used to integrate the semantic

information of a keyword with other keywords and image
feature vectors. The output of multi-head self-attention is
passed to a feed-forward layer and layer normalization to
generate the output ol.

{okey
l }Ll=1, {o

img
i }w×h

i=1 = selfAttn(V ) (5)

Lastly, a feed-forward layer makes the final keyword pre-
dictions. Existing deep learning-based models typically use
a sigmoid layer on top of the transformer blocks to predict
the probability of each label. However, the sigmoid-based
predictions may not provide uncertainty information be-
cause the sigmoid score is essentially a point estimation of
the predictive distribution, and the sigmoid outputs may be
over-confident in false prediction.

Evidential deep learning is a solution that overcomes the
limitations of sigmoid-based predictions by providing a prin-
cipled way to formulate the classification and uncertainty
modeling jointly. Given a candidate keyword indexed by l
for classification, a Dirichlet prior parameterized by αl is
introduced to model the class probability, where

αl = el + 1 = g(okey
l ) + 1 (6)

with ol being the output of the transformer block and g being
the evidence function to keep evidence el non-negative. We
use a feed-forward layer with ReLU activation for g. Given
αl, the predictive probability can be estimated using Eq (3),
and the uncertainty can be estimated using Eq (4).

Model pre-training for keyword prediction. The model
needs to be pre-trained to make keyword predictions given
an image. With the setting of evidential learning, we ap-
ply the negative log-likelihood (nll) as the loss, which is
minimized for learning evidence el by integrating out the
predictive probability p (Sensoy et al., 2018):

nllkeyl = − log

(∫ K∏
k=1

pk
1

B(αl)

K∏
k=1

p
al,k−1
k dp

)

=
∑K

k=1
yl,k(lnSl − ln(αl,k))

(7)

where yl,k is an one-hot K-dimensional label for candidate
keyword l (K = 2 for binary classification) Sl is the total
strength of the Dirichlet distribution Dir(p|αl), which is
parameterized by αl ∈ RK , and Sl is defined as

Sl =
∑K

k=1
αl,k, αl,k = el,k + 1 (8)

Based on the evidential theory, the αl,k is determined by
the predictive evidence el,k. During the inference, the pre-
dicted probability of the k-th class is p̂k = αk/S, and the
predictive vacuity can be computed accordingly.

Intuitively, the predicted evidence should shrink to zero for
a keyword if it cannot be correctly classified. Note that
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a Dirichlet distribution with zero evidence, i.e., S = K,
corresponds to the uniform distribution and indicates total
uncertainty, i.e., u = 1. It is achieved by incorporating a
Kullback-Leibler (KL) divergence term into the loss func-
tion that regularizes the predictive distribution and penalizes
those divergences that do not contribute to data fit. With the
regularization term, the loss function is modified as

Lkeyl = nllkeyl + λKL[Dir(α̃l)||Dir(1)] (9)

where Dir(1) is the non-informative uniform Dirichlet dis-
tribution and 1 denotes a vector with all entries equal to
1. α̃l = yl + (1 − yl)αl is the Dirichlet parameters af-
ter removal of the non-misleading evidence from predicted
parameters αl. λ is a hyper-parameter.

When trained with Eq (9), the model is encouraged to gen-
erate correct and strong evidence for in-distribution data
by reducing the first term, and predict weak evidence for
out-of-distribution data by reducing the second term. There-
fore, the model can be calibrated so that it is confident in
its accurate predictions on familiar data instances, and is
uncertain on unfamiliar data instances.

4.2. Keyword Selection for User Interaction

Given a medical image, the conventional keyword annota-
tion process requires the annotator to consider all candidate
keywords, determine whether each is relevant to the image,
and mark some keywords as positive and the rest as negative.
However, such an annotation process incurs the burden of
providing annotation. To address this issue, we propose to
conduct an active keyword query to select a small number
of candidate keywords that the model is mostly uncertain
about to query the user. The user only needs to consider
whether the query keywords are relevant or not.

Intuitively, user feedback on initially uncertain keywords
will improve the model performance after updates. Accord-
ing to the evidential theory, vacuity and dissonance provide
fine-grained quantification of two distinct sources of uncer-
tainty. A straightforward way to design a query function for
keyword selection is to aggregate both vacuity and disso-
nance by manually assigning weights. However, a challenge
lies in how to properly balance these two sources of uncer-
tainty in a principled way. Furthermore, as the model learns
from user feedback and improves, the emphasis on different
sources of uncertainty may need to be dynamically changed
to adjust the learning focus.

To address the above challenge, we propose a keyword query
function (KQF) that integrates vacuity and dissonance. We
theoretically establish the connection between the proposed
KQF and the two different sources of uncertainty. The theo-
retical analysis reveals that automatically assigned weights
dynamically adjust the contribution of vacuity and disso-
nance according to a principled learning schedule that varies

based on the model’s accuracy. In addition, we find that
for images with low quality, the model may predict some
keywords correctly while missing some other keywords or
predicting a few irrelevant keywords. In this case, it is
helpful to collect human feedback on candidate keywords
that the model is confused about, because the model can be
updated to learn from humans about those keywords.

We first introduce a concept referred to as expected correct
belief (ECB). Given a data sample, an evidential-learning
model predicts the evidence for each class, which can be
used to calculate the belief mass bk for each class and the
uncertainty mass u. Ideally, a well-calibrated model should
assign a high belief to the ground-truth class, which indi-
cates the model is making a confident and correct prediction.
However, in an interactive learning setting, the ground truth
of a new data sample is not known beforehand. In this case,
we propose to use the expectation of belief assigned to the
correct class to evaluate a model’s prediction. Assuming
the model’s prediction accuracy is p, i.e., the probability
of the model making correct predictions is p, which can be
estimated using a hold-out validation set. The expectation
of correct belief is

ECB = pmax(bk) + (1− p)
∑

j ̸=argmax bk

pjbj (10)

where pj is the probability that the ground-truth class
being j if the model’s prediction is incorrect, and∑

j ̸=argmax bk
pj = 1. Without further information, we

assume a no-informative prior for {pj}, and thus the expec-
tation can be written as

ECB = pmax(bk) +
1− p

K − 1

∑
j ̸=argmax bk

bj

=
1− p

K − 1
(1− u) + (p− 1− p

K − 1
)max(bk)

(11)

Intuitively, if ECB is low, the model is likely to be unfamil-
iar (i.e., uncertain) with a candidate keyword for a given
image. In this case, it is suggested to query the user for this
keyword. Practically, we can rank the keywords based on
ECB, and choose the keyword with the minimum ECB for
the query. This is equivalent to the largest expected wrong
belief (EWB),

EWB = 1− ECB (12)

In order to further explain why EWB provides a principled
keyword function, we theoretically demonstrate its connec-
tion to both types of uncertainty. First, we present Theorem
1, which shows that EWB is upper bounded by a weighted
sum of vacuity and dissonance in a multi-class setting.

Theorem 1. For a classification problem with K classes,
the expectation of wrong belief (EWB) is upper bounded
by EWB ≤ (1 − p) + (wv × vac + wd × diss), where
wv = p, wd = 1

2 (p−
1−p
K−1 ).
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Given the multi-label classification problem for keyword
prediction, each label corresponds to a binary task with
K = 2 classes. We further introduce the following theorem:

Theorem 2. For a classification problem with K = 2
classes, the upper bound of EWB is tight as EWB = (1−p)+
(wv × vac+ wd × diss), where wv = p, wd = (p− 0.5).

The proofs of both theorems are provided in the Appendix.
Theorem 2 provides a selection criterion to select the most
uncertain keywords to collect user annotation. The model
is likely to be unfamiliar (i.e., uncertain) with a candidate
keyword if EWB is high. Collecting user feedback on those
keywords and updating the model may effectively improve
model performance.

Note that given the current model, p is fixed for all keywords.
So keyword selection is essentially based on wv × vac +
wd × diss. Furthermore, we can normalize the weights
(wv, ws) and introduce a query function KQF as

KQF = w̄v × vac+ w̄d × diss (13)

where w̄v = p
2p−0.5 and w̄d = p−0.5

2p−0.5 are normalized.

Remark: We provide a discussion about the meaning of
w̄v and w̄d and how they dynamically change as interac-
tive learning continues. At the beginning of the interactive
learning process, the model is trained with limited data.
Therefore the prediction accuracy p may be low, and w̄v

may be high. After the model is trained with more data, p
increases, w̄v decreases, and w̄d increases. Intuitively, the
interactive learning process should rely more on vacuity
in the early phase, which can effectively shape the deci-
sion boundary. As the learning process goes on, dissonance
should gradually gain a higher weight. It allows the model
to fine-tune the decision boundary with the right shape but
is less accurate, aiming to maximize the discriminate power
of the model.

4.3. Caption Generation

The uncertainty estimation and user feedback can be inte-
grated to guide the model to generate the captions. Specifi-
cally, we introduce an uncertainty-aware weighting mecha-
nism to control how the transformer can attend to different
keywords when generating captions. Using (13) for un-
certainty estimation, the weighting factor for keyword l is
defined as

ml =


1 if approved by user
0 if rejected by user
δ(pl > 0.5)(1− uncl) otherwise

(14)

Intuitively, suppose the user specifies that a keyword is rel-
evant to the image. In that case, it should receive a higher
weight ml = 1 for masking. For a rejected keyword, the
weight is set to mi = 0, and the corresponding keyword

has no contribution to downstream caption generation. For
other keywords, if a keyword is relevant to the image, the
predicted probability must be greater than 0.5. However, if
the prediction is highly uncertain, then the model shall pay
little attention. To this end, a high uncertainty makes the
multiplicative term (1− uncl) close to zero. The weighted
embeddings of keywords are concatenated with image fea-
ture vectors and then used for cross attention during caption
generation, where H = {v1, ...,vh×w,m1q1, ...,mLqL}.

The downstream caption generation also leverages trans-
former blocks to predict words in the caption in an autore-
gressive way. The setting of the transformer blocks is similar
to that used for keyword prediction. First, the embedding
of words in the current incomplete sentence (plus positional
embedding) is fed into a transformer block with attention.
For self-attention, each word in the current incomplete sen-
tence attends to other words. After that, the output is fed into
another transformer block with cross-attention. For cross-
attention, each word in the current incomplete sentence
attends to keywords and image feature vectors. Finally, the
model predicts the evidence of the next word in the caption.

Practically, we apply nucleus sampling and select the can-
didate captions with high joint probability to present to the
user. The user can select the best caption and pass it back to
the model as feedback. User feedback on keywords and cap-
tions is leveraged as weak supervision to update the model
for interactive learning, which is discussed below.

Model pre-training for caption generation. The model
needs to be pre-trained for caption generation, and the ev-
idential learning technique is applied for uncertainty esti-
mation. Recall that caption generation can be considered
a sequential multi-class classification problem where the
model predicts the next word from the vocabulary. There-
fore, the evidential loss for caption prediction is

Lcapt =
∑V

v=1
yt,v(lnSt − ln(αt,v))

+ λKL[Dir(α̃t)||Dir(1)]
αt,v =et,v + 1

(15)

where V is the size of vocabulary, et,v is the predicted
evidence of word v at position t of the caption, and yt,v is
the ground-truth.

4.4. Interactive Learning from Users

It would be ideal if the model could learn from the user
so that the model’s performance is improved for tasks in
the future. User feedback about candidate keywords and
captions can be leveraged as additional supervision to update
the model. However, there are several critical issues to
be addressed. 1) Users only provide feedback on queried
keywords (i.e., only a subset of the keyword vocabulary).
Simple model updates using those keywords may cause the
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model to overfit the limited data. 2) Although the user-
provided caption can be considered the ground truth (i.e.,
gold standard), an image may be described in multiple ways.
Simple model updates using those captions may limit the
model’s capacity to generate diverse captions.

To address those issues, other keywords and the captions
predicted by the model are incorporated as weak supervi-
sion. However, such predictions are not the ground truth,
and the model is not equally confident in predicting different
keywords and captions. To this end, the uncertainty estima-
tion can be leveraged to down-weigh the predictions with
high uncertainty during updates.

Evidential learning provides a natural way to quantify un-
certainty. At inference, we can record the uncertainty esti-
mation of all keywords. During updates, both user feedback
on query keywords and the model’s prediction on other key-
words are treated as supervised labels but assigned different
weights. And the objective function is modified as

Lkeyl =
∑K

k=1
ỹl,k(lnSl − ln(αl,k))

+ λKL[Dir(α̃l)||Dir(1)]

ỹl,k =

{
yl,k for keywords with user feedback
ŷl,k(1− uncl) otherwise

(16)

where ŷl,k is the model’s prediction of keywords not queried
to the user. The weighting factor with (1− uncl) → 1 for
confident predictions and → 0 for uncertain predictions.

In addition, an image can usually be described in multiple
ways. During inference, the model predicts multiple caption
candidates via the nucleus sampling, which can be used
for model updates along with the user-approved caption.
Specifically, we book keep multiple predicted captions with
high probability as {Ŷ1, Ŷ2, ...ŶB} where B is the size of
the candidate set. For each word in the candidate captions,
we record the uncertainty estimation. During updates, the
captions predicted by the model receive different weights
based on uncertainty estimation, and the objective function
is similar to Eq (16).

5. Experiments
We evaluate the proposed method on medical image caption-
ing datasets. The IU X-RAY (Young et al., 2014) dataset
includes a collection of radiology examinations, including
images and narrative reports by radiologists. The PEIR
Gross (Library, 2022) dataset is released by the Pathology
Education Informational Resource digital library and in-
cludes teaching images of gross lesions along with their
associated captions. Each image in the two datasets is
associated with a number of tags, which are considered
ground-truth keywords.

5.1. Experimental Settings

The model needs to be pre-trained to predict candidate key-
words and captions for user feedback. To this end, we
randomly split the two datasets and used forty percent of
the images and corresponding captions and keywords for
updates. After that, we involve user interactions for four
batches of data, each corresponding to ten percent of the
data. During the interaction, the model selects eight candi-
date keywords with the highest uncertainty score to collect
user feedback. After receiving user feedback, the model
leverages the keywords to generate captions via nucleus
sampling and present the candidate captions to the user. In
addition, the user can select the best caption from the candi-
date set, and the feedback is saved for model updates. Since
involving actual users may be costly and time-consuming,
simulated user interaction can be used for interactive learn-
ing (Wu et al., 2022). In our experiment, we simulate user
interactions by assuming the user’s opinion is the same as
the ground truth keywords and captions from the dataset.
Given an image, the simulated user approves query key-
words matching the ground truth, rejects other keywords,
and selects the caption with the highest METEOR score.
Once a batch of data is processed, the model is updated
based on users’ feedback, and the model is evaluated on
its performance on the hold-out test set, which includes the
remaining data. The evaluation is conducted on both the key-
word prediction task and the caption generation task, where
we make the updated model generate automated keyword
and caption predictions and compare them with the ground
truth. For keyword prediction, we evaluate the mean average
precision and F1 scores. For caption generation, we assess
the quality of generated captions based on BLEU, ROUGE,
and METEOR scores. BLEU is a precision-based metric
that evaluates the matching of n-grams in texts. ROUGE
is a recall-based metric that focuses on important words
and phrases. METEOR also considers synonyms and word
order when matching words and phrases. The details of
those metrics can be found at (Hossain et al., 2019).

For experiments, the proposed method and baselines are
trained with Intel Core i7-3820 CPU and NVIDIA GeForce
RTX2070 GPU. We use five-fold cross-validation for hyper-
parameter tuning. We use the architecture of EfficientNet
(Tan & Le, 2019) for the image feature extractor. The em-
bedding dimension is tuned via grid search and set to 512,
and the number of attention heads is tuned and set to 2. The
number of stacked transformer blocks for keyword predic-
tion and caption generation is tuned and set to 4. λ is set to
1. We use stochastic gradient descent and Adam optimizer
with a learning rate scheduled from 5e-5 to 1e-5.

5.2. Comparison Baselines

We compare with representative keyword-driven medical
image captioning baselines that jointly perform keyword

7



Evidential Interactive Learning for Medical Image Captioning

1 2 3 4

Batch

0.63

0.7

0.77

0.84
F

1
PEIR

Ours

CDGPT2+MC

AlignTrans+MC

IB+MC

1 2 3 4

Batch

0.5

0.55

0.6

0.65

F
1

IU Xray

Ours

CDGPT2+MC

AlignTrans+MC

IB+MC

Figure 4: Quantitative comparison for keyword prediction

prediction and caption generation. CDGPT (Alfarghaly
et al., 2021) is a conditioned transformer-based model that
integrates image feature embeddings, predicted keyword
embeddings, and token embeddings for self-attention and
caption prediction. AlignTrans (You et al., 2021) aligns vi-
sual regions from medical images and predicted keywords to
provide better representation learning and enhance caption
generation. Image captioning with Interpretability Boosters
leverages an attention-based strategy in the caption gener-
ation process to match expert-defined keywords with local
image patches (Wu et al., 2023). For interactive learning
settings, the above baselines are integrated with alternative
uncertainty estimation methods, including the Bayesian neu-
ral network with Monte-Carlo (MC) dropout for uncertainty
estimation (Xiao & Wang, 2019), and Bayes By Backprop
(Siddhant & Lipton, 2018). Those methods are used to
select keywords for user feedback and assign weights to
data samples for model updates. For MC dropout, we add
a dropout layer after each convolutional block and set the
dropout rate to 0.2, a widely used setting. For Bayes By
Backprop, we add Gaussian noise to the feed-forward layers
in the transformer blocks and reparameterize the standard
deviation of the noise as learnable parameters. The proposed
method and baselines are trained with the same data split.

5.3. Comparison Results

We first present the results for model performance on key-
word prediction. Quantitative comparisons are provided in
Figure 4. We observe an upward trend of precision which
indicates that all methods learn from the user feedback in
multiple batches to improve their performance on the test
data. The proposed framework outperforms other baselines.
A possible reason is that our framework effectively lever-
ages evidence-based uncertainty estimation to select the
most informative keywords for user feedback. In addition,
the model can be effectively updated to learn from users.
The keyword prediction performance on the test set after the
models are updated after four batches of interactive learning
are reported in Table 1. In general, the proposed method
outperforms baselines in most cases. Empirically, we ob-
serve that the model performs reasonably well on keyword
prediction. For some images with low quality, the vision
model typically predicts some keywords correctly while
missing some other keywords or predicting a few irrele-
vant keywords. In this case, it is helpful to collect human

Table 1: Quantitative comparison for keyword prediction

Model PEIR IU-Xray
mAP F1 mAP F1

CDGPT+MC 0.823 0.729 0.660 0.574
CDGPT+Bayes 0.815 0.720 0.657 0.565
AlignTrans+MC 0.797 0.717 0.648 0.557

AlignTrans+Bayes 0.806 0.712 0.640 0.538
IB+MC 0.841 0.742 0.685 0.584

IB+Bayes 0.835 0.736 0.679 0.566
Proposed 0.851 0.766 0.698 0.591

Table 2: Quantitative comparison on PEIR

Model PEIR
BLEU ROUGE METEOR

CDGPT+MC 0.134 0.315 0.141
CDGPT+Bayes 0.129 0.312 0.138
AlignTrans+MC 0.119 0.295 0.135

AlignTrans+Bayes 0.125 0.288 0.131
IB+MC 0.135 0.318 0.145

IB+Bayes 0.130 0.309 0.138
Proposed 0.142 0.330 0.156

Table 3: Quantitative comparison on IU-Xray

Model IU-Xray
BLEU ROUGE METEOR

CDGPT+MC 0.146 0.341 0.150
CDGPT+Bayes 0.142 0.336 0.148
AlignTrans+MC 0.135 0.328 0.142

AlignTrans+Bayes 0.138 0.332 0.144
IB+MC 0.145 0.342 0.153

IB+Bayes 0.149 0.345 0.154
Proposed 0.157 0.356 0.162

feedback on candidate keywords that the model is confused
about. We then present the experiment results for caption
generation. Quantitative comparisons on the test set after the
models are updated for interactive learning are provided in
Tables 2, and 3. The proposed framework outperforms other
baselines. A possible explanation is that our framework gen-
erates predicted keywords with better quality which benefits
downstream caption generation. Generally speaking, the
task of predicting keywords is relatively easier than predict-
ing the entire caption, because caption generation requires
extracting almost all the semantic information from the im-
age, while keyword prediction requires extracting only the
most important features.

Quantitative comparisons for caption generation with re-
spect to interactive learning batches are provided in Figure
5. We observe an upward trend in the scores of generated
captions for testing images, and the proposed framework
outperforms other baselines. The results can be intuitively
explained by the difference in uncertainty estimation. The
proposed method quantifies the uncertainty of each word in
the captions via vacuity and dissonance, which can be used
to weigh data samples during model updates effectively.
In contrast, MC dropout and Bayes By Backprop require
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Figure 5: Quantitative comparison for caption prediction

Figure 6: Illustrative example of caption prediction with the
change of uncertainty due to interactive learning (Pred.1 and
Pred.2 are the predictions before and after model updates)

stochastic sampling, which may be prone to errors.

One notable benefit of the proposed interactive learning is
improving the model’s performance and confidence in its
predictions. We provide illustrative examples in Figure 6.
Before user interaction, we make the model generate cap-
tions given an image (Pred.1), and report the uncertainty
score of important medical terms in the generated captions.
After interactive learning for four batches, we make the
model generate captions again and report the correspond-
ing uncertainty (Pred.2). The examples indicate that the
updated model generates better captions. The vacuity of
all key medical terms is decreasing. This is consistent with
the intuition: After model updates based on user feedback,
the model is better calibrated and familiar with the data.
On the other hand, we observe that the dissonance is not
necessarily decreasing. It is because dissonance measures
the contradictory evidence from the data samples. In other
words, dissonance essentially captures the uncertainty from
the data, which may not decrease after model updates.

5.4. Ablation Study

Our model leverages evidential learning as the foundation
of uncertainty estimation and query keywords for user feed-
back. We conduct an ablation study to compare with al-
ternative methods of uncertainty estimation, including the
Bayesian neural network with Monte-Carlo dropout and
Bayes By Backprop to evaluate the contribution of the pro-
posed keyword selection method. In addition, we also com-
pare with the vanilla evidential deep learning method (EDL)
for uncertainty estimation (Sensoy et al., 2018). Note that
the proposed method differs from vanilla evidential learning

Table 4: Ablation study for keyword prediction

Model PEIR IU-Xray
mAP F1 mAP F1

MC 0.835 0.746 0.689 0.575
Bayes By-backprop 0.827 0.739 0.683 0.568

EDL 0.846 0.757 0.692 0.577
Proposed 0.851 0.766 0.698 0.591

Table 5: Ablation study for caption generation

PEIR BLEU ROUGE METEOR
MC 0.135 0.318 0.149

Bayes By-backprop 0.130 0.311 0.147
EDL 0.139 0.325 0.152

Proposed 0.142 0.330 0.156
IU X-ray BLEU ROUGE METEOR

MC 0.145 0.343 0.155
Bayes By-backprop 0.149 0.347 0.157

EDL 0.156 0.353 0.163
Proposed 0.157 0.356 0.162

because the former quantifies the uncertainty using vacu-
ity and dissonance and dynamically balances their corre-
sponding weights during interactive learning. Quantitative
results are reported in Tables 4 and 5, which indicate that
the proposed keyword selection method achieves good per-
formance. In contrast, vanilla evidential learning does not
distinguish between vacuity and dissonance. MC dropout
and Bayes By Backprop require stochastic sampling, which
is less efficient and prone to errors. In the Appendix, we
also provide additional experiment results on sub-categories
of medical images, and ablation studies with the number of
keywords.

6. Conclusion
In this paper, we propose an interactive learning framework
that involves human users in the loop to improve model
performance on medical image captioning tasks. The frame-
work deploys an evidence-based uncertainty estimation to
select the most informative keywords to query users for
feedback, which are then used as weak supervision to up-
date the model and encode users’ knowledge. In addition,
uncertainty estimations are leveraged as weighting factors
to guide the self-supervision process during model updates
to mitigate the overfitting issue. The framework can be po-
tentially applied to medical domains for interactive learning.
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Appendix

Organization of Appendix. In this Appendix, we first
summarize the main notations used throughout the paper in
Table 6. We then provide the mathematical proof to Theo-
rems 1 and 2. After that, we provide additional discussion
about interactive machine learning. We provide additional
experiment results on sub-categories of medical images and
ablation studies with different annotation budgets by varying
the number of keywords. We also discuss the limitations and
future directions. The link to the source code is provided at
the end.

Table 6: Summary of Main Notations

Notation Description
X input image
V total number of keywords
L size of vocabulary
K number of classes
vimg
i i-th vector of image feature
vkey
l embedding vector of l-th keyword

oimg
i output of transformer block corresponding to i-th

vector of image feature
okey
l output of transformer block corresponding to embed-

ding vector of l-th keyword
αl,k the subjective opinion of keyword l (k = {0, 1}

indicating positive or negative)
el,k predicted evidence of keyword l
Sl total strength of Dirichlet distribution of keyword l
pl predicted probability of keyword l
αt,v the subjective opinion of word v at position t
et,v predicted evidence of word v at position t
yt,v ground truth of word v at position t
bj predicted belief of class j

b0,b1 predicted belief for binary classification of a key-
word

u uncertainty mass
p probability of a model making correct prediction

uncl uncertainty score for keyword l

A. Proof of Theorems
Proof of Theorem 1. To connect the expectation of belief
to the two sources of uncertainty, we consider the definition
of vacuity and dissonance as

vac = u, diss =
∑
k

bk

∑
j ̸=k bj(1−

|bj−bk|
bj+bk

)∑
j ̸=k bj

(17)

After sorting {bj} in descending order, it can be shown that

1

2
diss

=
b1∑
k ̸=1 bk

(
b22

b1 + b2
+

b23
b1 + b3

+ ...+
b2K

b1 + bK
)

+
b2∑
k ̸=2 bk

(
b1b2

b1 + b2
+

b23
b1 + b3

+ ...+
b2K

b1 + bK
)

+ ...

+
bK∑
k ̸=K bk

(
b1bK

b1 + bK
+

b2bK
b1 + bK

+ ...+
bK−1bK

bK−1 + bK
)

=

K∑
k=2

b2k[

k−1∑
j=1

bj
bj + bk

(
1∑
l ̸=j bl

+
1∑

l ̸=k bl
)]

≤
K∑

k=2

bk[

k−1∑
j=1

bj∑
l ̸=k bk

]

≤
K∑

k=2

bk

=1− u− b1
(18)

Therefore, the expectation can be expanded as

E =
1− p

K − 1
(1− u) + (p− 1− p

K − 1
)max(bk)

≥p− p ∗ vac− 1

2
(p− 1− p

K − 1
) ∗ diss

(19)

Proof of Theorem 2. Denote the prediction accuracy of
the model as p. For classification with number of classes
K = 2,t he expectation of correct belief is

E = pmax(bk) + (1− p)(1− u−max(bk)) (20)

Note that for K = 2, the dissonance is reduced to

1

2
diss =

1

2
(b0 + b1 − |b0 − b1|)

= 1− u−max(bk)
(21)

Therefore, the expectation can be expanded as

E = p− p ∗ vac− (p− 1

2
) ∗ diss (22)

It should be noted that Eq 22 is the tight bound of Eq 19 for
K = 2.

B. Additional Discussion of Interactive
Learning

Interactive machine learning aims to integrate human knowl-
edge and experience to train machine learning models ef-
fectively. Humans can be involved in the loop in multiple
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Figure 7: Illustration of general interactive machine learn-
ing: humans may involve in data processing and model train-
ing. For our framework, the user checks query keywords
to provide annotation for those keywords (data processing),
and checks predicted captions to provide feedback (model
training)

ways, including data processing, interventional model train-
ing, and the design of the system (Wu et al., 2022). For
interactive learning on medical image understanding tasks,
existing works mainly focus on image classification (Wang
et al., 2017; 2020; Wu et al., 2021) and segmentation (Yang
et al., 2017; Saidu & Csató, 2021), while interactive learning
for captioning is an under-explored area.

For data processing, interactive methods emphasize finding
important data samples. This is similar to active learning,
where the goal is to train an accurate prediction model with
the least cost by annotating the data samples that provide
the most information. However, interactive learning also
emphasizes adding human knowledge to the learning sys-
tem and facilitating human-machine interaction. For our
framework, user feedback on query keywords is essentially
annotated labels, which can be used for model updates.

For model training, human participants provide feedback ac-
cording to specific tasks to boost performance. For instance,
an object detection framework may employ individuals to
correct a few annotations proposed by a detector, and an
online question-answering model may seek human feedback
to update the model continuously (Wu et al., 2022). For our
framework, the user checks generated captions to provide
feedback on model predictions, which can be used for model
updates to improve model performance.

In the proposed framework, the model selects the most un-
certain keywords for user interaction. The user annotates
whether each selected keyword is relevant to the image or
not. User annotation is used for model updates to improve
performance on keyword prediction. The model also uses
nucleus sampling to generate a list of predicted captions for
user interaction. User feedback is used for model updates
to generate better captions. For uncertainty estimation, evi-
dential learning effectively quantifies uncertainty to assign
different weights to different keywords and captions during
model updates in order to reduce noise. The user only needs

to annotate the selected uncertain keywords (rather than all
keywords), which reduces users’ burden.

C. Additional Results
It should be noted that some datasets contain images with
different pre-existing conditions, which may be considered
subcategories of medical images. Based on the subcate-
gories in the IU-Xray dataset (e.g., pleural diffusion, car-
diomegaly, nodule), we evaluate model performance of cap-
tion prediction, and the results are summarized in Table 7.
In general, the difficulty of captioning tasks on some subcat-
egories may be greater than the difficulty on others, and the
proposed method usually outperforms competing baselines.

Table 7: Quantitative comparison on different subcategories
of medical images

Nodule BLEU ROUGE METEOR
CDGPT+MC 0.137 0.330 0.144

CDGPT+Bayes 0.129 0.324 0.142
AlignTrans+MC 0.131 0.318 0.140

AlignTrans+Bayes 0.125 0.312 0.135
Proposed 0.153 0.352 0.158

Cardiomegaly BLEU ROUGE METEOR
CDGPT+MC 0.144 0.340 0.147

CDGPT+Bayes 0.145 0.351 0.149
AlignTrans+MC 0.137 0.335 0.141

AlignTrans+Bayes 0.142 0.339 0.143
Proposed 0.161 0.362 0.165

Pleural Diffusion BLEU ROUGE METEOR
CDGPT+MC 0.139 0.335 0.145

CDGPT+Bayes 0.142 0.339 0.151
AlignTrans+MC 0.132 0.324 0.140

AlignTrans+Bayes 0.129 0.317 0.139
Proposed 0.151 0.345 0.156

We also explored model performance on an additional radio-
graphy image dataset MIMIC-CXR (Johnson et al., 2019)
for caption generations. Quantitative results are summarized
in Table 8. The performance of the proposed model is better
than the competing baselines, which is consistent with the
experimental evaluation of other datasets presented in the
paper.

Table 8: Quantitative comparison on MIMIC-CXR

Model BLEU ROUGE METEOR
CDGPT+MC 0.101 0.298 0.130

CDGPT+Bayes 0.108 0.302 0.117
AlignTrans+MC 0.095 0.287 0.124

AlignTrans+Bayes 0.104 0.295 0.113
Proposed 0.112 0.316 0.139

In addition, we conduct ablation studies to examine the
effect of annotation budget by varying the number of key-
words. The number of keywords is changed to 4 and 12.
Results on the PEIR dataset are provided below. With four
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keywords, the performance dropped significantly, indicating
that it is difficult to collect sufficient feedback with only four
keywords. With 12 keywords, the performance is slightly
improved. The two datasets for experiments include the
ground truth keywords for each image, and one image typ-
ically corresponds to 3-5 keywords. There are more than
50 keywords in total in the datasets. In real-world applica-
tions, when setting the number of candidate keywords, it is
suggested to consider the following factors: 1) the number
of positive keywords an image typically corresponds to, 2)
too few proposed keywords may hurt model performance,
and 3) too many proposed keywords may incur annotation
burdens.

Table 9: Ablation study on the number of keywords

4 keywords BLEU ROUGE METEOR
CDGPT+MC 0.118 0.297 0.134

CDGPT+Bayes 0.115 0.289 0.128
AlignTrans+MC 0.114 0.285 0.126

AlignTrans+Bayes 0.109 0.277 0.121
Proposed 0.125 0.306 0.141

12 keywords BLEU ROUGE METEOR
CDGPT+MC 0.131 0.317 0.144

CDGPT+Bayes 0.134 0.314 0.139
AlignTrans+MC 0.123 0.304 0.135

AlignTrans+Bayes 0.126 0.298 0.133
Proposed 0.146 0.343 0.158

D. Limitations and Future Directions
Our framework involves humans in the loop for medical
image captioning tasks, where the model interacts with the
user to collect user-approved keywords and captions. Since
our framework is interactive, the model may be misguided
and generate inaccurate predictions if the user provides
irrelevant or wrong keywords. Therefore, it is suggested
that the users understand the interactive process and the
captioning tasks before using the proposed framework.

An alternative option to interactive learning is annotating a
large amount of data for model training to provide a strong
supervision model. A cost-benefit analysis is suggested to
compare the cost estimation of training a strong supervision
model and having the expert in the loop to provide feedback,
and we consider it as a future direction.

Data augmentation is another future direction to generate
rich captions for limited data to train a model properly.
Some representative data augmentation methods for generat-
ing multiple captions include 1) back translation: translating
a caption into another language and then translating it back
2) synonyms replacement: replacing certain words from the
caption with their synonyms. There are some challenges in
applying the two augmentation methods to medical image
captioning datasets. Different from texts in general domains,
texts in medical domains are specialized, back translation

may incur some errors, and it might not be easy to find
synonyms.

E. Link to the Source Code
The source code is provided at https://github.com/
ritmininglab/EIL-MIC
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