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Abstract
We consider the problem of fairly allocating a
sequence of indivisible items that arrive online
in an arbitrary order to a group of n agents with
additive normalized valuation functions, we con-
sider both the allocation of goods and chores and
propose algorithms for approximating maximin
share (MMS) allocations. When agents have iden-
tical valuation functions the problem coincides
with the semi-online machine covering problem
(when items are goods) and load balancing prob-
lem (when items are chores), for both of which
optimal competitive ratios have been achieved. In
this paper, we consider the case when agents have
general valuation functions. For the allocation of
goods, we show that no competitive algorithm ex-
ists even when there are only three agents and pro-
pose an optimal 0.5-competitive algorithm for the
case of two agents. For the allocation of chores,
we propose a (2 − 1/n)-competitive algorithm
for n ≥ 3 agents and a

√
2 ≈ 1.414-competitive

algorithm for two agents. Besides, we show that
no algorithm can do better than 15/11 ≈ 1.364-
competitive for two agents.

1. Introduction
Traditional machine learning algorithms usually focus on
global objectives such as efficiency or maximizing profit and
have no guarantee of fairness between individuals. As learn-
ing decision-making is increasingly involved in our daily
life, the problem of algorithm bias has received increas-
ing attention. Motivated by several real-world problems in
which decision processes impact human beings who must
be treated fairly and unbiasedly, there is increasing attention
on fair learning algorithms (Chen et al., 2019; Backurs et al.,
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2019; Li et al., 2021). We focus on the online scheduling
problem where jobs arrive online and each incoming job
should be assigned by the algorithm immediately. Con-
trast to the classic online scheduling models that focus on
allocation to machines and object on optimizing global ob-
jectives, e.g., maximizing the minimum load (Tan & Wu,
2007; Max et al., 2022; Cheng, 2022), or minimizing the
maximum load (Kellerer et al., 2015), we consider the allo-
cation to agents and study the online scheduling problem in
a multi-agent perspective. The problem coincides with the
online maximin share (MMS) allocation problem proposed
by Amanatidis et al. (2022), which falls into the class of fair
allocation problems.

In the fair allocation problem, there is a set M of m indivisi-
ble items (jobs) and a group N of n (heterogeneous) agents,
where each agent i ∈ N has a valuation function vi on the
items. For indivisible items, each item e ∈ M must be
allocated to exactly one of the agents in N . Therefore each
allocation corresponds to a partitioning of the items into n
bundles (X1, . . . , Xn), where agent i ∈ N receives bundle
Xi. When agents have positive values on the items, we call
the items goods, e.g., consider the allocation of gifts to kids;
when agents have negative values on the items, we call the
items chores, e.g., when allocating tasks to workers. In this
paper, we study both the allocation of goods and chores. For
the case of chores, we assume that agents have positive costs
on the items and refer to the valuation function of agent i as
a cost function ci : 2N → R+.

Different fairness notions have been proposed to measure
how fair an allocation is, e.g., the envy-freeness (EF) (Fo-
ley, 1967; Lipton et al., 2004; Caragiannis et al., 2019),
proportionality (PROP) (Steihaus, 1948) and maximin fair
share (MMS) (Budish, 2011). In this paper, we focus on
the fairness notion of MMS. Informally speaking, the MMS
value MMSi of an agent i ∈ N is the best she can guaran-
tee if she gets to partition items into n bundles but is the
last agent to pick a bundle. An allocation is called MMS
if every agent receives a bundle with objective no worse
than her MMS value. For the case of goods, that means
vi(Xi) ≥ MMSi for all i ∈ N ; for the case of chores, that
means ci(Xi) ≤ MMSi for all i ∈ N . Similar to several
works on online scheduling (Ebenlendr et al., 2005; Wu
et al., 2007; Angelelli et al., 2007; Cheng et al., 2005; Lee
& Lim, 2013), we consider the setting of semi-online in
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which algorithms are given partial information before items
(jobs) arrive. We assume the sum of the total value of items
(the total processing time of jobs) is known, which can be
modeled as all valuation functions (resp. cost functions)
are normalized, i.e. vi(M) = n (resp. ci(M) = n) for all
i ∈ N . Hence for allocating goods, the approximation ratio
with respect to MMS is at most 1 while for chores it is at
least 1. The partial information can be considered learned
information based on the historical data. For example, in
the food bank problem proposed by Walsh (2014), the food
bank has to distribute donated food to charities in an online
manner. While the amount of food is unknown on an hourly
or daily basis, the total amount in a fixed period (e.g. a
week) can often be accurately estimated based on historical
data. To name another example, consider a manufacturing
company, e.g. Foxconn, that receives online manufacturing
orders and needs to assign orders to different working units
in a fair way. Again, while the daily order volume may
fluctuate greatly, the total volume in a month is often stable
and predictable.

The problem of online approximation of the MMS allo-
cations for agents with normalized identical valuations
coincides with the semi-online machine covering prob-
lems (Ebenlendr et al., 2005; Wu et al., 2007) when items
are goods, and the semi-online load balancing problem (An-
gelelli et al., 2007; Cheng et al., 2005; Lee & Lim, 2013)
when items are chores, in the research field of online
scheduling (where the items are jobs and agents are ma-
chines). Specifically, for allocating goods, the common
MMS of agents corresponds to the minimum load of the ma-
chines in the optimal scheduling; for chores, it corresponds
to the maximum load of the machines, e.g., the makespan,
in the optimal scheduling. For n = 2 agents, Kellerer et al.
(1997) present a 2/3-competitive algorithm for goods and a
4/3-competitive algorithm for chores and show that these
competitive ratios are the best possible. For n ≥ 3 agents,
Tan & Wu (2007) propose a 1/(n − 1)-competitive algo-
rithm and show that it is optimal for the allocation of goods;
Kellerer et al. (2015) give a 1.585-competitive algorithm
for the allocation of chores, which is also optimal due to the
lower bound by Albers & Hellwig (2012).

1.1. Our Results

In this paper, we consider both the allocation of goods and
chores and present upper and lower bounds for approximat-
ing MMS allocations. As in (Gkatzelis et al., 2021; Bogo-
molnaia et al., 2022; Barman et al., 2022), we assume that
the valuation functions are normalized1, e.g., vi(M) = n
for all i ∈ N for goods and ci(M) = n for all i ∈ N for

1In full version, we provide some justifications for this assump-
tion, showing that without this assumption (1) for the case of goods,
the competitive ratio is arbitrarily bad; (2) for the case of chores,
the problem becomes strictly harder.

chores. We refer to an online algorithm as r-competitive
if, for any online instance, the allocation returned by the
algorithm is always r-approximate MMS. We only consider
deterministic algorithms in this paper.

Due to the unknown future, the online setting brings many
challenges to the fair allocation problem and most of the
classic algorithms cease to work. There are two main dif-
ficulties in designing online algorithms: (1) the irrevoca-
ble decision-making, and (2) the arbitrary arrival order of
items. For example, the envy-cycle elimination (Lipton et al.,
2004) algorithms heavily rely on exchanging items among
agents to improve the allocation, which is not allowed in the
online setting, as the allocation decisions are irrevocable.
Other classic algorithms for approximating MMS alloca-
tions (Aziz et al., 2022; 2017; Huang & Lu, 2021) are built
on the reduction to identical ordering instances and allocate
items in decreasing order of values/costs. Unfortunately
in the online setting, the algorithm has no control over the
arrival order of items and all these algorithms fail to work.

To get around these difficulties, we combine the ideas from
the fair allocation field with that from the online schedul-
ing field and propose (deterministic) competitive online
algorithms that work against adaptive adversaries, for both
goods and chores. For the allocation of goods, we show that
no algorithm has a competitive ratio strictly larger than 0
with respect to MMS, even when there are only three agents.
In contrast, we show that competitive algorithms exist for
n = 2 agents by proposing a 0.5-competitive algorithm, and
show that this is optimal for any online algorithms. We also
present a 0.5-competitive algorithm for a general number
of agents under the assumption that the items arrive in the
order from the most valuable to the least valuable. We fur-
ther consider the small goods instances in which the value
of each item (to each agent) is bounded by some α < 1 and
present a (1−α)-competitive algorithm for general number
of agents. Due to the page limit, the proofs of the above
results are deferred to the full version. Then we turn to the
allocation of chores and propose a (2− 1/n)-competitive
algorithm for n agents, which gives a 1.5-competitive al-
gorithm for the case of n = 2 agents. We further improve
this competitive ratio to

√
2 ≈ 1.414 by giving another ef-

ficient algorithm and provide a hard instance showing that
no online algorithm can do better than 15/11 ≈ 1.364 com-
petitive for n = 2. Moreover, we consider the case when
items arrive in the order from the most costly to the least
costly, and present an algorithm that is 5/3-competitive for
general number of agents. Finally, we consider small chores
instances in which the cost of each item (to each agent) is
bounded by some α < 1 and demonstrate the existence of
(1 +α)-competitive algorithm for general number of agents.
For the case of two agents, we improve this competitive ratio
to
√
α2 − 4α+ 5 + α − 1 for small chores instances (see

full version). We summarize the upper and lower bounds on
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Table 1. Summary of results, where Lower and Upper stand for Lower Bound and Upper Bound, respectively.
Goods Chores

Lower Upper Lower Upper
n ≥ 3 0 0 1.585 (Albers & Hellwig, 2012) 2− 1/n

n = 2 0.5 0.5 15/11
√

2

the competitive ratios in Table 1).

1.2. Other Related Works

In the traditional offline fair allocation problem, it has been
shown that MMS allocations are not guaranteed to exist
for goods (by Kurokawa et al. (2018)) and for chores (by
Aziz et al. (2017)). Hence, many research focus on the
computation of approximately MMS allocations, e.g., for
goods (Kurokawa et al., 2018; Ghodsi et al., 2021; Garg
& Taki, 2021) and chores (Aziz et al., 2017; Barman &
Murthy, 2017; Huang & Lu, 2021). The state-of-the-art
approximation ratio is ( 3

4 + min{ 1
36 ,

3
16n−4}) for goods by

Akrami et al. (2023) and 13/11 for chores by Huang &
Segal-Halevi (2023). Recently, Feige et al. (2021) show that
no algorithm can achieve approximation ratios larger than
39/40 for goods and smaller than 44/43 for chores.

Similar to the literature on online scheduling, classic models
for online allocation problems often focus on optimizing a
global objective (Banerjee et al., 2022; Barman et al., 2022;
Kawase & Sumita, 2022; Kellerer et al., 2015). Recently,
inspired by many real-work applications, e.g., the alloca-
tion of food to charities in the food bank problem (Walsh,
2014; 2015; Aleksandrov et al., 2015), and the allocation
of tasks to workers in scheduling problems (Kellerer et al.,
1997; Cheng et al., 2005), some researchers turn to study
the online fair allocation problem. In contrast to the rich
literature on this problem for divisible items (Kash et al.,
2014; Li et al., 2018; Bogomolnaia et al., 2022), the case
of indivisible items is much less well-studied. To name a
few, for allocating indivisible goods, Benade et al. (2018)
propose algorithms for minimizing the expected maximum
envy among agents; He et al. (2019) study the problem of
minimizing the number of reallocations to ensure an EF1
allocation; Zeng & Psomas (2020) study the tradeoff be-
tween fairness and efficiency when the values of items are
randomly drawn from a distribution.

For a more comprehensive review of other works on fair
allocation and online fair allocation problems, please refer
to the survey by Amanatidis et al. (2022) and Aleksandrov
& Walsh (2020), respectively.

2. Preliminaries
We consider how to fairly allocate a set of m indivisible
goods (or chores) M to a group of n agents N , where items

M arrive online in an arbitrary order and agents N are
offline. When items are goods, each agent i ∈ N has a
value vi(e) ≥ 0 on each item e ∈M . That is, agent i ∈ N
has an additive valuation function vi : 2M → R+∪{0} that
assigns a positive value vi(S) =

∑
e∈S vi(e) to any subset

of items S ⊆ M , and the agents would like to maximize
their values. When items are chores, we use ci(e) ≥ 0 to
denote the cost agent i has on item e, where ci is the cost
function. We have ci(S) =

∑
e∈S ci(e) for all S ⊆ E, and

the agents would like to minimize their costs. We assume
that the valuation and cost functions are normalized, i.e.,
vi(M) = ci(M) = n for all i ∈ N . An allocation is
represented by an n-partition X = (X1, · · · , Xn) of the
items, where Xi ∩Xj = ∅ for all i 6= j and ∪i∈NXi = M .
In allocation X, agent i ∈ N receives bundle Xi. Given any
set X ⊆M and e ∈M , we use X + e and X − e to denote
X ∪ {e} and X \ {e}, respectively.

Definition 2.1 (MMS for Goods). Let Π(M) be the set of
all n-partition of M . For the allocation of goods, for all
agent i ∈ N , her maximin share (MMS) is defined as:

MMSi = max
X∈Π(M)

min
j∈N
{vi(Xj)}.

For any α ∈ [0, 1], allocation X is α-approximate maximin
share fair (α-MMS) if vi(Xi) ≥ α · MMSi holds for all
i ∈ N . When α = 1, the allocation X is MMS.

Definition 2.2 (MMS for Chores). Let Π(M) be the set of
all n-partition of M . For the allocation of chores, for all
agent i ∈ N , her maximin share (MMS) is defined as:

MMSi = min
X∈Π(M)

max
j∈N
{ci(Xj)}.

For any α ≥ 1, allocation X is α-approximate maximin
share fair (α-MMS) if ci(Xi) ≤ α ·MMSi holds for any
i ∈ N . When α = 1, the allocation X is MMS.

Online Setting. We use e1, e2, . . . , em to index the items
M in the order they arrive. We consider the adversarial
setting in which the adversary designs the instance and
decides the arrival order of items. Moreover, since our
algorithms are deterministic, the adversary can be adaptive,
that is, the adversary can design the value or cost of the
online item depending on the previous decisions by the
algorithm. The algorithm does not know m (the number of
items), but knows the number of agents n and that vi(M) =
n (for goods) or ci(M) = n (for chores). The value vi(ej)
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(resp. cost ci(ej)) of item ej ∈M is revealed for all i ∈ N
upon the arrival of ej . Then the online algorithm must make
an irrevocable decision on which agent i ∈ N this item
ej should be assigned to. In other words, no reallocations
of items are allowed. The performance of the algorithm
is measured by the competitive ratio, which is the worst
approximation guarantee (w.r.t. MMS) of the final allocation
X over all online instances.

3. Allocation of Goods
We first consider the allocation of goods and provide upper
and lower bounds for the competitive ratio of online algo-
rithms for approximating MMS allocations. Recall that for
the allocation of goods, the larger the competitive ratio the
better, and thus upper bound corresponds to impossibility
results while the lower bound corresponds to algorithmic
results. As introduced, when agents have identical valu-
ation functions, optimal competitive ratios 1/(n − 1) for
n ≥ 3 (Tan & Wu, 2007) and 2/3 for n = 2 (Kellerer et al.,
1997) have been proved. In this section, we focus on the
case when agents have general additive valuation functions.
We first show that no online algorithm can guarantee a com-
petitive ratio larger than 0, even for n = 3 agents. Then
we propose our 0.5-competitive algorithm for the two-agent
case.

Note that for the allocation of goods, we have MMSi ≤
(1/n) · vi(M) = 1. Therefore as long as an agent receives
a bundle with vi(Xi) ≥ γ, the allocation must be at least
γ-MMS to her.

3.1. Upper Bound of Approximation Ratio

We show in this subsection that when there are at least
3 agents, the problem of approximating MMS allocations
online does not admit any competitive algorithm.

Theorem 3.1. No online algorithm has a competitive ratio
strictly larger than 0 for approximating MMS allocations
for goods, even when n = 3.

Proof. We first consider the case of n = 3 agents and pro-
vide a collection of instances showing that no online algo-
rithm can guarantee a competitive ratio strictly larger than 0
on these instances. The case when n ≥ 4 can be proved in a
very similar way, and we defer the proof to supplementary.

For the sake of contradiction, suppose there exists a γ-
competitive algorithm for approximating MMS allocation
for n = 3 agents, where γ ∈ (0, 1]. Let r > 1/γ be a
sufficiently large integer and ε > 0 be sufficiently small
such that r3ε < γ. We construct a collection of instances
and show that for the allocation returned by the algorithm
for at least one of these instances, at least one agent i ∈ N
is allocated a bundle Xi with vi(Xi) < (1/r) ·MMSi. Note

that since the allocation is deterministic, we can construct
an instance gradually depending on how the previous items
are allocated.

To begin with, let the first item be e1 with v1(e1) =
v2(e1) = v3(e1) = ε and assume w.l.o.g. that agent 1
receives it. Then let the second item be e2 with

v1(e2) = r2ε, v2(e2) = v3(e2) = ε.

Since the online algorithm has competitive ratio γ > 1/r,
item e2 can not be assigned to agent 1. This is because
otherwise for the instance with only three items, where
v1(e3) = 3− ε− r2ε and v2(e3) = v3(e3) = 3− 2ε, there
must exists an agent (in {2, 3}) that receives no item, which
leads to a 0-MMS allocation. Since v2(e1) = v2(e2) =
v3(e1) = v3(e2), we can assume w.l.o.g. that agent 2 re-
ceives item e2. Let e3 be such that

v1(e3) = rε, v2(e3) = r2ε, v3(e3) = ε.

We first show that e3 can not be assigned to agent 2. Assume
otherwise, i.e., e3 ∈ X2. Then for the instance with four
items, where the last item e4 has

v1(e4) = 3− (ε+ rε+ r2ε),

v2(e4) = 3− (2ε+ r2ε), v3(e4) = 3− 3ε,

either X1 = {e1} or X3 = ∅ in the final allocation. Since
MMS1 = ε + rε and MMS3 > 0, in both cases the com-
petitive ratio is strictly smaller than γ. Hence every γ-
competitive algorithm must allocate item e3 to either agent
1 or 3. Depending on which agent receives item e3, we
construct two different instances.

For the case when agent 1 receives item e3, we construct
the instance with five items as in Table 2.

Table 2. Instance with m = 5 when e3 assigned to agent 1.
e1 e2 e3 e4 e5

1 ε r2ε rε r3ε 3− (r3ε+ r2ε+ rε+ ε)
2 ε ε r2ε rε 3− (r2ε+ rε+ 2ε)
3 ε ε ε ε 3− 4ε

Let X ′i be the bundle agent i holds at the moment, for each
i ∈ N . We have MMS1 = r2ε + rε + ε, MMS2 =
rε + 2ε, MMS3 = 2ε and v1(X ′1) = v1(e1 + e3) =
rε+ ε, v2(X ′2) = v2(e2) = ε, v3(X ′3) = 0. For all i ∈ N ,
vi(X

′
i) < 1/r ·MMSi. Observed that there must exist at

least one agent i ∈ N that does not receive any item in
{e4, e5} in the final allocation. In other words, we have
Xi = X ′i , which leads to a contradiction that the algorithm
computes γ-MMS allocations.

Next, we consider the case when agent 3 receives item e3.
Let the next item e4 be such that

v1(e4) = ε, v2(e4) = rε, v3(e4) = r2ε.
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We argue that the algorithm can not allocate item e4 to agent
3. Consider the following instance (as shown in Table 3).

Table 3. Instance showing e4 cannot be assigned to agent 3.
e1 e2 e3 e4 e5

1 ε r2ε rε ε 3− (r2ε+ rε+ 2ε)
2 ε ε r2ε rε 3− (r2ε+ rε+ 2ε)
3 ε ε ε r2ε 3− (r2ε+ 3ε)

Note that for this instance we have

MMS1 = MMS2 = rε+ 2ε,

while at the moment we have v1(X ′1) = v2(X ′2) = ε. There-
fore the agent i ∈ {1, 2} that does not receive item e5 in the
final allocation is not γ-MMS. Therefore we know that the
algorithm must allocate item e4 to agent 1 or 2, for which
case we construct the following instance with six items (as
shown in Table 4).

Note that for this instance we have

MMS1 = r2ε+2ε, MMS2 = r2ε+ rε+ 2ε,

MMS3 = r2ε+ ε.

On the other hand, (no matter which agent receives item e4)
we have

v1(X ′1) ≤ 2ε, v2(X ′2) ≤ rε+ ε, v3(X ′3) = ε.

Since only items {e5, e6} are not allocated, for the agent
i ∈ N that does not receive any item in {e5, e6} in the final
allocation, the allocation is not γ-MMS to her.

In summary, no online algorithm is γ-competitive for three
agents. Extending this result to n ≥ 4 agents is almost
straightforward, and we refer the proof to the full version.

3.2. Two Agents

In this section, we consider the case with two agents and
show that a 0.5-competitive algorithm exists, and is indeed
optimal. A natural algorithmic idea for two agents is to
allocate each item to the agent who values the items more (in
a greedy manner) and stop allocating any further item to an
agent once its total value exceeds 0.5. Unfortunately, via the
following instance (see Table 5) we show that the allocation
returned by this greedy algorithm can be arbitrarily bad.

In this instance, both items e1, e2 are allocated to agent 2
since she values them more, and her value does not exceed
0.5 at the moment of allocation. However, the allocation is
far from being MMS fair to agent 1, since MMS1 = 0.5 + ε
and v1(X1) = 3ε. The algorithm fails because when there
exists an item with very large value, e.g., item e2 in the

instance, the greedy algorithm may allocate this item to the
agent with value close to 0.5, which results in a significantly
unfair allocation. To fix this issue, we propose the following
algorithm that equips the greedy algorithm with a special
handling of large items.

Algorithm for Two Agents. We call an item e large to
agent i if vi(e) ≥ 0.5. For each online item e, if it is large
to both agents, we assign e to the agent with smaller vi(Xi)
at the moment and allocate all future items to the other
agent. Otherwise, we allocate e to the agent i with larger
vi(e). Once we have vi(Xi) ≥ 1/2 for some agent i ∈ N ,
we allocate all future items to the other agent j 6= i (refer
to Algorithm 1). Throughout the algorithm (and all later
algorithms), we break ties arbitrarily but consistently, e.g.,
using the id of agents.

Algorithm 1 Algorithm-for-2-Agents-for-Goods
Initialize: X1, X2 ← ∅ and A ← {1, 2} be the active
agents
for each online item e ∈M do

if |A| = 1 then
Xi ← Xi + e, where i ∈ A

else if v1(e) ≥ 1/2 and v2(e) ≥ 1/2 then
i← argminj∈N{vj(Xj)}, Xi ← Xi + e
turn agent i into inactive: A← A \ {i}

else
i← argmaxj∈N{vj(e)}, Xi ← Xi + e
if vi(Xi) ≥ 1/2 then

turn agent i into inactive: A← A \ {i}
end if

end if
end for
Output: X = (X1, X2)

Theorem 3.2. For n = 2 agents, Algorithm 1 computes an
0.5-MMS allocation in O(m) time.

Proof. Let X = (X1, X2) be the final allocation. We first
show that if no item e ∈ M is large to both agents, then
X is 1/2-MMS. Since each item e is allocated to the agent
with larger vi(e), we have vi(Xi) ≥ vj(Xi) for all i ∈ N
and j 6= i. Therefore in the final allocation, we have

v1(X1) + v2(X2) ≥ v1(M) = 2.

Hence at least one of the agents, says agent i, will be turned
inactive by the algorithm. Let e be the last item agent
i receives. Then we have vi(e) ≥ vj(e) for j 6= i and
vi(Xi − e) < 0.5 by the design of the algorithm. Hence we
have

vj(Xi) = vj(Xi − e) + vj(e) < 1/2 + 1/2 = 1,

where the inequality holds because vj(Xi−e) ≤ vi(Xi−e)
(since each item is allocated to the agent that values it more),

5



Multi-agent Online Scheduling: MMS Allocations for Indivisible Items

Table 4. Suppose e4 is allocated to one of the agents in {1, 2}.
e1 e2 e3 e4 e5 e6

1 ε r2ε rε ε r2ε 3− (2r2ε+ rε+ 2ε)
2 ε ε r2ε rε r3ε 3− (r3ε+ r2ε+ rε+ 2ε)
3 ε ε ε r2ε r2ε 3− (2r2ε+ 3ε)

Table 5. Hard instance for the greedy algorithm, where ε > 0 is
arbitrarily small.

e1 e2 e3

1 0.5− 2ε 1.5− ε 3ε

2 0.5− ε 1.5 ε

and that item e is not large to agent j. Hence we have
vj(Xj) = vj(M)− vj(Xi) > 1. Recall that vi(Xi) ≥ 1/2.
Hence the allocation X is a 1/2-MMS.

Next, we argue that if there exists an item e ∈ M large
to both agents, then X is also 1/2-MMS. Let item e be
the first item large to both agents and suppose that it is
allocated to agent i. Then we have vi(Xi) ≥ vi(e) ≥ 1/2 ≥
1/2 ·MMSi. Next we show that vj(Xj) ≥ 1/2 ·MMSj for
the other agent j 6= i. Let X ′1 (resp. X ′2) be the bundle
agent 1 (resp. 2) holds before item e is allocated. By the
design of the algorithm we have vi(X ′i) ≤ vj(X

′
j). Since

all items that arrive before e are allocated greedily, we have
vj(X

′
j) ≥ vi(X

′
i) ≥ vj(X

′
i). Since all items that arrive

after e are allocated to agent j, we have

vj(Xj) ≥
1

2
· (vj(Xj) + vj(X

′
i))

=
1

2
· vj(M − e) ≥

1

2
·MMSj ,

where the last inequality holds because in any allocation the
bundle not containing item e has value at most vj(M − e),
which implies MMSj ≤ vj(M − e). Since the allocation
of each item e ∈M takes O(1) time, the algorithm runs in
O(m) time.

Next, we show that no online algorithm can achieve a com-
petitive ratio strictly better than 0.5. Therefore, our algo-
rithm is optimal.

Theorem 3.3. For n = 2 agents, no online algorithm has a
competitive ratio strictly larger than 0.5.

Proof. Assume the contrary that there exists an online algo-
rithm with competitive ratio 0.5 + δ for some δ > 0. We
first prove that this algorithm must maintain the following
property throughout the execution of the whole algorithm,
which (roughly speaking) enforces the algorithm to maintain
an “uneven” allocation at all times.

Claim 3.1. Throughout the execution of a (0.5 + δ)-
competitive algorithm, if v1(X1 + X2) ≤ 1 and v2(X1 +
X2) ≤ 1, then there must exists i ∈ N such that vi(Xi) >
(1 + δ) · vi(Xj).

Following Claim 3.1 we construct an instance (see Ta-
ble 6), and show that the algorithm must allocate all items
e1, . . . , ek to agent 1 (we can assume w.l.o.g. that agent 1
receives the first item).

Specifically, the first item e1 has v1(e1) = v2(e1) = ε and
we can assume w.l.o.g that agent 1 receives it. Then we
construct items e2, · · · , ek such that for all 1 < i ≤ k, we
have

v1(ei) =
(2 + δ)i−2 · ε

(1 + δ)i−1
,

v2(ei) =

{
(2 + δ)i−2 · (1 + δ) · ε, if i ≤ l
(2 + δ)l−2 · (1 + δ) · ε, if i > l.

Observe that for all 1 < i ≤ k, we have
i−1∑
j=1

v1(ej) = ε+
ε

1 + δ
·
i−1∑
j=2

(
2 + δ

1 + δ

)j−2

= ε ·
(

2 + δ

1 + δ

)i−2

= (1 + δ) · v1(ei). (1)

For all 1 < i ≤ l, we have
i−1∑
j=1

v2(ej) = ε+ ε · (1 + δ) ·
i−1∑
j=2

(2 + δ)j−2

= ε · (2 + δ)i−2 =
v2(ei)

1 + δ
. (2)

In other words, item ei has value roughly the same as all
items before i combined, for both agents. However, the
value grows slightly faster in v2 than in v1. This is also
reflected by the definition of v1(ei) and v2(ei): observe
that for all 1 < i ≤ l we have v2(ei)

v1(ei)
= (1 + δ)i, i.e., the

difference in value under the two valuation functions grows
exponentially in i. Note that all items el, el+1, . . . , ek have
the same value (2 + δ)l−2 · (1 + δ) · ε to agent 2. By picking
ε = 0.1

(1+δ)(2+δ)l−2 we can ensure that

v2(el) = v2(el+1) = · · · = v2(ek)

= (2 + δ)l−2 · (1 + δ) · ε = 0.1.
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e1 · · · el · · · ek ek+1

1 ε · · ·
(2 + δ)l−2 · ε
(1 + δ)l−1

· · ·
(2 + δ)k−2 · ε
(1 + δ)k−1

>1.9

2 ε · · · (2 + δ)l−2(1 + δ)ε · · · (2 + δ)l−2(1 + δ)ε <0.1

Table 6. Hard instance for allocation of goods for two agents, where ε > 0 is arbitrarily small.

Finally, let ek+1 be the last item with v1(X1+X2+ek+1) =
v2(X1 +X2 + ek+1) = 2. By setting k = l + 18, we have
(where the third equality follows from (2) and v2(el) = 0.1)

v2(ek+1) = 2−
k∑
i=1

v2(ei)

= 2−
l−1∑
i=1

v2(ei)− (k − l + 1) · v2(el)

= 2− 0.1

1 + δ
− 1.9 =

0.1 · δ
1 + δ

.

By setting l to be sufficiently large (which also defines ε and
k), we can ensure that

v1(ek+1) = 2−
k∑
i=1

v1(ei) = 2− ε ·
(

2 + δ

1 + δ

)k−1

= 2− 0.1 · (2 + δ)19

(1 + δ)l+18
> 1.9.

We argue that the algorithm must allocate the first k items
to agent 1.

Claim 3.2. The algorithm with competitive ratio 0.5 + δ
must assign all items e2, · · · , ek to agent 1.

Given Claim 3.2, we know that when item ek+1 arrives,
agent 2 is not allocated any item, which leads to v2(X2) <
0.1 in the final allocation. Since MMS2 = 1, the allocation
is obviously not (0.5 + δ)-MMS to agent 2, which is also a
contradiction.

4. Allocation of Chores
In this section, we consider the allocation of chores. Recall
that for the allocation of chores, each agent i ∈ N has a cost
ci(e) ≥ 0 on item e ∈M , and the competitive ratios are at
least 1 (thus the smaller the better). Also recall that when
agents have identical cost functions, optimal competitive
ratios 1.585 (Kellerer et al., 2015) and 4/3 (Kellerer et al.,
1997) have been proved for n ≥ 3 and n = 2, respectively.
We focus on the case when agents have general additive cost
functions. In contrast to the allocation of goods, we show
that MMS allocation of chores admits constant competitive
algorithms even for general number of agents. For n ≥ 3
agents, we propose a (2−1/n)-competitive algorithm using
a similar idea of greedy allocation as in (Li et al., 2022);

for n = 2 agents, we improve the competitive ratio to√
2 and show that the competitive ratio is at least 15/11

for any online algorithm. Note that for the allocation of
chores, we have MMSi ≥ (1/n) · ci(M) = 1. Therefore
as long as an agent receives a bundle with cost ci(Xi) ≤ α,
the allocation must be α-MMS to her. Moreover, we have
MMSi ≥ maxe∈M{ci(e)}, because in any allocation the
bundle with maximum cost should have cost at least as large
as that of the most costly item.

4.1. Online Approximation Algorithm

We first consider the general case with n agents and present
our algorithm that computes a (2− 1/n)-MMS allocations
in O(mn) time. The algorithm follows a similar idea as we
have used in the previous section (refer to Algorithm 2): (1)
each online item is greedily allocated to the active agent that
has minimum cost on the item; (2) once an agent receives a
collection of items of large cost (≥ 1−1/n in our algorithm),
we inactivate this agent. Initially, all agents are active, and
if at some moment only one agent is active, then all future
items will be allocated to this agent.

Algorithm 2 Algorithm-for-n-Agents-for-Chores
Initialize: A← N and for any i ∈ N , Xi ← ∅
for each online item e ∈M do

if |A| = 1 then
Xi ← Xi + e, where i ∈ A

else
i← argminj∈A{cj(e)};
Xi ← Xi + e
if ci(Xi) ≥ 1− 1/n then

turn agent i into inactive: A← A \ {i}
end if

end if
end for
Output: X = (X1, X2, · · · , Xn)

Theorem 4.1. For n ≥ 2 agents, Algorithm 2 computes a
(2− 1

n )-MMS allocation in O(mn) time.

Proof. Note that throughout the execution of the algorithm,
if |A| ≥ 2, then all active agents i ∈ A has ci(Xi) <
1− 1/n. Therefore, for any agent i that is inactivated, let ei
be the last item agent i receives, then we have

ci(Xi) < 1− 1/n+ ci(ei) ≤ (2− 1/n) ·MMSi,
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where the inequality follows from the fact that MMSi ≥
maxe∈M{ci(e)} and MMSi ≥ 1 for the allocation of
chores. Hence the final allocation is (2− 1/n)-MMS to all
inactive agents, and it remains to consider the case when
|A| = 1 at the end of the algorithm.

Let i be the only active agent to which the last item is
allocated. By the design of the algorithm, for each j 6= i
(that is already inactivated), we have cj(Xj) ≥ 1 − 1/n.
Moreover, by the greedy allocation of the algorithm, for
all e ∈ Xj we have cj(e) ≤ ci(e) (because both agents i
and j are active when e arrives). Hence we have ci(Xj) ≥
cj(Xj), which implies

ci(Xi) = ci(M)−
∑
j 6=i

ci(Xj)

≤ n− (n− 1) · (1− 1/n)

= 2− 1/n ≤ (2− 1/n) ·MMSi.

Hence, the allocation is also (2 − 1/n)-MMS to agent i.
Since the allocation of each item takes O(n) time, the al-
gorithm returns a (2 − 1/n)-MMS allocation in O(nm)
time.

4.2. Two Agents

The above result gives a 1.5-competitive algorithm for
n = 2 agents. In this section, we improve the ratio to

√
2.

We complement our algorithmic result with hard instances
showing that no online algorithm can do better than 15/11-
competitive. The key observation towards this improvement
is to mimic the bin-packing algorithms (Aziz et al., 2017;
Huang & Lu, 2021) for approximating MMS for chores. In
particular, as long as the costs of the two agents do not differ
by a factor larger than

√
2, we deviate from the greedy allo-

cation and treat the item as equally costly to the two agents,
and allocate the item to a designated agent (agent 1 in our
algorithm). In addition, to ensure a bounded competitive
ratio, we dynamically update a lower bound αi for MMSi,
for both i ∈ {1, 2}. Our algorithm makes sure that each
allocation of item does not result in ci(Xi) ≥

√
2 · αi for

both i ∈ {1, 2}.

Algorithm for Two Agents. Throughout the execu-
tion of the algorithm, we maintain that αi =
max{1,maxe:arrived{ci(e)}}. For each online item e, we
first identify the agentsA = {i ∈ N : ci(Xi+e) ≤

√
2·αi}

that can receive the item e without violating the competitive
ratio

√
2. If |A| = 1 then we allocate e to the only agent

in A; otherwise if c1(e) ≤
√

2 · c2(e), we allocate item e
to agent 1; otherwise we allocate item e to agent 2 (refer to
Algorithm 3).

Theorem 4.2. For n = 2 agents, Algorithm 3 computes a√
2-MMS allocation in O(m) time.

Algorithm 3 Algorithm-for-Two-Agents-for-Chores
Initialize: X1 ← ∅, X2 ← ∅, α1 ← 1 and α2 ← 1
for each online item e ∈M do

update α1 ← max{α1, c1(e)}
update α2 ← max{α2, c2(e)}
A← {i ∈ N : ci(Xi + e) ≤

√
2 · αi}

if |A| = 1 then
Xi ← Xi + e, where i ∈ A

else if c1(e) ≤
√

2 · c2(e) then
X1 ← X1 + e

else
X2 ← X2 + e

end if
end for
Output: X = (X1, X2)

Proof. Since we always have MMSi ≥ αi, to show that
the returned allocation is

√
2-MMS, it suffices to show that

when each item e arrives, the set A is not empty. Because
whenA 6= ∅, our algorithm will allocate e to some agent i ∈
A, which ensures that ci(Xi + e) ≤

√
2 · αi ≤

√
2 ·MMSi.

For the sake of contradiction, we assume that when some
online item e∗ arrives we have A = ∅. That is, we have
ci(Xi + e∗) >

√
2 · αi for both i ∈ {1, 2}, where Xi is the

bundle agent i holds when e arrives. We claim that under
this situation, we have c1(e′) >

√
2 · c2(e′) for all item

e′ ∈ X2.

Claim 4.1. For all e′ ∈ X2, c1(e′) >
√

2 · c2(e′).

Proof. Suppose otherwise and let e1 be the first item as-
signed to X2 with c1(e1) ≤

√
2 · c2(e1). Let X ′1 be the

bundle agent 1 holds when e1 arrives. By the design of the
algorithm we must have c1(X ′1 + e1) >

√
2 · α1 ≥

√
2,

because otherwise e1 will be allocated to agent 1. Recall
that we assumed c1(X1 + e∗) >

√
2 · α1 ≥

√
2 for some

item e∗ that is not allocated in the final allocation, which
implies

c1(X2) ≤ c1(M)− c1(X1 + e∗) < 2−
√

2.

Therefore we have c1(e1) ≤ c1(X2) < 2 −
√

2 (because
e1 ∈ X2), which gives

c1(X ′1) = c1(X ′1 + e1)− c1(e1) > 2
√

2− 2.

On the other hand, since e1 ∈ X2 is the first item with
c1(e1) ≤

√
2 · c2(e1), we have

c2(X ′1) ≥ c1(X ′1)/
√

2 > 2−
√

2,

which implies c2(X2 + e∗) ≤ c2(M −X ′1) <
√

2, and it is
a contradiction with our previous assumption that c2(X2 +
e∗) >

√
2 · α2 for some item e∗ (that arrives after e1).

8
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Note that c1(X2) ≤ c1(M)− c1(X1 + e∗) < 2−
√

2. By
Claim 4.1,

c2(X2) < c1(X2)/
√

2 <
√

2− 1.

Recall that α2 ≥ max{1, c2(e∗)}, we have c2(X2 + e∗) ≤√
2 − 1 + c2(e∗) ≤

√
2 · α2, which is a contradiction.

Finally, since the allocation of each item takes O(1) time,
the algorithm executes in O(m) time.

Next, we present a collection of instances and show that no
online algorithm can have a competitive ratio smaller than
15/11.

Theorem 4.3. For n = 2 agents, no online algorithm has a
competitive ratio smaller than 15/11.

Proof. Assume the contrary and suppose there exists an
online algorithm with a competitive ratio smaller than 15/11.
In the following, we construct some instances and show that
the algorithm returns an allocation with an approximation
ratio (w.r.t. to MMS) of at least 15/11 on at least one of the
instances, which is a contradiction.

Let the first item be e1 with c1(e1) = c2(e1) = 4/11, and
we assume w.l.o.g. that it is allocated to agent 1. Then we
construct the second item e2 that values 4/11 to agent 1
and 3/11 to agent 2. We argue that the algorithm with a
competitive ratio smaller than 15/11 can not assign e2 to
agent 1.

Table 7. Assume item e2 is assigned to agent 1.
e1 e2 e3 e4

1 4/11 4/11 7/11 7/11

2 4/11 3/11 7/11 8/11

Assume otherwise, i.e., item e2 is also allocated to agent 1,
and we consider the instance as shown in Table 7. Note that
for this instance we have MMS1 = MMS2 = 1. However,
no matter how e3 and e4 are allocated, there must be an
agent with a total cost of at least 15/11, which is a contra-
diction. Therefore the algorithm must allocate e2 to agent 2.
Then we construct the following instance with 7 items (see
Table 8), and show that the algorithm must allocate items
e3, e4, e5 and e6 to agent 1.

Table 8. Assume item e2 is assigned to agent 2.
e1 e2 e3 e4 e5 e6 e7

1
4

11

4

11

3

11

3

11

3

11

3

11

2

11

2
4

11

3

11

1

11

1

11

1

11

1

11
1

Assume otherwise and let ei be the first item in
{e3, e4, e5, e6} allocated to agent 2. Note that right after
the allocation we have c2(X2) = 4/11. Then we consider
another instance in which the next item ei+1 has

c1(ei+1) =


1, if i = 3

8/11, if i = 4

5/11, if i = 5

2/11, if i = 6

and c2(ei+1) = 1.

It can be verified that in all cases, MMS1 = MMS2 =
1 but whoever receives item ei+1 would have cost at
least 15/11, which is a contradiction. Hence we have
{e3, e4, e5, e6} ⊆ X1, which is also a contradiction because
c1(X1) ≥ 16/11 > 15/11 (see Table 8).

5. Conclusion and Open Problems
In this paper, we study the problem of fairly allocating in-
divisible online items to a group of agents with general
additive valuation functions. For the allocation of goods,
we show that no algorithm can guarantee any non-zero com-
petitive ratio for n ≥ 3 agents and propose an optimal
0.5-competitive algorithm for two agents. For the alloca-
tion of chores, we propose a (2 − 1/n)-competitive algo-
rithm for n ≥ 3 agents, a

√
2-competitive algorithm for

two agents, and show that no algorithm can do better than
15/11-competitive for two agents. We also study the mono-
tone instances for both goods and chores and improve the
competitive ratios to 0.5 and 5/3 for goods and chores, re-
spectively. We further consider the small items instances
such that all value/cost are not greater than α where (1−α)-
competitive algorithm and (1 + α)-competitive algorithm
exist for goods and chores respectively and improve the
competitive ratio to

√
α2 − 4α+ 5+α−1 when allocating

small chores to two agents.

There are many open problems regarding the online approx-
imation of MMS allocations. First, while we show that
no competitive algorithm exists for the online allocation
of goods and competitive algorithms exist for monotone
instances, we are curious about a less restrictive condition
under which competitive algorithms exist. Second, for the
allocation of chores, the lower bound of 1.585 for general
number of agents follows from the identical valuation case,
and it remains unknown whether the general additive valua-
tion case is strictly harder. It is also interesting to investigate
the optimal competitive ratio (which is in [1.585, 2)) for
general number of agents and that for the case of two agents
(which is in [1.364, 1.414]). Finally, while we show that nor-
malization of the valuation functions is necessary to achieve
a bounded ratio for the allocation of goods, it remains un-
known whether constant competitive ratios can be achieved
for chores if the cost functions are not normalized.
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