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Abstract
In deep learning, often the training process finds
an interpolator (a solution with 0 training loss),
but the test loss is still low. This phenomenon,
known as benign overfitting, is a major mystery
that received a lot of recent attention. One com-
mon mechanism for benign overfitting is implicit
regularization, where the training process leads
to additional properties for the interpolator, often
characterized by minimizing certain norms. How-
ever, even for a simple sparse linear regression
problem y = β∗⊤x + ξ with sparse β∗, neither
minimum ℓ1 or ℓ2 norm interpolator gives the op-
timal test loss. In this work, we give a different
parametrization of the model which leads to a new
implicit regularization effect that combines the
benefit of ℓ1 and ℓ2 interpolators. We show that
training our new model via gradient descent leads
to an interpolator with near-optimal test loss. Our
result is based on careful analysis of the training
dynamics and provides another example of im-
plicit regularization effect that goes beyond norm
minimization.

1. Introduction
Benign overfitting – the phenomenon that the training loss
becomes 0, but the test loss remains low – is a major mys-
tery in deep learning. Recently, a long line of works (Belkin
et al., 2019; Bartlett et al., 2020; Belkin et al., 2020; Hastie
et al., 2022; Advani et al., 2020; Koehler et al., 2021) tried
to explain why interpolators (solutions with 0 training loss)
can still enjoy good test loss for various models. This phe-
nomenon is interesting and was studied extensively even for
simple models of linear regression (see e.g.,Bartlett et al.
(2020); Tsigler & Bartlett (2020); Hastie et al. (2022)),
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where data (x, y) is generated as

y = β∗⊤x+ ξ.

Here, β∗ is an unknown vector that we hope to learn, x
is generated from a data distribution and ξ represents the
noise.

One of the major explanations for benign overfitting is im-
plicit regularization, which suggests that the training pro-
cess promotes additional properties for the interpolator that
it finds. In the context of the simple linear regression, it
was known that fitting the model y = β⊤x directly by gra-
dient descent gives the β with minimum ℓ2 norm; while
parametrizing β as β = w⊙2 − u⊙2 (here ⊙2 represents
entry-wise square) gives the β with minimum ℓ1 norm.

However, for sparse linear regression, implicit regulariza-
tion in the form of ℓ1 or ℓ2 norm minimization does not
lead to benign overfitting. More precisely, if β∗ ∈ Rd is an
s-sparse vector, given n samples (xi, yi) for i = 1, 2, ..., n
where n ≪ d, xi ∼ N(0, I) and ξi ∼ N(0, σ2), one
can still hope to find a parameter β such that the test loss
1
2E[(y − β⊤x)2] is on the order of σ2s log(d/s)/n. Nei-
ther minimum ℓ1 or ℓ2 interpolator achieves anything near
this guarantee: the best ℓ2 norm interpolator achieves a
test loss of Ω(∥β∗∥22) (Bartlett et al., 2020; Hastie et al.,
2022) while the best ℓ1 norm interpolator achieves a test
loss of Ω(σ2/ log(d/n)) (Chatterji & Long, 2022; Wang
et al., 2022).

In the sparse regression setting, Muthukumar et al.
(2020) showed that when the model is significantly over-
parametrized (d ≫ n), it is still possible to find an in-
terpolator with near-optimal test loss. The interpolator in
Muthukumar et al. (2020) has to be constructed explicitly
through a 2-stage process which combines ℓ1 and ℓ2 norm
minimization. In this paper, we ask whether such an interpo-
lator can be found via implicit regularization – by directly
minimizing the loss using a new parametrization.

1.1. Our Result and Technique

We show that implicit regularization can indeed give near-
optimal interpolators (up to polylog factors) and therefore
achieve benign overfitting in the sparse regression setting:
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Theorem 1.1 (Informal). In the sparse linear regression
setting with unknown s-sparse target β∗, suppose we
parametrize linear function β⊤x as

β = v + λ(w⊙2 − u⊙2).

If Ω̃(s4) ≤ n ≤ Õ(
√
d), with proper choice of parameters,

gradient descent converges to a solution β with 0 training
loss and test loss

∥β − β∗∥2 = O

σ

√
s log5(d)

n

 .

More formal versions of this theorem appear as Theorem 3.1
and Corollary 3.2. Note that the test loss is within polylog
factor to the minimax rate.

The model we use is similar to a 2-layer scalar network
(which gives the w⊙2 − u⊙2 term) with a skip-through
connection (the v term) like in the ResNet (He et al., 2016).
Intuitively, the term λ(w⊙2 − u⊙2) promotes minimum ℓ1
norm properties and can be used to fit the sparse signal β∗,
while the term v promotes minimum ℓ2 norm properties and
can be used to fit the noise.

Of course, showing that training this model via gradient de-
scent leads to the correct trade-off between fitting the signal
and noise is still challenging. We rely on dynamics analysis
and show that the term λ(w⊙2 − u⊙2) first grows fast to
recover the sparse signal and then the term v grows to fit the
noise. Interactions between all parameters v,w,u makes it
difficult to directly derive an accurate dynamics analysis. To
address this issue, we introduce a new way to decompose v
that allows us to separate the effect of learning signal and
fitting noise and leads to a better characterization of the
training dynamics. See details in Section 4 and Section 5.

1.2. Related Works

There is a long line of work trying to understand implicit
regularization effect, we refer the readers to some surveys
for more complete discussions (Bartlett et al., 2021; Dar
et al., 2021; Vardi, 2022). Here, we first summarize implicit
regularization effect for interpolating linear models and their
variants in regression setting. We then discuss related works
for implicit regularization that are more related to training
dynamic analysis instead of norm-minimizing.

Min-ℓ2-norm interpolator When using linear model
β⊤x for regression 1

2n

∑
i(β

⊤xi − yi)
2, it is known that

gradient flow/descent with 0 initialization will converge to
the solution that minimizes its ℓ2 norm (e.g., Gunasekar
et al. (2018)). Recently, many papers have studied the gener-
alization error of such min-ℓ2-norm interpolator in the over-
parametrized regime where the dimension is much larger

than then number of samples: Hastie et al. (2022); Mitra
(2019) focused on the asymptotic regime where d, n→∞
with fixed ratio, Bartlett et al. (2020); Tsigler & Bartlett
(2020) gave the non-asymptotic results under certain data
assumption, Belkin et al. (2020) studied Gaussian data case,
and Zhou et al. (2020); Negrea et al. (2020); Koehler et al.
(2021) developed different frameworks to analyze low-norm
interpolator. In particular, these results suggest that min-
ℓ2-norm interpolator can achieve benign overfitting when
the spectrum of input data covariance matrix has certain
structure. On the other hand, it suffers from large test loss
with isotropic features (identity covariance matrix for x).

Min-ℓ1-norm interpolator Going beyond the simplest
linear model β⊤x, when the underlying signal is known
to be sparse, one could reparametrize β by β(w,u) =
w⊙L−u⊙L, where⊙L represents element-wise L-th power
for integer L ≥ 2. Woodworth et al. (2020); Azulay et al.
(2021); Yun et al. (2021) showed that gradient flow with
such parametrization converges to min-ℓ1-norm solution
when using small initialization and min-ℓ2-norm solution
when using large initialization. Researchers have studied
the test loss of the min-ℓ1-norm interpolator in the sparse
noisy linear regression: Mitra (2019); Li & Wei (2021)
studied the asymptotic regime with d, n → ∞ with fixed
ratio, Ju et al. (2020) focused on the Gaussian data case, and
Chinot et al. (2022); Koehler et al. (2021) developed differ-
ent frameworks and analyzed min-ℓ1-norm interpolator as
an example.

Lower bounds are also shown in Chatterji & Long (2022);
Wang et al. (2022), which suggests that min-ℓ1-norm inter-
polator does not have good generalization performance due
to its sparsity. Vaskevicius et al. (2019); Li et al. (2021a)
showed that gradient descent with early stopping can still
achieve near-optimal test loss, but these results do not give
interpolating models.

Hybrid model Muthukumar et al. (2020) proposed an in-
terpolation scheme called hybrid interpolation (Definition
5 in their paper) to achieve optimal test loss. Specifically,
the hybrid interpolation is a 2-step procedure to achieve
benign overfitting: (1) use any estimator to recover signal
(e.g., Lasso (Bickel et al., 2009)); (2) use min-ℓ2-norm in-
terpolator to memorize the remaining noise. Such two-step
procedure shares similarity with the learning dynamics in
our analysis: our model will first recover the signal using
the second-order term and then fit the noise using the lin-
ear term. Different from the hybrid interpolation scheme
that requires a 2-step procedure, in our setup such learning
dynamics arise naturally just by running gradient descent.

Beyond norm-minimization for implicit regularization
Many of the earlier works for implicit regularization shows
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that the training process minimizes a certain norm (or maxi-
mizes margin with respect to a norm). The first example of
implicit regularization that goes beyond norm minimization
works in the setting of matrices. Arora et al. (2019) observed
that for low-rank matrix problems the solution found does
not always minimize the nuclear norm. Similar idea has also
been exploited in the full-observation matrix sensing (Gidel
et al., 2019; Gissin et al., 2020). Later Li et al. (2021b)
was able to characterize the implicit regularization effect
in matrix sensing problems via a greedy-low-rank-learning
dynamics. Such implicit rank regularization and dynamics
analysis are also studied in tensor problems (Razin et al.,
2021; 2022; Ge et al., 2021) and neural networks (Timor
et al., 2023; Frei et al., 2023). The implicit regularization
effect in our setting can be characterized using the results in
Li et al. (2022), but it does not directly imply the generaliza-
tion guarantee. Our result shows that dynamics analysis can
be important even in the simpler sparse regression model to
achieve benign overfitting.

2. Preliminary
In this section we first introduce basic notations. Then we
define the precise sparse recovery problem we are solv-
ing, and the learner model/algorithms we use. Finally we
state several useful properties for the data that we will use
throughout our analysis.

Notation Denote [n] = {1, 2, . . . , n}. We use bold sym-
bols to represent vectors and matrices. For vector β ∈ Rd,
given any set A ⊆ [d], let βA :=

∑
i∈A βiei be the same

as β for the entries in set A and 0 for other entries, where
{ei} is the standard basis. We use standard big-O notations
Ω, O to hide constants and Ω̃, Õ to hide constants and all
logarithmic factors including log(d), log(n), log(1/σ). We
will drop the time sub/superscripts when the context is clear.

Target function and data Suppose the ground-truth func-
tion is

f∗(x) = β∗⊤x,

where β∗ ∈ Rd is s-sparse. Without loss of generality, we
assume |β∗

1 | ≥ . . . ≥ |β∗
s | > 0 and β∗

s+1 = . . . = β∗
d = 0.

Denote S+ := {i : β∗
i > 0} be the set of positive signal

entries, S− := {i : β∗
i < 0} be the set of negative signal

entries, and S := S+ ∪ S− = [s] be the set of all signal
entries. We use βS :=

∑
i:β∗

i ̸=0 βiei to be the vector that is
same as β for the signal entries in S and 0 for other entries,
and βe :=

∑
i:β∗

i =0 βiei to be the vector that is the same as
β for the non-signal entries that are not in S and 0 for other
entries. We similarly define βS+

,βS− ,βe+ ,βe− . Denote
βmax := |β∗

1 | be the maximum absolute value entry of β∗
S

and βmin := |β∗
s | be the minimum absolute value entry of

β∗
S . We assume βmin, βmax = Θ(1) for simplicity. Our

results can generalize to arbitrary βmax, βmin with the cost
of an additional polynomial dependency on them.

We generate n training data {(xi, yi)}ni=1 by

y = f∗(x) + ξ,

where x is the input data, ξ ∼ N(0, σ2) is the label noise
and y is the target. Denote X = [x1,x2, . . . ,xn]

⊤ ∈
Rn×d as the input data matrix, y = (y1, . . . , yn)

⊤ as the
target vector and ξ = (ξ1, . . . , ξn)

⊤ as the noise vector.

Learner model, loss and algorithm To learn the target
function f∗(x), we use the following model

fu,w,v(x) = (v + λw⊙2 − λu⊙2)⊤x. (1)

Here w⊙2 := w ⊙ w and u⊙2 := u ⊙ u is the element-
wise square of w and u. In general we use u ⊙ v to de-
note the element-wise product of u and v. Our model
can be viewed as a linear model β⊤x with reparametriza-
tion β = v + λw⊙2 − λu⊙2. Such element-wise product
reparametrization w⊙2 − u⊙2 is common in the implicit
bias literature (Woodworth et al., 2020; Azulay et al., 2021;
Yun et al., 2021). In the view of neural networks, the learner
model can also be viewed as a 2-layer diagonal linear net-
work with a shortcut connection (He et al., 2016). For
simplicity of notation, denote β = v + λw⊙2 − λu⊙2.
We are particular interested in the overparametrized regime
n ≪ d, where the model has the ability to overfit the data
without learning the target β∗.

Denote residual ri := fu,w,v(xi)− yi for i ∈ [n] and r :=
(r1, . . . , rn)

⊤. We will use gradient descent to minimize
mean-square loss, that is

L(u,w,v) :=
1

2n

n∑
i=1

(fu,w,v(xi)− yi)
2
.

The gradient for this loss is given below:

w(t+1) = w(t) − η∇wL(u(t),w(t),v(t))

= w(t) − η

(
1

n
X⊤r(t)

)
⊙ (2λw(t))

u(t+1) = u(t) − η∇uL(u
(t),w(t),v(t))

= u(t) + η

(
1

n
X⊤r(t)

)
⊙ (2λu(t))

v(t+1) = v(t) − η∇vL(u
(t),w(t),v(t))

= v(t) − η
1

n
X⊤r(t).

(2)

Properties the input data We use several key properties
of the input data matrix X and noise ξ. First is the notion
of Restricted Isometry Property (RIP), which is standard in
the literature (Candes & Tao, 2005).
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Definition 2.1 ((k, δ)-RIP). A n× d matrix X/
√
n is said

to be (k, δ)-RIP if for any k-sparse vector β we have

(1− δ) ∥β∥22 ≤
∥∥Xβ/

√
n
∥∥2
2
≤ (1 + δ) ∥β∥22 .

We will assume data matrix X/
√
n satisfies (s + 1, δ)-

RIP with δ = Õ((1 + n/
√
d)−1s−3/2) and some regularity

conditions on X, ξ, as summarized in the Assumption 2.2
below. These conditions can be easily satisfied under some
choice of X, ξ, as shown later in Lemma 2.3.

Assumption 2.2. Input data matrix X/
√
n satisfies (s +

1, δ)-RIP with δ ≤ cδ(1 + n/
√
d log d)−1s−3/2 log−3(d)

where cδ is a small enough constant, and X, ξ satisfy the
following regularity conditions:

∥ξ∥2 = O(σ
√
n),∥∥∥∥ 1nX⊤ξ

∥∥∥∥
∞
≤ Bξ := O

(
σ

√
log d

n

)
,

∥∥X⊤ξ
∥∥
2
= O

(
σ
√
dn
)
,∥∥∥∥ 1nX⊤β

∥∥∥∥
∞

= O

(
∥β∥2√

n

)
for any vector β,

(1−O(
√

n/d))d ≤ λmin(XX⊤) ≤

λmax(XX⊤) ≤ (1 +O(
√
n/d))d.

Note that the notation Bξ = O(σ
√
log(d)/n) not only is

for notation simplicity, but also intuitively stands for the best
error in ℓ∞ that one could hope with Gaussian noise. Indeed,
Lounici et al. (2011) showed that the minimax optimal ℓ∞
test error is Ω(σ

√
log(d/s)/n). Later in our analysis, we

show the test loss is closely related with Bξ.

When each entry of data matrix X is i.i.d. Gaussian and
noise ξ is i.i.d. sampled from N(0, σ2I), all the conditions
above are satisfied as long as Ω̃(s4) ≤ n ≤ Õ(d/s4). See
Appendix A.1 for details.

Lemma 2.3. Suppose X is a Gaussian random matrix and
ξ ∼ N(0, σ2I). Then if Ω̃(s4) ≤ n ≤ Õ(d/s4), we have
Assumption 2.2 is satisfied with probability at least 1− 1/d.

3. Main Result
Our main result, formalized in the theorem below, shows
that gradient descent on the learner model (1) achieves be-
nign overfitting.

Theorem 3.1 (Main result). Under Assumption 2.2, sup-
pose there exists constant C such that σ ≤ C. We
train model (1) with initialization v(0) = 0, w(0) =
u(0) = α1 and follow the gradient descent update (2).
If Ω̃ (s) ≤ n ≤ Õ

(
min{d/s, d2/3}

)
and we choose

λ = Θ
(
dσ−1n−1(

√
log(d)/n+

√
n/d)−1 log−1(n)

)
,

α = 1/poly(d), η ≤ O(
√
n/sd/λ3), then for every t ≥

T = O(log(n/αε)n/ηd) with any given ε > 0 we have
training loss L(u(t),w(t),v(t)) ≤ ε and test loss∥∥∥β(t) − β∗

∥∥∥
2

= O

(
√
s log2(d)

(
σ

√
log(d)

n
+ σ

√
n

d

))
.

Note that the final test error depends on log(1/α). Since
we choose α = 1/poly(d), it appears as log(d) in the final
error bound. Also, the test loss does not depend on 1/ε, so
it remains small when training loss ε is very close to 0.

For any interpolator β, its test loss has lower bound
∥β − β∗∥2 = Ω(σ

√
s log(d/s)/n + σ

√
n/d) (Muthuku-

mar et al., 2020), where σ
√

n/d comes from the min-ℓ2-
norm interpolator that fits the noise. Thus, the above test
loss is optimal up to poly(log d, s) factors. The additional
log d, s dependencies in our result (and the fact that n can-
not be larger than d2/3) are due to technical difficulties in
analyzing the dynamics. When n = O(

√
d log d), the first

term dominates the second term, and the above test loss

becomes O(σ
√
s log5(d)/n). This is close to the minimax

optimal rate Ω(σ
√

s log(d/s)/n) up to polylog(d) factors
(Raskutti et al., 2011).

For the Gaussian data case (x ∼ N(0, I)), by Lemma 2.3
we in addition need n = Ω̃(s4) to satisfy Assumption 2.2.
This leads to the following corollary:
Corollary 3.2 (Near minimax rate). Under the setting
of Theorem 3.1 and the choice of λ, α, η, suppose input
data X is Gaussian matrix and noise ξ ∼ N(0, σ2I).
If Ω̃(s4) ≤ n ≤ Õ(

√
d), then for every t ≥ T =

O(log(n/αε)n/ηd) with any given ε > 0 we have training
loss L(u(t),w(t),v(t)) ≤ ε and test loss

∥∥∥β(t) − β∗
∥∥∥
2
= O

σ

√
s log5(d)

n

 ,

which is near-optimal up to polylog(d) factors.

4. Intuitions for the Training Dynamics
Consider the training of our model (1) using gradient de-
scent. Ideally, one would hope the training process to com-
bine the advantages of min-ℓ1-norm and min-ℓ2-norm inter-
polator as done explicitly in (Muthukumar et al., 2020): first
use w⊙2 − u⊙2 to learn the sparse target β∗ and then use
v to memorize the noise with small ℓ2 norm. This would
require us to fix v = 0 when learning the signal and fix
w⊙2 − u⊙2 when fitting the noise. However, since training
is done on all parameters simultaneously, it’s unclear why it
follows this ideal dynamics.
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Figure 1. Training dynamics of model (1) following gradient descent update (2) under d = 5 × 104, n = 3
√
d, σ = 0.1, β∗ =

(1/
√
3,−1/

√
3, 1/

√
3, 0, . . . , 0)⊤ and Gaussian data xi ∼ N(0, I). We set λ = 100d/σn log(n)(

√
log(d)/n +

√
n/d) and run

gradient descent with η = 10−6 from initialization α1 with α = 10−10 until training loss reaches 10−5. Red vertical line stands for the
transition between Stage 1 and Stage 2. Left: training loss L goes to 0 and test loss ∥β − β∗∥22 remain small at the end. Right: norm of
second-order term λ(w⊙2 − u⊙2) grows large to recover the signal in Stage 1 and linear term v remain small during the training. Both
x-axis are in log scale as Stage 1 is significantly shorter than Stage 2.

Stages of training At a higher level, we show that the ac-
tual training dynamics of parameters v,w,u approximately
follow the above ideal dynamics in 2 stages (Figure 1):

• In Stage 1, the linear term v remains small so that
essentially the second-order term w⊙2 − u⊙2 learns
the signal using its bias towards sparse solution.

• In Stage 2, v moves to memorize the noise while
w⊙2 − u⊙2 roughly stays the same. Since v is bi-
ased towards small ℓ2 norm, the final test loss remain
small after interpolating the data.

However, things are not as simple when we examine the
dynamics carefully. It turns out that even though v does not
grow to be too large in Stage 1, it still becomes large enough
so that existing analysis on w and u will no longer apply.
To address this problem, we keep track of the dynamics of
v very carefully throughout the training process. This is
done through introducing the following decompositions of
X⊤Xv/n and v.

Decompositions of X⊤Xv/n and v To keep track of
the dynamics of X⊤Xv/n and v, we first consider the
ideal dynamics for v. We hope v to fit the noise. If we
were actually given the noise, we can use the loss function
∥Xv − ξ∥22 /2n. Running gradient descent on this function
gives a trajectory for v, which can be computed explicitly.
Our decomposition tries to highlight that the true trajectory
of v is close to this ideal trajectory.

There are a few more issues that we need to work with.
First, for simplicity, in the ideal trajectory we approximate
XX⊤ by dI (which is accurate as long as d≫ n). Second,
because of the signal, the entries of v in S may deviate

significantly and in fact contribute a little bit to the fitting of
the signal.

Based on these observations, we decompose both v and
X⊤Xv into three terms – a signal term, a noise-fitting term
and an approximation error term. They are defined in the
following equations:

1

n
X⊤Xv(t) :=

d

n
v
(t)
S + bt(X

⊤ξ)e + Γt, (3)

v(t) := v
(t)
S + atX

⊤ξ +∆(t)
v , (4)

where

bt+1 := bt −
ηd

n

(
bt −

1

n

)
,

at+1 := at − η

(
bt −

1

n

)
,

Here
∥∥Γ(t)

∥∥
∞ ≤ γt,

∥∥∥∆(t)
v

∥∥∥
∞
≤ ζt give ℓ∞-norm

bounds on the approximation error. Also recall the notation
βS =

∑
i:β∗

i ̸=0 βiei, βe =
∑

i:β∗
i =0 βiei. Intuitively in the

decomposition of v, vS part tries to fit the signal, X⊤ξ
part tries to fit the noise and the remaining term is approxi-
mation error (the decomposition of X⊤Xv has the same
structure). We will show in our analysis that vS contributes
little for learning the signal while X⊤ξ fits all the noise and
approximation errors remain small.

The recursions of at and bt are exactly the dynamics of
v in the ideal setting, where we fit ∥Xv − ξ∥22 /2n (and
approximate XX⊤ by dI).

Finally, the d/n factor appears in front of vS in the decom-
position of X⊤Xv/n. This is because in the ideal setting
(approximate XX⊤ by dI) the change of XX⊤v/n is
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d/n times larger than the change of v. One can then use sim-
ple calculations to show that the signal part (X⊤Xv/n)S
corresponds to (d/n)vS . The non-signal part has the same
factor but the ℓ∞ norm there is small and hence bundled
into the approximation error term.

5. Proof Sketch
In this section, we give the proof sketch of our main result
Theorem 3.1 with several key proof ideas. We first combine
the tools we discussed in Section 2 and the decomposition of
X⊤Xv/n and v defined in Section 4 to give the approxima-
tion of gradient. Then, we give the proof sketch of Stage 1
and Stage 2 in Section 5.1 and Section 5.2 respectively.

Approximation of gradient Given that X is a (s+ 1, δ)-
RIP matrix, the following lemma gives useful approximation
that allows us to approximate the gradient in Lemma 5.2.
The proof is a standard consequence of RIP property, which
is deferred to Appendix A.2.

Lemma 5.1. Given n×d matrix X/
√
n satisfying (k+1, δ)-

RIP, for any β ∈ Rd, let ∆ =
(
1
nX

⊤X − I
)
β, then the

following hold:

• If β is k-sparse, then ∥∆∥∞ ≤
√
kδ ∥β∥2.

• For any vector β, we have ∥∆∥∞ ≤ δ ∥β∥1.

The following lemma gives the approximation of the gra-
dient. For the gradient of second-order term w,u, it
would become the same as the gradient on the popula-
tion loss

∥∥λw⊙2 − λu⊙2 − β∗
∥∥2
2
/2 if (d/n)vS and ∆r

are small. In particular, this suggests that the second-order
term λw⊙2 − λu⊙2 will learn the target when v remains
small.

Lemma 5.2 (Gradient approximation). Under Assump-
tion 2.2, we have the following gradients and their useful
approximation:

∇wL =

(
1

n
X⊤r

)
⊙ (2λw)

= 2λ

(
d

n
vS + λw⊙2

S+
− λu⊙2

S−
− β∗ +∆r

)
⊙w,

∇uL = −
(
1

n
X⊤r

)
⊙ (2λu)

= −2λ
(
d

n
vS + λw⊙2

S+
− λu⊙2

S−
− β∗ +∆r

)
⊙ u,

∇vL =
1

n
X⊤r =

d

n
vS + λw⊙2

S+
− λu⊙2

S−
− β∗ +∆r,

where recall S+, S− are the set of positive and negative
entries of β∗ and e+ = [d] \ S+, e− = [d] \ S− are the

corresponding complement set,

∥∆r∥∞ =O ((1 + |nb− 1|)Bξ) +
√
sδ

d

n
∥vS∥2

+ sδ

∥∥∥∥ dnvS + λw⊙2
S+
− λu⊙2

S−
− β∗

∥∥∥∥
∞

+O

(
d√
n
λ

)
(
∥∥we+

∥∥2
∞ +

∥∥ue−

∥∥2
∞) + γ,

and b and ∥Γ∥∞ ≤ γ are defined in (3).

Note that the factor d/n in front of vS naturally arises when
we using the decomposition of X⊤Xv/n in (3). This
suggests that the actual part to fit the signal β∗ is (d/n)vS+
λw⊙2

S − λu⊙2
S , instead of the naı̈ve vS + λw⊙2

S − λu⊙2
S

from the form of learner model. On the other hand, since vS

remains small, it does not affect the final test error because
they are both close to λw⊙2

S − λu⊙2
S .

The forms of gradients highlight the difference between the
parametrization v and w⊙2 − u⊙2. For each coordinate,
wi (same for ui) moves according to wi ← (1 + ηλi)wi

for some growth rate λi, which would grow exponential
fast when λi > 0. However, the gradient for v is not pro-
portional to v, so it only grows linearly with time. Such
difference allows us to control the order of learning dynam-
ics (v or w⊙2 − u⊙2 grows up first). Thus, we could have
the desired 2-stage learning dynamics by properly choosing
the growth rate λ.

5.1. Stage 1: Learning the Signal

In Stage 1, our goal is to show that the linear term v will be
characterized by the decompositions (3)(4), and the second-
order term w⊙2,u⊙2 will recover the signal β∗.

The following lemma gives the ending criteria for Stage 1.
We can see only the signal entries wS+

,uS− grow large to
recover β∗ and others such as non-signal entries we+ ,ue−

and linear term v are remain small. Also, the loss reduces to
O(σ
√
n), which is essentially the norm of noise ∥ξ∥2. The

detailed proof is deferred to Appendix B.

Lemma 5.3 (Stage 1). Let CT1
be a large enough universal

constant, denote

T1 := inf

{
t :

∥∥∥∥ dnv(T1)
S + λw

(T1)⊙2
S+

− λu
(T1)⊙2
S−

− β∗
∥∥∥∥
∞

= CT1
(Bξ + σ

√
n/d)

}
.

Then we know T1 = O(log(1/α)/ηλ) and the following
hold with a large enough universal constant C1:

•
∥∥∥w(T1)

e+

∥∥∥
∞

,
∥∥∥u(T1)

e−

∥∥∥
∞
≤ C1α.
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•
∥∥∥v(T1)

S

∥∥∥
2
≤ C1

√
s(n/d) log2(d)(Bξ + σ

√
n/d) and∥∥v(T1)

∥∥
2
≤ C1σ

√
n/d.

•
∥∥r(T1)

∥∥
2
≤ C1σ

√
n.

Recall Bξ is the target infinity norm error for recovering
the entries in β∗, when d ≫ n, d

nvS + λw⊙2
S+
− λu⊙2

S−
achieves this error at the end of Stage 1. We focus on this
term instead of vS + λw⊙2

S+
− λu⊙2

S−
due to its connection

with the gradient shown in Lemma 5.2. Given that vS is
small, these two terms are in fact roughly the same.

As we discussed, a key step in the analysis is to character-
ize each term in the decomposition of X⊤Xv/n and v,
which would imply that v remains small in Stage 1. This is
formalized in the following lemma.

Lemma 5.4 (Informal). Consider the decomposition
of X⊤Xv/n and v in (3) (4), we have for t ≤
O(log(1/α/ηλ))

bt = (1− (1− ηd/n)t)/n ≤ 1/n,

at = (1− (1− ηd/n)t)/d ≤ 1/d

∥Γt∥∞ ≤ γt = O(σ
√
n/d+Bξ),

∥∆v∥∞ ≤ ζt = O(σ
√
n/d).

Note that v will memorize the noise when bt = 1/n and
at = 1/d as Xv(t) ≈ X(atX

⊤ξ) ≈ ξ. However, since
T1 = Õ(ηλ) = o(n/ηd), we know at = o(1/d) in Stage 1.
This shows that v is still small and does not yet interpolate
the noise part.

Combine the above lemma with Lemma 5.2, we have the
following gradient approximation

∇wL =

(
1

n
X⊤r

)
⊙ (2λw)

= 2λ(
d

n
vS + λw⊙2

S − λu⊙2
S − β∗ +∆r)⊙w,

∇uL = −
(
1

n
X⊤r

)
⊙ (2λu)

= −2λ( d
n
vS + λw⊙2

S − λu⊙2
S − β∗ +∆r)⊙ u,

where

∥∆r∥∞ =O(Bξ + σ
√
n/d)

+ sδ

∥∥∥∥ dnvS + λw⊙2
S+
− λu⊙2

S−
− β∗

∥∥∥∥
∞

.

Intuitively, this suggests if a coordinate of the residual d
nvS+

λw⊙2
S − λu⊙2

S − β∗ has large absolute value, then one of
w or u will grow exponentially depending on the sign of
the residual.

Given such gradient approximation, our goal is to show that
vS and ∆r remain small so that w and u essentially follow
the gradient on population loss

∥∥λw⊙2 − λu⊙2 − β∗
∥∥2
2
/2

to recover the target β∗.

In the simplest case of s = 1, we can see that whenever the
signal error |(d/n)v1+λw2

1−λu2
1−β∗

1 | ≥ O(Bξ+σ
√
n/d)

is still large, it leads to a large gradient for either u1 or w1,
which in turn decreases the error. Therefore, at the end the
error will decrease to O(Bξ + σ

√
n/d). In fact, due to the

parameterization of w⊙2,u⊙2, their growing rate would be
exponential so they will grow up fast to recover the signal.

At the same time, we can control the growth of v1 by choos-
ing a large enough λ to ensure the length of Stage 1 T1 is
short. The non-signal entries we+ ,ue− will also remain
almost as small as their initialization, as their growth rate is
much smaller compared with the signal entries.

For higher sparsity s, the analysis becomes sig-
nificantly more complicated because of the term∥∥∥ d
nvS + λw⊙2

S+
− λu⊙2

S−
− β∗

∥∥∥
∞

in ∥∆r∥∞. Not all
the entries of β∗ are of the same size, which results
in different growth rates in the entries of w and u.
The entries with larger β∗

i will be learned faster than
the smaller ones, which could lead to the case where∥∥∥ d
nvS + λw⊙2

S+
− λu⊙2

S−
− β∗

∥∥∥
∞

is much larger than the

error for a particular entry k ∈ S of ( dnvS+λw⊙2
S+
−λu⊙2

S−
−

β∗)k.

To deal with such issue, we show the following lemma
that bound the time for reducing the signal error by half.
Similar result was shown in Vaskevicius et al. (2019) where
they do not have the linear term v. The proof relies on
the observation from the gradient approximation above that
the signal error will monotone decrease before reaching
∥∆r∥∞, and is made possible by the decomposition of v.
Lemma 5.5 (Informal). Given any time t0, assume∥∥∥ d
nv

(t0)
S + λ(w

(t0)
S+

)2 − λ(u
(t0)
S−

)2 − β∗
∥∥∥
∞
≥ Ω(Bξ +

σ
√

n/d). Let

T ′ := inf

{
t− t0 ≥ 0 :∥∥∥∥ dnv(t)
S + λ(w

(t)
S+

)2 − λ(u
(t)
S−

)2 − β∗
∥∥∥∥
∞

≤
∥∥∥∥ dnv(t0)

S + λ(w
(t0)
S+

)2 − λ(u
(t0)
S−

)2 − β∗
∥∥∥∥
∞

/2

}
be the time that signal error reduces by half. Then, we know
T ′ = O(1/ηλ).

Repeatedly using the above lemma, we know it takes T1 =
Õ(1/ηλ) time to reach the desired accuracy. Other claims
follow directly. Detailed proofs are deferred to Appendix B.
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5.2. Stage 2: Memorizing the Noise

Given that in Stage 1 we know λw⊙2 − λu⊙2 has already
recovered signal β∗, in Stage 2 we show that the remain-
ing noise will be memorized by the linear term v without
increasing the test loss by too much. This allows us to re-
cover the ground-truth β∗ despite interpolating the data to ε
training error, as formalized in the following lemma. The
proof is deferred to Appendix C.
Lemma 5.6 (Stage 2). Let T2 := inf{t ≥ 0 :
L(w(t),u(t),v(t)) ≤ ε}. Then, we have the length of
Stage 2 is T2−T1 = O((n/ηd) log(n/ε)) and the following
hold for every t ≥ T2 with large enough universal constant
C2:

•
∥∥∥ d
nv

(t)
S + λw

(t)⊙2
S+

− λu
(t)⊙2
S−

− β∗
∥∥∥
∞
≤ C2(Bξ +

σ
√
n/d)

•
∥∥∥w(t)

e+

∥∥∥
∞

,
∥∥∥u(t)

e−

∥∥∥
∞
≤ C2α.

•
∥∥∥v(t)

S

∥∥∥
2
≤ C2

√
s(n/d) log2(d)(Bξ + σ

√
n/d) and∥∥v(t)

∥∥
2
≤ C2σ

√
n/d.

Similar as in Stage 1, we still need to characterize each term
in the decomposition of X⊤Xv/n and v.
Lemma 5.7 (Informal). Consider the decomposition
of X⊤Xv/n and v in (3) (4), we have for t ≤
O((n/ηd) log(n/ε))

bt = (1− (1− ηd/n)t)/n ≤ 1/n,

at = (1− (1− ηd/n)t)/d ≤ 1/d

∥Γt∥∞ ≤ γt = O(σ
√
n/d+Bξ),

∥∆v∥∞ ≤ ζt = O((Bξ + σ
√
n/d)n log(n)/d).

Unlike in Stage 1, the signal has mostly been fitted in
Stage 2. This makes the gradient smaller and the time it
takes for Stage 2 (T2 − T1 = O((n/ηd) log(n/ε))) is much
longer than Stage 1. Because of this longer time, we now
have bt ≈ 1/n, at ≈ 1/d at the end of Stage 2. This implies
that we essentially use linear term v to interpolate the noise
as Xv(t) ≈X(atX

⊤ξ) ≈ ξ.

In the analysis of Stage 2, we have two major goals that are
closely related: first, we want non-signal entries of w, u to
stay small; second, we want the residual ∥r∥2 to decrease
exponentially.

For w, u, combine the above lemma with Lemma 5.2, we
know

∇wL =

(
1

n
X⊤r

)
⊙ (2λw),

∇uL = −
(
1

n
X⊤r

)
⊙ (2λu),

where

∥∥∥∥ 1nX⊤r

∥∥∥∥
∞

=

∥∥∥∥ dnvS + λw⊙2
S − λu⊙2

S − β∗ +∆r

∥∥∥∥
∞

= O(Bξ + σ
√

n/d).

The infinity norm bound on 1
nX

⊤r follows from a case
analysis for signal and non-signal entries. For the sig-
nal entries, using the above gradient approximation sim-
ilar as in Stage 1, we can show that the signal error∥∥ d
nvS + λw⊙2

S − λu⊙2
S − β∗ +∆r

∥∥
∞ remains O(Bξ +

σ
√

n/d). For the non-signal entries we+ ,ue− , we know
its exponential growth rate is O(λ(Bξ +σ

√
n/d)) from the

gradient approximation.

The bound on
∥∥ 1
nX

⊤r
∥∥
∞ limits the movement of u and

w. As long as O(ηλ(Bξ + σ
√
n/d)(T2 − T1)) < 1, the

non-signal part of u and w will remain small.

On the other hand, for the decrease rate of ∥r∥2, the stan-
dard approach is to use ideas from Neural Tangent Ker-
nel (NTK) (Jacot et al., 2018; Du et al., 2019; Allen-
Zhu et al., 2019), and approximate the dynamics of r as
r(t+1) = (I − ηH(t))r(t) where H(t) is the neural tangent
kernel. The decreasing rate of ∥r∥2 can then be bounded by
lowerbounding the minimum eigenvalue of H(t). However,
bounding H(t) naı̈vely by its distance to some initial H(t)

does not work in our case.

To fix this problem, we again rely on the dynamics of v.
Lemma 5.7 suggests that v(t) gets close to X⊤ξ/d with a
rate of Ω(d/n) as v(t) ≈ atX

⊤ξ (this can also be viewed
as the minimum eigenvalue of the NTK kernel restricted to
v). This convergence rate gives a bound on the length of
T2 − T1, which allow us to choose an appropriate λ to keep
we+ ,ue− small.

Once we have the bounds for the convergence rate and non-
signal entries of u,w, other claims follow directly. Details
are deferred to Appendix C.

Note that in the argument above, since the length of Stage 2
T2 − T1 is proportional to log(1/ε), it cannot be used when
ϵ is very close to 0 as λ is proportional to 1/(T2 − T1)
and would become very small. In fact, we can get rid
of the dependency on log(1/ε) with a more careful analy-
sis. In the actual proof, we have two sub-stages for Stage
2, which uses different ways to bound the growth rate∥∥X⊤r/n

∥∥
∞. For Stage 2.1, we use the argument above

until ∥r∥2 = O(σ). In Stage 2.2, given the training loss is
already small enough, we use a NTK-type analysis to bound∥∥X⊤r/n

∥∥
∞ = (1− Ω(ηd/n))t−T1O(σ/

√
n) as ∥r∥2 de-

creases with rate Ω(d/n). See Appendix C for details.
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6. Conclusion
In this paper, we give a new parametrization for the sparse
linear regression problem, and showed that gradient descent
for this new parametrization can learn an interpolator with
near-optimal test loss. This highlights the importance of
choosing the correct parametrization, especially the role of
linear terms in fitting noise. Our proof is based on a new
dynamic analysis that shows it is possible to first learn the
features, and then fit the noise using an NTK-like process.
We suspect similar training dynamics may apply to more
complicated problems such as low-rank matrix factorization
or neural networks.
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A. Preliminary
In this section, we prepare some useful lemmas for the later analysis. In Section A.1, we show that Assumption 2.2 is
true when data matrix X is a Gaussian random matrix and noise ξ ∼ N(0, σ2I). In Section A.2, we give the proof of
Lemma 5.1 and Lemma 5.2 for gradient approximation.

A.1. RIP and regularity conditions

In this subsection, we show that Assumption 2.2 can be satisfied when X is a Gaussian random matrix and ξ is a Gaussian
random vector with variance σ2.

We use standard proof to show the RIP property, and the rest of the properties follow from simple concentration. First,
the following shows random Gaussian matrix is a (s + 1, δ)-RIP matrix with δ = Θ(

√
(s/n) log(d/s)). To satisfy

Assumption 2.2, with simple calculation we see that we only require Ω̃(s4) ≤ n ≤ Õ(d/s4).

Proposition A.1. Let X be a n× d Gaussian random matrix. Then, there exists universal constant c1, c2 such that X/
√
n

is (k, δ)-RIP for any k ≤ c1n/ log(d/k) and δ ≥ c2
√
(k/n) log(d/k) with probability at least 1− (k/d)k ≥ 1− 1/d.

Proof. From the proof of Theorem 5.2 in (Baraniuk et al., 2008), we know the error probability is at most

e−c0(δ/2)n+k[log(ed/k)+log(12/δ)]+log(2),

where c0(ε) = ε2/4 − ε3/6. Note that it suffices to consider δ < 1, which implies that c0(δ/2) ≥ δ2/48 and k ≤
n/c22/ log(d/k). Then the exponent can be upper bounded by with δ ≥ c2

√
(k/n) log(d/k)

−nδ2/48 + (4 + log(1/c2))k log(d/k) ≤ −(c22/48)k log(d/k) + (4 + log(1/c2))k log(d/k) < −(c22/50)k log(d/k),

where the last inequality is true since we can choose c2 to be large enough constant.

The following lemma shows that the regularity conditions on X, ξ in the second part of Assumption 2.2 are satisfied with
high probability when X is a Gaussian matrix and ξ is sampled from N(0, σ2I).

Lemma A.2 (Regularity conditions). Suppose X is a Gaussian matrix and ξ ∼ N(0, σ2I). With probability at least
1− de−Ω(n), We have

∥ξ∥2 = O(σ
√
n),∥∥∥∥ 1nX⊤ξ

∥∥∥∥
∞
≤ Bξ := O

(
σ

√
log d

n

)
,

∥∥X⊤ξ
∥∥
2
= O

(
σ
√
dn
)
,∥∥∥∥ 1nX⊤β

∥∥∥∥
∞

= O

(
∥β∥2√

n

)
for any vector β,

(1−O(
√

n/d))d ≤ λmin(XX⊤) ≤ λmax(XX⊤) ≤ (1 +O(
√
n/d))d.

Proof. The first three and the last one are standard consequences of Gaussian vector/matrix concentration, see e.g., Lemma
A.5 in Vaskevicius et al. (2019) for the proof of

∥∥X⊤ξ/n
∥∥
∞ and Theorem 3.1.1 and Theorem 4.4.5 in Vershynin (2018)

for the rest. For the third one, denote X[:, i] is the i-th column of X . Then,
∥∥X⊤β/n

∥∥
∞ ≤ maxi |β⊤X[:, i]|/n ≤

∥β∥2 maxi ∥X[:, i]∥2 /n. Then it follows from standard Gaussian concentration.

Now we are ready to prove Lemma 2.3 that shows Assumption 2.2 holds under Gaussian input and Gaussian noise. It
immediately follows from Proposition A.1 and Lemma A.2 above.

Lemma 2.3. Suppose X is a Gaussian random matrix and ξ ∼ N(0, σ2I). Then if Ω̃(s4) ≤ n ≤ Õ(d/s4), we have
Assumption 2.2 is satisfied with probability at least 1− 1/d.

Proof. It suffices to combine Proposition A.1 and Lemma A.2.

12



Implicit Regularization Leads to Benign Overfitting for Sparse Linear Regression

A.2. Gradient approximation

Lemma 5.1 and Lemma 5.2 give ways to approximate several important terms in the gradient. Here we give their proofs.
Lemma 5.1. Given n× d matrix X/

√
n satisfying (k + 1, δ)-RIP, for any β ∈ Rd, let ∆ =

(
1
nX

⊤X − I
)
β, then the

following hold:

• If β is k-sparse, then ∥∆∥∞ ≤
√
kδ ∥β∥2.

• For any vector β, we have ∥∆∥∞ ≤ δ ∥β∥1.

Proof. For the first part, it is a standard consequence of the RIP condition, see e.g., Lemma A.3 in Vaskevicius et al. (2019).
For the second part, notice that β =

∑
i βiei where {ei}di=1 is the standard basis, it then follows from the first part.

Lemma 5.2 (Gradient approximation). Under Assumption 2.2, we have the following gradients and their useful approxima-
tion:

∇wL =

(
1

n
X⊤r

)
⊙ (2λw) = 2λ

(
d

n
vS + λw⊙2

S+
− λu⊙2

S−
− β∗ +∆r

)
⊙w,

∇uL = −
(
1

n
X⊤r

)
⊙ (2λu) = −2λ

(
d

n
vS + λw⊙2

S+
− λu⊙2

S−
− β∗ +∆r

)
⊙ u,

∇vL =
1

n
X⊤r =

d

n
vS + λw⊙2

S+
− λu⊙2

S−
− β∗ +∆r,

where

∥∆r∥∞ =O ((1 + |nb− 1|)Bξ) +
√
sδ

d

n
∥vS∥2 + sδ

∥∥∥∥ dnvS + λw⊙2
S+
− λu⊙2

S−
− β∗

∥∥∥∥
∞

+O

(
d√
n
λ

)
(
∥∥we+

∥∥2
∞ +

∥∥ue−

∥∥2
∞) + γ,

b and ∥Γ∥∞ ≤ γ are defined in (3), and recall S+, S− are the set of positive and negative entries of β∗ and e+ = [d] \ S+,
e− = [d] \ S− are the corresponding complement set.

Proof. By the decomposition of X⊤Xv/n in (3), we have

1

n
X⊤r =

1

n
X⊤Xv − 1

n
X⊤ξ +

1

n
X⊤X(λw⊙2

S+
− λu⊙2

S−
− β∗) +

1

n
X⊤(λXw⊙2

e+ − λXu⊙2
e− )

=(b− 1

n
)(X⊤ξ)e −

1

n
(X⊤ξ)S +

d

n
vS +

1

n
X⊤X(λw⊙2

S+
− λu⊙2

S−
− β∗)

+
1

n
X⊤(λXw⊙2

e+ − λXu⊙2
e− ) + Γ

=(b− 1

n
)(X⊤ξ)e −

1

n
(X⊤ξ)S +

d

n
vS + λw⊙2

S+
− λu⊙2

S−
− β∗

+ (
1

n
X⊤X − I)(

d

n
vS + λw⊙2

S+
− λu⊙2

S−
− β∗)− (

1

n
X⊤X − I)

d

n
vS

+
1

n
X⊤(λXw⊙2

e+ − λXu⊙2
e− ) + Γ

=
d

n
vS + λw⊙2

S+
− λu⊙2

S−
− β∗

+ (b− 1

n
)(X⊤ξ)e −

1

n
(X⊤ξ)S + (

1

n
X⊤X − I)(

d

n
vS + λw⊙2

S+
− λu⊙2

S−
− β∗)− (

1

n
X⊤X − I)

d

n
vS

+
1

n
X⊤(λXw⊙2

e+ − λXu⊙2
e− ) + Γ.

Denote the last two lines in in the last equation above as ∆r. We know

1

n
X⊤r =

d

n
vS + λw⊙2

S+
− λu⊙2

S−
− β∗ +∆r.
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To bound ∥∆r∥∞, by Lemma 5.1 and Assumption 2.2, we know∥∥∥∥(b− 1

n
)(X⊤ξ)e −

1

n
(X⊤ξ)S

∥∥∥∥
∞

=O ((1 + |nb− 1|)Bξ)∥∥∥∥( 1nX⊤X − I)(
d

n
vS + λw⊙2

S+
− λu⊙2

S−
− β∗)

∥∥∥∥
∞

=
√
sδ

∥∥∥∥ dnvS + λw⊙2
S+
− λu⊙2

S−
− β∗

∥∥∥∥
2

≤sδ
∥∥∥∥ dnvS + λw⊙2

S+
− λu⊙2

S−
− β∗

∥∥∥∥
∞∥∥∥∥( 1nX⊤X − I)

d

n
vS

∥∥∥∥
∞
≤
√
sδ

d

n
∥vS∥2∥∥∥∥ 1nX⊤(λXw⊙2

e+ − λXu⊙2
e− )

∥∥∥∥
∞

=O

(
λ√
n

∥∥∥Xw⊙2
e+ −Xu⊙2

e−

∥∥∥
2

)
=O

(
d√
n
λ

)
(
∥∥we+

∥∥2
∞ +

∥∥ue−

∥∥2
∞),

Thus, we have

∥∆r∥∞ =O ((1 + |nb− 1|)Bξ) + sδ

∥∥∥∥ dnvS + λw⊙2
S+
− λu⊙2

S−
− β∗

∥∥∥∥
∞

+
√
sδ

d

n
∥vS∥2

+O

(
d√
n
λ

)
(
∥∥we+

∥∥2
∞ +

∥∥ue−

∥∥2
∞) + γ

B. Proof for Stage 1
Recall that our goal in Stage 1 is to show (1) variables wS and uS grow large to recover β∗ (specifically, wS recovers the
positive entries of β∗ and uS recovers the negative entries of β∗); (2) the other variables we, ue and v remain small. This
is summarized in the following main lemma:

Lemma 5.3 (Stage 1). Let CT1
be a large enough universal constant, denote

T1 := inf

{
t :

∥∥∥∥ dnv(T1)
S + λw

(T1)⊙2
S+

− λu
(T1)⊙2
S−

− β∗
∥∥∥∥
∞

= CT1
(Bξ + σ

√
n/d)

}
.

Then we know T1 = O(log(1/α)/ηλ) and the following hold with large enough universal constant C1:

•
∥∥∥w(T1)

e+

∥∥∥
∞

,
∥∥∥u(T1)

e−

∥∥∥
∞
≤ C1α.

•
∥∥∥v(T1)

S

∥∥∥
2
≤ C1

√
s(n/d) log2(d)(Bξ + σ

√
n/d) and

∥∥v(T1)
∥∥
2
≤ C1σ

√
n/d.

•
∥∥r(T1)

∥∥
2
≤ C1σ

√
n.

To prove this lemma, we need to maintain the following inductive hypothesis which assumes the approximate error comes
from the non-signal entry is small and other regularity conditions. Later we will use these assumptions to bound different
error terms and finish the induction.

Lemma B.1 (Inductive Hypothesis for Stage 1). For t ≤ T̃1 := CT̃1
log(1/α)/ηλβmin with large enough universal constant

CT̃1
, the following hold with large enough universal constant C̃1:

•
∥∥∥w(t)

e+

∥∥∥
∞

,
∥∥∥u(t)

e−

∥∥∥
∞
≤ C̃1α.

•
∥∥∥λw(t)⊙2

S+
− λu

(t)⊙2
S−

− β∗
∥∥∥
∞
≤ C̃1,

∥∥∥ d
nv

(t)
S + λw

(t)⊙2
S+

− λu
(t)⊙2
S−

− β∗
∥∥∥
∞
≤ C̃1.
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•
∥∥r(t)∥∥

2
≤
∥∥r(0)∥∥

2
≤ C̃1

√
sn.

We finally remark on the constant dependency in Stage 1 here. All the lemmas appear in this section, except the main result
Lemma 5.3, should only depend on universal constants CT1

, C̃1, CT̃1
. Perhaps the one that needs the most careful proof is

the induction hypothesis Lemma B.1. In the proof, we rely on the condition Ω̃(s) ≤ n ≤ Õ(d/s) to make sure that the terms
like Bξ + σ

√
n/d are smaller than any universal constant, especially the constant that only depends on universal constants

CT1 , C̃1, CT̃1
. In this way, it ensures that we can choose another universal constant C1 that only depends on CT1 , C̃1, CT̃1

to serve as the upper bound in Lemma 5.3.

B.1. Dynamics of v

As we discussed earlier, even though in Stage 1 we hope to use the corresponding entries of u, w to learn the signal, the
same entries of v will also grow and it’s important to understand the dynamics of v.

The dynamics of v roughly follows the trajectory for optimizing ∥Xv − ξ∥22 /2n. We formalize that in the following two
lemmas. First, we give a decomposition of XX⊤v/n as follow. This term plays an important role when we estimate the
gradient as shown in Lemma 5.2, therefore we here give a careful analysis.

Lemma B.2. Recall the decomposition in (3)

1

n
X⊤Xv(t) =

d

n
v
(t)
S + bt(X

⊤ξ)e + Γt,

bt+1 = bt −
ηd

n

(
bt −

1

n

)
,

where
∥∥Γ(t)

∥∥
∞ ≤ γt and recall the notation βS =

∑
i:β∗

i ̸=0 βiei, βe =
∑

i:β∗
i =0 βiei. Suppose Lemma B.1 holds. We

have for t ≤ T̃1

bt = (1− (1− ηd/n)t)/n ≤ 1/n,

γt ≤ O((
√

sd/n+ dsδ/n)ηt) = O(σ
√

n/d+Bξ).

We then give the decomposition of v.

Lemma B.3. Recall the decomposition in (4)

v(t) = v
(t)
S + atX

⊤ξ +∆(t)
v ,

at+1 = at − η(bt − 1/n)

where
∥∥∥∆(t)

v

∥∥∥
∞
≤ ζt. and recall the notation βS =

∑
i:β∗

i ̸=0 βiei, βe =
∑

i:β∗
i =0 βiei. Suppose Lemma B.1 holds. We

have for t ≤ T̃1

at = (1− (1− ηd/n)t)/d ≤ 1/d

ζt = O((Bξ + sδ + σ
√

n/d)ηt) = O(σ
√
n/d).

Moreover, for every t ≤ T̃1,
∥∥v(t)

∥∥
2
= O(σ

√
n/d),

∥∥∥v(t)
S

∥∥∥
2
= O(

√
s(n/d) log2(d)(Bξ + σ

√
n/d)).

B.2. Implications of Inductive Hypothesis Lemma B.1

Given the understanding of dynamics of v and X⊤Xv in Appendix B.1, we have the following approximation of gradient,
using Lemma 5.2.
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Lemma B.4. In the setting of Lemma B.2 and Lemma B.3, we have for t ≤ T̃1

∇wL =

(
1

n
X⊤r

)
⊙ (2λw) = 2λ(

d

n
vS + λw⊙2

S+
− λu⊙2

S−
− β∗ +∆r)⊙w,

∇uL = −
(
1

n
X⊤r

)
⊙ (2λu) = −2λ( d

n
vS + λw⊙2

S+
− λu⊙2

S−
− β∗ +∆r)⊙ u,

∇vL =
1

n
X⊤r =

d

n
vS + λw⊙2

S+
− λu⊙2

S−
− β∗ +∆r,

where ∥∥∥∆(t)
r

∥∥∥
∞

=O
(
Bξ + σ

√
n/d

)
︸ ︷︷ ︸

=:Bs

+sδ

∥∥∥∥ dnv(t)
S + λw

(t)⊙2
S+

− λu
(t)⊙2
S−

− β∗
∥∥∥∥
∞

,

Now we are ready to estimate the dynamics for the relevant entries of u and w using Lemma B.4. We first show in
Lemma B.5 that wS+

,uS− will grow to Ω(βmin). Then in Lemma B.6 we show that it takes O(1/ηλβmin) to decrease∥∥∥ d
nv

(t)
S + λ(w

(t)
S+

)2 − λ(u
(t)
S−

)2 − β∗
∥∥∥
∞

by half. The proofs are deferred to Appendix B.4.

Lemma B.5. Suppose Lemma B.1 hold. Then for every T11 ≤ t ≤ T̃1 with T11 = O(log(1/λα2)/ηλβmin), λ(w
(t)
k )2 ≥

βmin/4 for k ∈ S+ and λ(u
(t)
k )2 ≥ βmin/4 for k ∈ S−.

Lemma B.6. Suppose Lemma B.1 and Lemma B.5 hold. Given any time t0, assume at time t0 B0 :=∥∥∥ d
nv

(t0)
S + λ(w

(t0)
S+

)2 − λ(u
(t0)
S−

)2 − β∗
∥∥∥
∞
≥ 4Bs where Bs is defined in Lemma B.4. Let

T ′ := inf

{
t− t0 ≥ 0 :

∥∥∥∥ dnv(t)
S + λ(w

(t)
S+

)2 − λ(u
(t)
S−

)2 − β∗
∥∥∥∥
∞
≤
∥∥∥∥ dnv(t0)

S + λ(w
(t0)
S+

)2 − λ(u
(t0)
S−

)2 − β∗
∥∥∥∥
∞

/2

}
be the time that signal error reduces by half. Then, we know T ′ = O(1/ηλβmin).

As a technical condition in proving the two lemmas above, we need to make sure that once we fit the signal using the
corresponding entries in u,w,v up to error µ, the error will not become much worse later. We formalize this as the following
stability lemma.

Lemma B.7 (Stability). Suppose Lemma B.4 and Lemma B.5 hold. Assume
∥∥ d
nv

(t0) + λw(t0)⊙2 − λu(t0)⊙2 − β∗
∥∥
∞ ≤ µ

at time t0, then | dnv
(t)
k +λ(w

(t)
k )2−λ(u

(t)
k )2−β∗

k | ≤ max{µ, 2(Bs+ sδµ)} for all t ≥ t0 and k ∈ S, where Bs is definied
in Lemma B.4.

Now we are ready to bound the time T1 for Stage 1 using the above lemmas.

Lemma B.8. Suppose Lemma B.1 hold. Recall

T1 := inf

{
t :

∥∥∥∥ dnv(t)
S + λ(w

(t)
S+

)2 − λ(u
(t)
S−

)2 − β∗
∥∥∥∥
∞
≤ CT1

(Bξ + σ
√
n/d)

}
,

where CT1
is a large enough universal constant. Then, we know T1 = O(log(1/α)/ηλβmin).

B.3. Proof of Inductive Hypothesis Lemma B.1 and Lemma 5.3

Finally, we are ready to prove in the induction hypothesis and finish the proof of Lemma 5.3.

Lemma B.1 (Inductive Hypothesis for Stage 1). For t ≤ T̃1 := CT̃1
log(1/α)/ηλβmin with large enough universal constant

CT̃1
, the following hold with large enough universal constant C̃1:

•
∥∥∥w(t)

e+

∥∥∥
∞

,
∥∥∥u(t)

e−

∥∥∥
∞
≤ C̃1α.

•
∥∥∥λw(t)⊙2

S+
− λu

(t)⊙2
S−

− β∗
∥∥∥
∞
≤ C̃1,

∥∥∥ d
nv

(t)
S + λw

(t)⊙2
S+

− λu
(t)⊙2
S−

− β∗
∥∥∥
∞
≤ C̃1.
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•
∥∥r(t)∥∥

2
≤
∥∥r(0)∥∥

2
≤ C̃1

√
sn.

Proof. We claim
∥∥∥w(t)

e+

∥∥∥
∞

,
∥∥∥u(t)

e−

∥∥∥
∞

= α(1+O(ηλ(Bξ+σ
√

n/d+sδ)))t and
∥∥∥ d
nv

(t)
S + λw

(t)⊙2
S+

− λu
(t)⊙2
S−

− β∗
∥∥∥
∞
≤

C̃1/2. If such claim is true, then we prove the first 2 points as t ≤ T̃1 = o(η−1λ−1(Bξ + σ
√
n/d + sδ)−1) and

(d/n) ∥vS∥∞ ≤ C̃1/2. The latter one is true because we can choose C̃1 to be large and use Lemma B.3. Also, the condition
Ω̃(s) ≤ n ≤ Õ(d/s) makes sure that we can ensure Bξ + σ

√
n/d to be smaller than any universal constant, especially the

constant that only depends on universal constants CT1
, C̃1, CT̃1

in this case.

We show the above claim by induction. We know all the conditions hold at t = 0. Suppose before time t it holds, then
consider the time t+ 1.

For
∥∥∥ d
nv

(t+1)
S + λw

(t+1)⊙2
S+

− λu
(t+1)⊙2
S−

− β∗
∥∥∥
∞

, if λ(w
(t+1)
k )2 + λ(u

(t+1)
k )2 ≤ βmin/4, then it is easy to see it is

bounded by C̃1/2. Otherwise, we can see it from the proof of Lemma B.6 and Lemma B.8 that shows it continues to
decrease and stay small.

Now consider
∥∥∥w(t+1)

e+

∥∥∥
∞

and
∥∥∥u(t+1)

e−

∥∥∥
∞

. By Lemma B.4 we have for k ̸∈ S

|w(t+1)
k | ≤(1 + 2ληO(Bξ + σ

√
n/d+ sδ))|w(t)

k |,

which implies that |w(t+1)
k | ≤ (1 +O(λη(Bξ + σ

√
n/d+ sδ)))t+1α as w(0)

k = α. Similarly, we get the same bound for
uk with k ̸∈ S.

It remains to consider wk with k ∈ S− and uk with k ∈ S+. We will focus on wk with k ∈ S−, the other follows the same
calculation. We have

w
(t+1)
k u

(t+1)
k =

(
1− 2ηλ

(
1

n
X⊤r(t)

)
k

)
w

(t)
k ·

(
1 + 2ηλ

(
1

n
X⊤r(t)

)
k

)
u
(t)
k ≤ w

(t)
k u

(t)
k ≤ α2.

From the proof of Lemma B.8 we know u
(t)
k ≥ α. This implies that |w(t)

k | ≤ α.

We now prove the last part on
∥∥r(t+1)

∥∥
2
. We have

r(t+1) =Xv(t+1) + λXw(t+1)⊙2 − λXu(t+1)⊙2 − ξ

=r(t) − ηX · 1
n
X⊤r(t) + λX

(
−η 4λ

n
(X⊤r)⊙w⊙2 + η2

4λ2

n2
(X⊤r)⊙2 ⊙w⊙2

)
− λX

(
η
4λ

n
(X⊤r)⊙ u⊙2 + η2

4λ2

n2
(X⊤r)⊙2 ⊙ u⊙2

)
.

This suggests that∥∥∥r(t+1)
∥∥∥
2
≤
(
1− η

n
λmin(XX⊤)− 4ηλ2

n
λmin(Xdiag(w⊙2 + u⊙2)X⊤)

)∥∥∥r(t)∥∥∥
2
+ λ
√
d ·O

(
η2

λ2

n2
d ∥r∥22

)
≤
(
1− Ω

(
ηd

n

))∥∥∥r(t)∥∥∥
2

where we use Lemma B.10 and Assumption 2.2. We finish the induction.

Now we are ready to proof the main result Lemma 5.3 for Stage 1.
Lemma 5.3 (Stage 1). Let CT1

be a large enough universal constant, denote

T1 := inf

{
t :

∥∥∥∥ dnv(T1)
S + λw

(T1)⊙2
S+

− λu
(T1)⊙2
S−

− β∗
∥∥∥∥
∞

= CT1
(Bξ + σ

√
n/d)

}
.

Then we know T1 = O(log(1/α)/ηλ) and the following hold with large enough universal constant C1:

17
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•
∥∥∥w(T1)

e+

∥∥∥
∞

,
∥∥∥u(T1)

e−

∥∥∥
∞
≤ C1α.

•
∥∥∥v(T1)

S

∥∥∥
2
≤ C1

√
s(n/d) log2(d)(Bξ + σ

√
n/d) and

∥∥v(T1)
∥∥
2
≤ C1σ

√
n/d.

•
∥∥r(T1)

∥∥
2
≤ C1σ

√
n.

Proof. Combine Lemma B.1, Lemma B.3, Lemma B.8 we prove the first 2 points and bound the time T1. For the last point,
by Lemma 5.1 and Assumption 2.2∥∥∥r(T1)

∥∥∥
2
≤
∥∥∥Xλw(T1)⊙2

e+

∥∥∥
2
+
∥∥∥Xλu(T1)⊙2

e−

∥∥∥
2
+
∥∥∥X(v

(T1)
S + λw

(T1)⊙2
S+

− λu
(T1)⊙2
S−

− β∗)
∥∥∥
2
+
∥∥∥X(v(T1) − v

(T1)
S )− ξ

∥∥∥
2

≤O(λdα2) +O(
√
ns(Bξ + σ

√
n/d)) + (d/n− 1)

∥∥∥Xv
(T1)
S

∥∥∥
2
+
∥∥∥(aT1

XX⊤ − I)ξ +∆(T1)
v

∥∥∥
2

≤O(1) ∥ξ∥2 +O(λdα2) +O(
√
ns(Bξ + σ

√
n/d)) + Õ(

√
ns(Bξ + σ

√
n/d)) +

√
dζT1

=O(σ
√
n),

where we use aT1
≤ 1/d and ζT1

= O(σ
√
n/d) from Lemma B.3. Note that the constants hide in big-O in these lemmas

only depends on universal constants CT1
, C̃1, CT̃1

, so we can choose another large enough universal constant C1 to appear
at these upper bounds.

B.4. Omitted Proofs in Section B.1 and Section B.2

In this subsection, we give the proof of Lemma B.2, Lemma B.3, Lemma B.4, Lemma B.5, Lemma B.6, Lemma B.7 and
Lemma B.8 in previous subsections.

Lemma B.2. Recall the decomposition in (3)

1

n
X⊤Xv(t) =

d

n
v
(t)
S + bt(X

⊤ξ)e + Γt,

bt+1 = bt −
ηd

n

(
bt −

1

n

)
,

where
∥∥Γ(t)

∥∥
∞ ≤ γt and recall the notation βS =

∑
i:β∗

i ̸=0 βiei, βe =
∑

i:β∗
i =0 βiei. Suppose Lemma B.1 holds. We

have for t ≤ T̃1

bt = (1− (1− ηd/n)t)/n ≤ 1/n,

γt ≤ O((
√

sd/n+ dsδ/n)ηt) = O(σ
√

n/d+Bξ).

Proof. We first write the update of bt and Γt using the update of v.

bt+1(X
⊤ξ)e + Γt+1 =

1

n
X⊤Xv(t+1) − d

n
v
(t+1)
S

=
1

n
X⊤Xv(t) − d

n
v
(t)
S − η

1

n
X⊤X

1

n
X⊤r(t) + η

d

n

(
1

n
X⊤r(t)

)
S

=bt(X
⊤ξ)e + Γt −

η

n2
X⊤XX⊤r(t) + η

d

n

(
1

n
X⊤r(t)

)
S

=bt(X
⊤ξ)e + Γt −

η

n2
X⊤(XX⊤ − dI)r(t) − η

d

n

(
1

n
X⊤r(t)

)
e

.

We bound the last two terms one by one. For η
n2X

⊤(XX⊤ − dI)r(t), we have by Assumption 2.2 and Lemma B.1∥∥∥ η

n2
X⊤(XX⊤ − dI)r(t)

∥∥∥
∞
≤ η

n
O(

1√
n
·
√
dn ·
√
sn) = O(η

√
sd/n).

18
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For η d
n

(
1
nX

⊤r(t)
)
e
, we have(

1

n
X⊤r(t)

)
e

=

(
1

n
X⊤Xv(t) +

1

n
X⊤X(λw

(t)⊙2
S+

− λu
(t)⊙2
S−

− β∗)− 1

n
X⊤ξ +

1

n
X⊤(λXw(t)⊙2

e+ − λXu(t)⊙2
e− )

)
e

=

(
d

n
v
(t)
S +

1

n
X⊤X(λw

(t)⊙2
S+

− λu
(t)⊙2
S−

− β∗) + (bt −
1

n
)X⊤ξ + Γt +

1

n
X⊤(λXw(t)⊙2

e+ − λXu(t)⊙2
e− )

)
e

=(bt −
1

n
)(X⊤ξ)e +

(
(
1

n
X⊤X − I)(λw

(t)⊙2
S+

− λu
(t)⊙2
S−

− β∗) + Γt +
1

n
X⊤(λXw(t)⊙2

e+ − λXu(t)⊙2
e− )

)
e

.

Therefore, by Lemma B.1 we know

bt+1 = bt −
ηd

n
(bt −

1

n
),

γt+1 ≤ γt +O(η
√

sd/n) + η
d

n
O(sδ + (d/

√
n)λα2) = γt + ηO(

√
sd/n+ dsδ/n).

This implies

bt = (1− (1− ηd/n)t)/n ≤ 1/n,

γt ≤ O((
√
sd/n+ dsδ/n)ηt) = O(σ

√
n/d+Bξ).

Lemma B.3. Recall the decomposition in (4)

v(t) = v
(t)
S + atX

⊤ξ +∆(t)
v ,

at+1 = at − η(bt − 1/n)

where
∥∥∥∆(t)

v

∥∥∥
∞
≤ ζt. and recall the notation βS =

∑
i:β∗

i ̸=0 βiei, βe =
∑

i:β∗
i =0 βiei. Suppose Lemma B.1 holds. We

have for t ≤ T̃1

at = (1− (1− ηd/n)t)/d ≤ 1/d

ζt = O((Bξ + sδ + σ
√

n/d)ηt) = O(σ
√
n/d).

Moreover, for every t ≤ T̃1,
∥∥v(t)

∥∥
2
= O(σ

√
n/d),

∥∥∥v(t)
S

∥∥∥
2
= O(

√
s(n/d) log2(d)(Bξ + σ

√
n/d)).

Proof. We write the update of at and ∆
(t)
v using the update of v

at+1X
⊤ξ +∆(t+1)

v =v(t+1) − v
(t+1)
S = v(t) − v

(t)
S − η

(
1

n
X⊤r(t)

)
e

=atX
⊤ξ +∆(t)

v − η

(
1

n
X⊤r(t)

)
e

.

For
(
1
nX

⊤r(t)
)
e
, using the decomposition of X⊤Xv/n in Lemma B.2, we have(

1

n
X⊤r(t)

)
e

=

(
1

n
X⊤Xv(t) +

1

n
X⊤X(λw

(t)⊙2
S+

− λu
(t)⊙2
S−

− β∗)− 1

n
X⊤ξ +

1

n
X⊤(λXw(t)⊙2

e+ − λXu(t)⊙2
e− )

)
e

=

(
d

n
v
(t)
S +

1

n
X⊤X(λw

(t)⊙2
S+

− λu
(t)⊙2
S−

− β∗) + (bt −
1

n
)X⊤ξ + Γt +

1

n
X⊤(λXw(t)⊙2

e+ − λXu(t)⊙2
e− )

)
e

=(bt −
1

n
)(X⊤ξ)e +

(
(
1

n
X⊤X − I)(λw

(t)⊙2
S+

− λu
(t)⊙2
S−

− β∗) + Γt +
1

n
X⊤(λXw(t)⊙2

e+ − λXu(t)⊙2
e− )

)
e

.
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Therefore, we have the update of at and ζt by using Assumption 2.2, Lemma 5.1 and Lemma B.1

at+1 =at − η(bt − 1/n),

ζt+1 ≤ ζt + ηO(|nbt − 1|Bξ + sδ + σ
√

n/d+Bξ + (d/
√
n)λα2).

This implies

at = ηt/n− η
∑
τ<t

bτ = (1− (1− ηd/n)t)/d ≤ 1/d

ζt ≤ O((Bξ + sδ + σ
√
n/d)ηt) = O(σ

√
n/d).

Thus, we have
∥∥∥v(t) − v

(t)
S

∥∥∥
2
≤ atO(σ

√
dn) + ζt

√
d = O(σ

√
n/d). We now bound ∥vS∥2. Since its gradient

norm ∥∇vS
L∥2 =

∥∥(X⊤r/n)S
∥∥
2
≤ O(

√
s) by Lemma B.1 and Assumption 2.2, we can bound ∥vS∥2 as ∥vS∥2 =

η
∑

τ≤t

∥∥∇vS
L(τ)

∥∥
2
≤ O(

√
sηt) = O(

√
s(n/d) log2(d)(Bξ + σ

√
n/d)). This also implies ∥v∥2 = O(σ

√
n/d).

Lemma B.4. In the setting of Lemma B.2 and Lemma B.3, we have for t ≤ T̃1

∇wL =

(
1

n
X⊤r

)
⊙ (2λw) = 2λ(

d

n
vS + λw⊙2

S+
− λu⊙2

S−
− β∗ +∆r)⊙w,

∇uL = −
(
1

n
X⊤r

)
⊙ (2λu) = −2λ( d

n
vS + λw⊙2

S+
− λu⊙2

S−
− β∗ +∆r)⊙ u,

∇vL =
1

n
X⊤r =

d

n
vS + λw⊙2

S+
− λu⊙2

S−
− β∗ +∆r,

where ∥∥∥∆(t)
r

∥∥∥
∞

=O
(
Bξ + σ

√
n/d

)
︸ ︷︷ ︸

=:Bs

+sδ

∥∥∥∥ dnv(t)
S + λw

(t)⊙2
S+

− λu
(t)⊙2
S−

− β∗
∥∥∥∥
∞

,

Proof. By Lemma B.2 and Lemma B.3 and the choice of parameter, the result directly follows from Lemma 5.2.

Lemma B.5. Suppose Lemma B.1 hold. Then for every T11 ≤ t ≤ T̃1 with T11 = O(log(1/λα2)/ηλβmin), λ(w
(t)
k )2 ≥

βmin/4 for k ∈ S+ and λ(u
(t)
k )2 ≥ βmin/4 for k ∈ S−.

Proof. For t ≤ T̃1, by Lemma B.4, we have for k ∈ S+ (note that (uS−)k = 0 in this case. The case k ∈ S− is similar, we
omit for simplicity)

w
(t+1)
k =

(
1− 2ηλ

(
d

n
v
(t)
k + λ(w

(t)
k )2 − β∗

k ±O(Bξ + σ
√
n/d+ sδ)

))
w

(t)
k ,

v
(t+1)
k =v

(t)
k − η

(
d

n
v
(t)
k + λ(w

(t)
k )2 − β∗

k ±O(Bξ + σ
√
n/d+ sδ)

)
.

Since
∥∥∥v(t)

S

∥∥∥
∞

= O(
√
s(n/d) log2(d)(Bξ + σ

√
n/d)) by Lemma B.3, this implies that (d/n)

∥∥∥v(t)
S

∥∥∥
∞

< βmin/4. Thus,

λ(w
(t+1)
k )2 =

(
1− 2ηλ

(
d

n
v
(t)
k + λ(w

(t)
k )2 − β∗

k ±O(Bξ + σ
√
n/d+ sδ)

))2

λ(w
(t)
k )2

≥
(
1− 2ηλ

(
λ(w

(t)
k )2 − β∗

k/2
))2

λ(w
(t)
k )2.

Therefore, by Lemma B.9 within time O(log(1/λα2)/ηλβmin) we have λ(w(t)
k )2 ≥ βmin/4 and will remain for t ≤ T̃1.
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Lemma B.6. Suppose Lemma B.1 and Lemma B.5 hold. Given any time t0, assume at time t0 B0 :=∥∥∥ d
nv

(t0)
S + λ(w

(t0)
S+

)2 − λ(u
(t0)
S−

)2 − β∗
∥∥∥
∞
≥ 4Bs where Bs is defined in Lemma B.4. Let

T ′ := inf

{
t− t0 ≥ 0 :

∥∥∥∥ dnv(t)
S + λ(w

(t)
S+

)2 − λ(u
(t)
S−

)2 − β∗
∥∥∥∥
∞
≤
∥∥∥∥ dnv(t0)

S + λ(w
(t0)
S+

)2 − λ(u
(t0)
S−

)2 − β∗
∥∥∥∥
∞

/2

}
be the time that signal error reduces by half. Then, we know T ′ = O(1/ηλβmin).

Proof. For t ≤ t0 +T ′, by Lemma B.4, we have for k ∈ S+ (note that (uS−)k = 0 in this case. The case k ∈ S− is similar,
we omit for simplicity)

w
(t+1)
k =

(
1− 2ηλ

(
d

n
v
(t)
k + λ(w

(t)
k )2 − β∗

k ±
(
Bs + sδ

∥∥∥∥ dnv(t)
S + λ(w

(t)
S+

)2 − λ(u
(t)
S−

)2 − β∗
∥∥∥∥
∞

)))
w

(t)
k ,

v
(t+1)
k =v

(t)
k − η

(
d

n
v
(t)
k + λ(w

(t)
k )2 − β∗

k ±
(
Bs + sδ

∥∥∥∥ dnv(t)
S + λ(w

(t)
S+

)2 − λ(u
(t)
S−

)2 − β∗
∥∥∥∥
∞

))
.

We claim
∥∥∥ d
nv

(t)
S + λ(w

(t)
S+

)2 − λ(u
(t)
S−

)2 − β∗
∥∥∥
∞
≤
∥∥∥ d
nv

(t0)
S + λ(w

(t0)
S+

)2 − λ(u
(t0)
S−

)2 − β∗
∥∥∥
∞

= B0 for t0 ≤ t ≤
t0 + T ′. We show this by induction. At t = t0 it holds. Suppose before t the claim holds. For time t+ 1,

d

n
v
(t+1)
k + λ(w

(t+1)
k )2 =

d

n
v
(t)
k −

d

n
η

(
d

n
v
(t)
k + λ(w

(t)
k )2 − β∗

k ±B0/3

)
+

(
1− 2ηλ

(
d

n
v
(t)
k + λ(w

(t)
k )2 − β∗

k ±B0/3

))2

λ(w
(t)
k )2

≥ d

n
v
(t)
k + λ(w

(t)
k )2 − η

(
d

n
v
(t)
k + λ(w

(t)
k )2 − β∗

k ±B0/3

)(
d

n
+ 4λ2(w

(t)
k )2

)
.

This implies for t ≤ t0 + T ′

d

n
v
(t+1)
k + λ(w

(t+1)
k )2 − β∗

k ≥
(
d

n
v
(t)
k + λ(w

(t)
k )2 − β∗

k

)(
1− η

3

(
d

n
+ 4λ2(w

(t)
k )2

))
≥
(
d

n
v
(t)
k + λ(w

(t)
k )2 − β∗

k

)
(1− Ω(ηλβmin)) ,

where in the last line we use Lemma B.5. Thus, if d
nv

(t)
k + λ(w

(t)
k )2 − β∗

k < −B0/2, then it will increase so that
| dnv

(t)
k + λ(w

(t)
k )2 − β∗

k | ≤ B0. Similarly, one can show that if d
nv

(t)
k + λ(w

(t)
k )2 − β∗

k > B0/2, then it will decrease so that
| dnv

(t)
k + λ(w

(t)
k )2 − β∗

k | ≤ B0. In this way, we finish the induction.

Moreover, from the above calculations, we can see that if d
nv

(t)
k +λ(w

(t)
k )2−β∗

k < −B0/2, then within time O(1/ηλβmin),
| dnv

(t)
k + λ(w

(t)
k )2 − β∗

k | ≤ B0/2. Similarly, if d
nv

(t)
k + λ(w

(t)
k )2 − β∗

k > B0/2, then within time O(1/ηλβmin), | dnv
(t)
k +

λ(w
(t)
k )2− β∗

k | ≤ B0/2. By Lemma B.7, we know once | dnv
(t)
k + λ(w

(t)
k )2− β∗

k | ≤ B0/2, it will remain bounded by B0/2.
Therefore, we know T ′ = O(1/ηλβmin).

Lemma B.7 (Stability). Suppose Lemma B.4 and Lemma B.5 hold. Assume
∥∥ d
nv

(t0) + λw(t0)⊙2 − λu(t0)⊙2 − β∗
∥∥
∞ ≤ µ

at time t0, then | dnv
(t)
k +λ(w

(t)
k )2−λ(u

(t)
k )2−β∗

k | ≤ max{µ, 2(Bs+ sδµ)} for all t ≥ t0 and k ∈ S, where Bs is definied
in Lemma B.4.

Proof. By Lemma B.4, we have for k ∈ S+ (note that (uS−)k = 0 in this case. The case k ∈ S− is similar, we omit for
simplicity)

w
(t+1)
k =

(
1− 2ηλ

(
d

n
v
(t)
k + λ(w

(t)
k )2 − β∗

k ± (Bs + sδµ)

))
w

(t)
k ,

v
(t+1)
k =v

(t)
k − η

(
d

n
v
(t)
k + λ(w

(t)
k )2 − β∗

k ± (Bs + sδµ)

)
.
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Since λ(w
(t)
k )2 = βmin/4 by Lemma B.5, we have

d

n
v
(t+1)
k + λ(w

(t+1)
k )2 =

d

n
v
(t)
k −

d

n
η

(
d

n
v
(t)
k + λ(w

(t)
k )2 − β∗

k ± (Bs + sδµ)

)
+

(
1− 2ηλ

(
d

n
v
(t)
k + λ(w

(t)
k )2 − β∗

k ± (Bs + sδµ)

))2

λ(w
(t)
k )2

≥ d

n
v
(t)
k + λ(w

(t)
k )2 − η

 d

n
v
(t)
k + λ(w

(t)
k )2 − β∗

k ± (Bs + sδµ)︸ ︷︷ ︸
=:err

( d

n
+ 4λ2(w

(t)
k )2

)
.

This implies for t ≥ t0, if d
nv

(t)
k + λ(w

(t)
k )2 − β∗

k < −2err, we have

d

n
v
(t+1)
k + λ(w

(t+1)
k )2 − β∗

k ≥
(
d

n
v
(t)
k + λ(w

(t)
k )2 − β∗

k

)(
1− η

2

(
d

n
+ 4λ2(w

(t)
k )2

))
≥
(
d

n
v
(t)
k + λ(w

(t)
k )2 − β∗

k

)
(1− Ω(ηλβmin))

Thus, d
nv

(t)
k + λ(w

(t)
k )2 − β∗

k will increase in this case. Therefore, we know d
nv

(t)
k + λ(w

(t)
k )2 − β∗

k ≥ −max{µ, 2err} =
−max{µ, 2(Bs + sδµ)} for all t ≥ t0. Similarly, given η is small enough, we can also get a similar upper bound. Thus, we
finish the proof.

Lemma B.8. Suppose Lemma B.1 hold. Recall

T1 := inf

{
t :

∥∥∥∥ dnv(t)
S + λ(w

(t)
S+

)2 − λ(u
(t)
S−

)2 − β∗
∥∥∥∥
∞
≤ CT1

(Bξ + σ
√
n/d)

}
,

where CT1
is a large enough universal constant. Then, we know T1 = O(log(1/α)/ηλβmin).

Proof. We can first use Lemma B.5 and then repeatedly using Lemma B.6 log(1/4Bs) times. We get within time
O(log(1/λα2(Bξ + σ

√
n/d))/ηλβmin) = O(log(1/α)/ηλβmin),

∥∥∥ d
nv

(t)
S + λ(w

(t)
S+

)2 − λ(u
(t)
S−

)2 − β∗
∥∥∥
∞
≤ 4Bs =

CT1
(Bξ + σ

√
n/d).

B.5. Technical Lemmas

In this subsection, we collect several technical lemmas that are used in the proof.
Lemma B.9. Suppose zt+1 = (1 − η(zt − µ))2zt with η, µ, z0 > 0 and z0 ≤ µ − ε. Then if η ≤ µ/2, within time
T = O((1/ηµ)(log(µ/z0) + log(µ/ε))) we have |zT − µ| ≤ ε. Moreover, we have |zt − µ| ≤ ε for t ≥ T .

Proof. Denote T1 := inf{t : zt ≥ µ/2} and T2 := inf{t : |zt − µ| ≤ ε}. We bound T1 and T2 − T1 respectively in below.

For t ≤ T1, we have zt+1 ≥ (1 + ηµ/2)2zt ≥ (1 + ηµ/2)2tz0. Therefore, T1 = O((1/ηµ) log(µ/z0)). For T1 ≤ t ≤ T2,
we have zt+1 ≥ zt−2η(zt−µ)zt ≥ zt−η(zt−µ)µ. This implies zt+1−µ ≥ (1−ηµ)(zt−µ) ≥ (1−ηµ)t−T1(zT1 −µ).
Therefore, T2 − T2 = O((1/ηµ) log(µ/ε)). Together we know T = T1 + T2 = O((1/ηµ)(log(µ/z0) + log(µ/ε))).

We then show once |zt − µ| ≤ ε, it will stay close to µ. To see this, if −ε ≤ zt − µ < 0, then from the above calculation we
know zt+1 − µ ≥ (1− ηµ)(zt − µ) ≥ −ε. If 0 ≤ zt − µ ≤ ε, then zt+1 = (1− η(zt − µ))2zt ≤ zt ≤ µ+ ε. Therefore,
we know |zt − µ| ≤ ε for t ≥ T1.

Lemma B.10. For α, β ∈ Rd, we have ∥α⊙ β∥2 ≤ ∥α∥2 ∥β∥∞,
∥∥α⊙k

∥∥
2
≤ ∥α∥k2 for k ≥ 1.

Proof. We have

∥α⊙ β∥22 =
∑
i

α2
iβ

2
i ≤ ∥α∥

2
2 ∥β∥

2
∞ ,

∥∥α⊙k
∥∥2
2
=
∑
i

α2k
i = ∥α∥2k2k ≤ ∥α∥

2k
2 .
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C. Proof for Stage 2
In Stage 2, we will show that the training loss goes to ε while the test loss ∥β − β∗∥2 remains small. In particular, we will
split into 2 sub-stages: in Stage 2.1, train loss decreases to ∥r∥2 = O(σ) (Lemma C.1), and in Stage 2.2 we use a NTK-type
analysis (Lemma C.6). Note that it suffices to combine Lemma C.1 and Lemma C.6 to get Lemma 5.6.

Throughout Stage 2, we mostly rely on ve to fit the noise in order to reduce the loss; at the same time, we show that the
variables used in Stage 1 continue to fit the signal and all the other variables remain small. This can be done by an NTK-type
analysis when the loss is very small. However, for the first part of Stage 2 we still need to track the dynamics of v and
X⊤Xv carefully.

C.1. Stage 2.1: train loss decreases to ∥r∥2 = O(σ)

Our goal in this stage is to show that the loss decreases to O(σ2) and that the non-signal entries remain small. We formalize
this in the following main lemma.

Lemma C.1 (Stage 2.1). Let T21 := inf{t :
∥∥r(t)∥∥

2
≤ CT21

σ} with large enough universal constant CT21
. Then, we have

T21 − T1 = O((n/ηd) log(n)) and the following hold with large enough universal constant C21:

•
∥∥∥ d
nv

(T21)
S λw

(T21)⊙2
S+

− λu
(T21)⊙2
S−

− β∗
∥∥∥
∞
≤ C21(Bξ + σ

√
n/d)

•
∥∥∥w(T21)

e+

∥∥∥
∞

,
∥∥∥u(T21)

e−

∥∥∥
∞

C21α.

•
∥∥v(T21)

∥∥
2
≤ C21σ

√
n/d and

∥∥∥v(T21)
S

∥∥∥
2
≤ C21

√
s(n/d) log2(d)(Bξ + σ

√
n/d).

To prove this, we will maintain the following inductive hypothesis, which shows the non-signal entries remain small. The
overall strategy is to show that entries of v will allow us to fit the noise and hence reduce loss, and we do this by using a
similar strategy to track the dynamics of v as in Stage 1.

Lemma C.2 (Inductive Hypothesis for Stage 2.1). For T1 ≤ t ≤ T̃21 := T1 + CT̃21
(n log(n)/ηd) with a large enough

universal constant CT̃21
, we have the following hold with large enough universal constant C̃21:

•
∥∥∥ d
nv

(t)
S + λw

(t)⊙2
S+

− λu
(t)⊙2
S−

− β∗
∥∥∥
∞
≤ C̃21(Bξ + σ

√
n/d)

•
∥∥∥w(t)

e+

∥∥∥
∞

,
∥∥∥u(t)

e−

∥∥∥
∞
≤ C̃21α.

•
∥∥∥v(t)

S

∥∥∥
2
≤ C̃21

√
s(n/d) log2(d)(Bξ + σ

√
n/d).

•
∥∥r(t)∥∥

2
= (1− Ω(ηd/n))t−T1 · C1σ

√
n.

In particular, the first point and third point imply that
∥∥∥λw(t)⊙2

S+
− λu

(t)⊙2
S−

− β∗
∥∥∥
∞

= 2C̃21
√
s(Bξ + σ

√
n/d) log2(d).

The last point implies that T21 − T1 = O((n/ηd) log(n)). Moreover, by the choice of parameters, O(d/
√
n)λ

∥∥∥w(t)
e+

∥∥∥2
∞

=

O(Bξ/ log d), O(d/
√
n)λ

∥∥∥u(t)
e−

∥∥∥2
∞

= O(Bξ/ log d).

Similar as Stage 1, we discuss the constant dependency here. All the constants in big-O in this subsection, except main result
Lemma C.1, should only depends on universal constants CT21 , C̃21, CT̃21

as well as the constants in Stage 1. To ensure this,

we especially need to choose the constant in λ = Θ
(
dσ−1n−1(

√
log(d)/n+

√
n/d)−1 log−1(n)

)
to be small enough to

ensure the nonsignal entries do not grow large. See the proof of Lemma C.2 for details.
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C.1.1. DYNAMICS OF v

As in Stage 1, we analyze the decomposition of X⊤Xv/n and v separately. The proofs are very similar to Lemma B.2 and
Lemma B.3 in Stage 1, but several terms will now have a tighter bound. We defer the proofs to Appendix C.1.4.

For the decomposition of X⊤Xv/n we have

Lemma C.3. Recall the decomposition in (3)

1

n
X⊤Xv(t) =

d

n
v
(t)
S + bt(X

⊤ξ)e + Γt,

bt+1 = bt −
ηd

n
(bt −

1

n
),

where
∥∥Γ(t)

∥∥
∞ ≤ γt and recall the notation βS =

∑
i:β∗

i ̸=0 βiei, βe =
∑

i:β∗
i =0 βiei. Suppose Lemma C.2 holds. We

have for T1 ≤ t ≤ T̃21

bt = (1− (1− ηd/n)t)/n ≤ 1/n,

γt ≤ γT1 +O(σ
√
d/n+ (dBξ/n log d)ηt) = O(σ

√
n/d+Bξ).

For the decomposition of v we have

Lemma C.4. Recall the decomposition in (4)

v(t) = v
(t)
S + atX

⊤ξ +∆(t)
v ,

at+1 = at − η(bt − 1/n),

where
∥∥∥∆(t)

v

∥∥∥
∞
≤ ζt. and recall the notation βS =

∑
i:β∗

i ̸=0 βiei, βe =
∑

i:β∗
i =0 βiei. Suppose Lemma C.2 holds. We

have for T1 ≤ t ≤ T̃21

at = (1− (1− ηd/n)t)/d ≤ 1/d

ζt = ζT1
+O((Bξ + σ

√
n/d)η(t− T1)) = O((Bξ + σ

√
n/d)n log(n)/d).

In particular, we can show that
∥∥v(t)

∥∥
2
= O(σ

√
n/d).

C.1.2. IMPLICATIONS OF INDUCTIVE HYPOTHESIS LEMMA C.2

Given the dynamics of v, we now have the approximation of gradient by Lemma 5.2.

Lemma C.5. In the setting of Lemma C.3 and Lemma C.4, we have for T1 ≤ t ≤ T̃21

∇wL =

(
1

n
X⊤r

)
⊙ (2λw) = 2λ(

d

n
vS + λw⊙2

S+
− λu⊙2

S−
− β∗ +∆r)⊙w,

∇uL = −
(
1

n
X⊤r

)
⊙ (2λu) = −2λ( d

n
vS + λw⊙2

S+
− λu⊙2

S−
− β∗ +∆r)⊙ u,

∇vL =
1

n
X⊤r,

where ∥∥∥∆(t)
r

∥∥∥
∞

=O
(
Bξ + σ

√
n/d

)
+ sδ

∥∥∥∥ dnv(t)
S + λw

(t)⊙2
S+

− λu
(t)⊙2
S−

− β∗
∥∥∥∥
∞

.

C.1.3. PROOF OF INDUCTIVE HYPOTHESIS LEMMA C.2 AND LEMMA C.1

Now we are ready to prove the induction hypothesis for Stage 2.1 and Lemma C.1.

Lemma C.2 (Inductive Hypothesis for Stage 2.1). For T1 ≤ t ≤ T̃21 := T1 + CT̃21
(n log(n)/ηd) with a large enough

universal constant CT̃21
, we have the following hold with large enough universal constant C̃21:
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•
∥∥∥ d
nv

(t)
S + λw

(t)⊙2
S+

− λu
(t)⊙2
S−

− β∗
∥∥∥
∞
≤ C̃21(Bξ + σ

√
n/d)

•
∥∥∥w(t)

e+

∥∥∥
∞

,
∥∥∥u(t)

e−

∥∥∥
∞
≤ C̃21α.

•
∥∥∥v(t)

S

∥∥∥
2
≤ C̃21

√
s(n/d) log2(d)(Bξ + σ

√
n/d).

•
∥∥r(t)∥∥

2
= (1− Ω(ηd/n))t−T1 · C1σ

√
n.

In particular, the first point and third point imply that
∥∥∥λw(t)⊙2

S+
− λu

(t)⊙2
S−

− β∗
∥∥∥
∞

= 2C̃21
√
s(Bξ + σ

√
n/d) log2(d).

The last point implies that T21 − T1 = O((n/ηd) log(n)). Moreover, by the choice of parameters, O(d/
√
n)λ

∥∥∥w(t)
e+

∥∥∥2
∞

=

O(Bξ/ log d), O(d/
√
n)λ

∥∥∥u(t)
e−

∥∥∥2
∞

= O(Bξ/ log d).

Proof. We show these inductively on t. For t = T1, we know it holds by Lemma 5.3. Suppose it holds before time t, then at
time t+ 1 we will show it still hold.

For
∥∥∥ d
nv

(t+1)
S + λw

(t+1)⊙2
S+

− λu
(t+1)⊙2
S−

− β∗
∥∥∥
∞

, let k ∈ S+ (the case k ∈ S− can be handled similarly, we omit for

simplicity). Since by the choice of parameter (d/n)
∥∥∥v(t)

S

∥∥∥
∞

< βmin/2, we know λ(w
(t)
k )2 = βmin/4. For T1 ≤ t ≤ T̃21,

by Lemma B.7 and Lemma C.5, we know
∥∥ d
nv

(t+1) + λw(t+1)⊙2 − λu(t+1)⊙2 − β∗
∥∥
∞ = C̃21(Bξ +σ

√
n/d) with large

enough C̃21.

For k ̸∈ S, consider wk (uk can be bounded similarly), we have the dynamics by Lemma C.5

w
(t+1)
k ≤

(
1 + 2ηλO(Bξ + σ

√
n/d)

)
w

(t)
k .

This means |w(t)
k | = (1 + O(ηλ(Bξ + σ

√
n/d))t−T1 · C1α. To show |w(t)

k | remain as O(α), recall the choice of

λ = Θ
(
dσ−1n−1(

√
log(d)/n+

√
n/d)−1 log−1(n)

)
and T̃21 − T1 ≤ CT̃21

n log(n)/ηd, we only need to choose the

constant in λ to be small enough. In this way, we get |w(t)
k | ≤ C̃21α with large enough constant C̃21.

It remains to consider wk with k ∈ S− and uk with k ∈ S+. We will focus on wk with k ∈ S−, the other follows the same
calculation. Similar in the proof of Lemma B.1, we have

w
(t+1)
k u

(t+1)
k =

(
1− 2ηλ

(
1

n
X⊤r(t)

)
k

)
w

(t)
k ·

(
1 + 2ηλ

(
1

n
X⊤r(t)

)
k

)
u
(t)
k ≤ w

(t)
k u

(t)
k ≤ α2.

We know u
(t)
k ≥ α. This implies that |w(t)

k | ≤ α.

For ∥vS∥2, we have by Lemma C.5 and Lemma 5.3∥∥∥v(t+1)
S

∥∥∥
2
≤
∥∥∥v(t)

S

∥∥∥
2
+ η

∥∥∥∥ 1n (X⊤r(t))S

∥∥∥∥
2

≤
∥∥∥v(T1)

S

∥∥∥
2
+O(

√
s(Bξ + σ

√
n/d)η(t− T1))

=O(
√
s(n/d) log2(d)(Bξ + σ

√
n/d))

≤C̃21

√
s(n/d) log2(d)(Bξ + σ

√
n/d)

with large enough constant C̃21.

For the bound on
∥∥r(t+1)

∥∥
2
, using the same calculation as in the proof of Lemma B.1, we can show it is true.

Given the above induction hypothesis, we are ready to prove the main result for Stage 2.1.

Lemma C.1 (Stage 2.1). Let T21 := inf{t :
∥∥r(t)∥∥

2
≤ CT21σ} with large enough universal constant CT21 . Then, we have

T21 − T1 = O((n/ηd) log(n)) and the following hold with large enough universal constant C21:
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•
∥∥∥ d
nv

(T21)
S λw

(T21)⊙2
S+

− λu
(T21)⊙2
S−

− β∗
∥∥∥
∞
≤ C21(Bξ + σ

√
n/d)

•
∥∥∥w(T21)

e+

∥∥∥
∞

,
∥∥∥u(T21)

e−

∥∥∥
∞

C21α.

•
∥∥v(T21)

∥∥
2
≤ C21σ

√
n/d and

∥∥∥v(T21)
S

∥∥∥
2
≤ C21

√
s(n/d) log2(d)(Bξ + σ

√
n/d).

Proof. The first two points and the bound on T21 − T1 follow from Lemma C.2. The last point follow from Lemma C.4 and
Lemma C.2. As mentioned earlier, we can choose large enough universal constant C21 to serve as upper bound, since all
big-O here only hide constants depend on universal constants CT21

, C̃21, CT̃21
as well as the constants in Stage 1.

C.1.4. OMITTED PROOFS IN SECTION C.1.1 AND SECTION C.1.2

In this subsection, we give the proof of Lemma C.3, Lemma C.4 and Lemma C.5.
Lemma C.3. Recall the decomposition in (3)

1

n
X⊤Xv(t) =

d

n
v
(t)
S + bt(X

⊤ξ)e + Γt,

bt+1 = bt −
ηd

n
(bt −

1

n
),

where
∥∥Γ(t)

∥∥
∞ ≤ γt and recall the notation βS =

∑
i:β∗

i ̸=0 βiei, βe =
∑

i:β∗
i =0 βiei. Suppose Lemma C.2 holds. We

have for T1 ≤ t ≤ T̃21

bt = (1− (1− ηd/n)t)/n ≤ 1/n,

γt ≤ γT1
+O(σ

√
d/n+ (dBξ/n log d)ηt) = O(σ

√
n/d+Bξ).

Proof. The proof here is almost the same as in the proof of Lemma B.2 in Stage 1. The only difference is that we know
have better bounds on the error terms. We first write the update of bt and Γt using the update of v.

bt+1(X
⊤ξ)e + Γt+1 =

1

n
X⊤Xv(t+1) − d

n
v
(t+1)
S

=
1

n
X⊤Xv(t) − d

n
v
(t)
S − η

1

n
X⊤X

1

n
X⊤r(t) + η

d

n

(
1

n
X⊤r(t)

)
S

=bt(X
⊤ξ)e + Γt −

η

n2
X⊤XX⊤r(t) + η

d

n

(
1

n
X⊤r(t)

)
S

=bt(X
⊤ξ)e + Γt −

η

n2
X⊤(XX⊤ − dI)r(t) − η

d

n

(
1

n
X⊤r(t)

)
e

.

We bound the last two terms one by one. For η
n2X

⊤(XX⊤ − dI)r(t), we have by Assumption 2.2 and Lemma C.2∥∥∥ η

n2
X⊤(XX⊤ − dI)r(t)

∥∥∥
∞
≤ η

n
O(

1√
n
·
√
dn)(1− Ω(ηd/n))t−T1O(σ

√
n) = O(ησ

√
d/n)(1− Ω(ηd/n))t−T1 .

For η d
n

(
1
nX

⊤r(t)
)
e
, we have(

1

n
X⊤r(t)

)
e

=

(
1

n
X⊤Xv(t) +

1

n
X⊤X(λw

(t)⊙2
S+

− λu
(t)⊙2
S−

− β∗)− 1

n
X⊤ξ +

1

n
X⊤(λXw(t)⊙2

e+ − λXu(t)⊙2
e− )

)
e

=

(
d

n
v
(t)
S +

1

n
X⊤X(λw

(t)⊙2
S+

− λu
(t)⊙2
S−

− β∗) + (bt −
1

n
)X⊤ξ + Γt +

1

n
X⊤(λXw(t)⊙2

e+ − λXu(t)⊙2
e− )

)
e

=(bt −
1

n
)(X⊤ξ)e +

(
(
1

n
X⊤X − I)(λw

(t)⊙2
S+

− λu
(t)⊙2
S−

− β∗) + Γt +
1

n
X⊤(λXw(t)⊙2

e+ − λXu(t)⊙2
e− )

)
e

.
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Therefore, we know by Lemma C.2

bt+1 = bt −
ηd

n
(bt −

1

n
),

γt+1 ≤ γt + (1−O(ηd/n))t−T1O(ησ
√
d/n) + η

d

n
O(Bξ/ log d+ (d/

√
n)λα2)

= γt + (1−O(ηd/n))t−T1O(ησ
√
d/n) + ηO(dBξ/n log d).

By Lemma B.2, this implies

bt = (1− ηd/n)t−T1bT1 + (1− (1− ηd/n)t−T1)/n = (1− (1− ηd/n)t)/n ≤ 1/n,

γt ≤ γT1
+O(σ

√
n/d+ (dBξ/n log d)η(t− T1)) = O(σ

√
n/d+Bξ).

Lemma C.4. Recall the decomposition in (4)

v(t) = v
(t)
S + atX

⊤ξ +∆(t)
v ,

at+1 = at − η(bt − 1/n),

where
∥∥∥∆(t)

v

∥∥∥
∞
≤ ζt. and recall the notation βS =

∑
i:β∗

i ̸=0 βiei, βe =
∑

i:β∗
i =0 βiei. Suppose Lemma C.2 holds. We

have for T1 ≤ t ≤ T̃21

at = (1− (1− ηd/n)t)/d ≤ 1/d

ζt = ζT1
+O((Bξ + σ

√
n/d)η(t− T1)) = O((Bξ + σ

√
n/d)n log(n)/d).

In particular, we can show that
∥∥v(t)

∥∥
2
= O(σ

√
n/d).

Proof. The proof here is almost the same as in the proof of Lemma B.3 in Stage 1. The only difference is that we know
have better bounds on the error terms. We write the update of at and ∆

(t)
v using the update of v

at+1X
⊤ξ +∆(t+1)

v =v(t+1) − v
(t+1)
S = v(t) − v

(t)
S − η

(
1

n
X⊤r(t)

)
e

=atX
⊤ξ +∆(t)

v − η

(
1

n
X⊤r(t)

)
e

.

For
(
1
nX

⊤r(t)
)
e
, using the decomposition of X⊤Xv/n in Lemma C.3, we have(

1

n
X⊤r(t)

)
e

=

(
1

n
X⊤Xv(t) +

1

n
X⊤X(λw

(t)⊙2
S+

− λu
(t)⊙2
S−

− β∗)− 1

n
X⊤ξ +

1

n
X⊤(λXw(t)⊙2

e+ − λXu(t)⊙2
e− )

)
e

=

(
d

n
v
(t)
S +

1

n
X⊤X(λw

(t)⊙2
S+

− λu
(t)⊙2
S−

− β∗) + (bt −
1

n
)X⊤ξ + Γt +

1

n
X⊤(λXw(t)⊙2

e+ − λXu(t)⊙2
e− )

)
e

=(bt −
1

n
)(X⊤ξ)e +

(
(
1

n
X⊤X − I)(λw

(t)⊙2
S+

− λu
(t)⊙2
S−

− β∗) + Γt +
1

n
X⊤(λXw(t)⊙2

e+ − λXu(t)⊙2
e− )

)
e

.

Therefore, we have the update of at and ζt by using Lemma 5.1, Assumption 2.2 and Lemma C.2

at+1 = at − η(bt − 1/n),

ζt+1 ≤ ζt + ηO(|nbt − 1|Bξ +Bξ/ log d+ σ
√
n/d+Bξ + (d/

√
n)λα2).
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By Lemma B.3, this implies

at = ηt/n− η
∑
τ<t

bτ = (1− (1− ηd/n)t)/d ≤ 1/d

ζt ≤ ζT1
+O((Bξ + σ

√
n/d)η(t− T1)) = O((Bξ + σ

√
n/d)n log(n)/d).

We now bound ∥v∥2. Since its gradient norm ∥∇vL∥2 =
∥∥X⊤r/n

∥∥
2
≤ (1−Ω(ηd/n))t−T1O(σ

√
d/n) by Lemma C.2 and

Assumption 2.2, we can bound
∥∥v(t)

∥∥
2
≤
∥∥v(T1)

∥∥
2
+ η

∑
T1≤τ≤t

∥∥∇vL
(τ)
∥∥
2
=
∥∥v(T1)

∥∥
2
+O(σ

√
n/d) = O(σ

√
n/d).

Lemma C.5. In the setting of Lemma C.3 and Lemma C.4, we have for T1 ≤ t ≤ T̃21

∇wL =

(
1

n
X⊤r

)
⊙ (2λw) = 2λ(

d

n
vS + λw⊙2

S+
− λu⊙2

S−
− β∗ +∆r)⊙w,

∇uL = −
(
1

n
X⊤r

)
⊙ (2λu) = −2λ( d

n
vS + λw⊙2

S+
− λu⊙2

S−
− β∗ +∆r)⊙ u,

∇vL =
1

n
X⊤r,

where ∥∥∥∆(t)
r

∥∥∥
∞

=O
(
Bξ + σ

√
n/d

)
+ sδ

∥∥∥∥ dnv(t)
S + λw

(t)⊙2
S+

− λu
(t)⊙2
S−

− β∗
∥∥∥∥
∞

.

Proof. By Lemma C.3 and Lemma C.4 and the choice of parameter, the result directly follows from Lemma 5.2.

C.2. Stage 2.2

After Stage 2.1, the loss is already very small. This allows us to further tighten the bound of several terms and use an
NTK-type analysis to show that the parameters do not move much while reduce the training loss to ε.

Lemma C.6. Let T22 := inf{t : L(u(t),w(t),v(t)) =
∥∥r(t)∥∥2 /n ≤ ε}. Then T22 − T21 = O(n log(σ/ε)/ηd) and the

following hold:

•
∥∥∥ d
nv

(T22)
S + λw

(T22)⊙2
S+

− λu
(T22)⊙2
S−

− β∗
∥∥∥
∞

= O(Bξ + σ
√
n/d)

•
∥∥∥w(T22)

e+

∥∥∥
∞

,
∥∥∥u(T22)

e−

∥∥∥
∞

= O(α)

•
∥∥v(T22)

∥∥
2
= O(σ

√
n/d),

∥∥∥v(T22)
S

∥∥∥
2
= O(

√
s(n/d) log2(d)(Bξ + σ

√
n/d))

•
∥∥r(t)∥∥

2
= (1− Ω(ηd/n))t−T21O(σ)

In particular, the above imply that
∥∥β(T22) − β∗

∥∥
2
= O(

√
s log2(d)(Bξ + σ

√
n/d)). Moreover, for every t ≥ T22, the

above still hold and train loss L(t) ≤ ε.

For the constant dependency, the big-O here can be replaced by a large enough universal constant, similar to the argument in
Stage 1 and Stage 2.1. We omit here for simplicity.

Proof. We show these by induction. At t = T21, we know they hold by Lemma C.1. Suppose before time t they hold, then
at time t+ 1 we know

∥∥X⊤r(τ)/n
∥∥
∞ = (1− Ω(ηd/n))τ−T21O(σ/

√
n) for any τ ≤ t by Assumption 2.2.

For
∥∥∥ d
nv

(t+1)
S + λw

(t+1)⊙2
S+

− λu
(t+1)⊙2
S−

− β∗
∥∥∥
∞

, consider the k-th entry with k ∈ S+ (k ∈ S− can be bounded similarly).
The proof is similar to the proof in Lemma C.2, we omit for simplicity.
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We now consider
∥∥∥w(t+1)

e+

∥∥∥
∞

and
∥∥∥u(t+1)

e−

∥∥∥
∞

. For k ̸∈ S, consider wk (uk can be bounded similarly)

|w(t+1)
k | ≤

(
1 + 2λη

∥∥∥X⊤r(t)/n
∥∥∥
∞

)
w

(t)
k

≤
∏

T21≤τ≤t

(
1 + (1− Ω(ηd/n))τ−T21O(ηλσ/

√
n)
)
O(α)

≤

1 +
∑

T21≤τ≤t

(1− Ω(ηd/n))τ−T21O(ηλσ/
√
n)

O(α)

≤O(α+ λσ
√
nα/d) = O(α),

where in the second to last line we use the fact that
∏

i(1+ qi) = e
∑

i ln(1+qi) ≤ e
∑

i qi ≤ 1+O(
∑

i qi) for
∑

i qi = O(1).

It remains to consider wk with k ∈ S− and uk with k ∈ S+. We will focus on wk with k ∈ S−, the other follows the same
calculation. Similar in the proof of Lemma B.1, we have

w
(t+1)
k u

(t+1)
k =

(
1− 2ηλ

(
1

n
X⊤r(t)

)
k

)
w

(t)
k ·

(
1 + 2ηλ

(
1

n
X⊤r(t)

)
k

)
u
(t)
k ≤ w

(t)
k u

(t)
k ≤ α2.

We know u
(t)
k ≥ α. This implies that |w(t)

k | ≤ α.

For ∥r∥2, we can bound it the same as in the proof of Lemma B.1.

For ∥vS∥, we have by Lemma C.1

∥∥∥v(t+1)
S

∥∥∥
2
≤
∥∥∥v(t)

S

∥∥∥
2
+ η

∥∥∥∥ 1n (X⊤r(t))S

∥∥∥∥
2

≤
∥∥∥v(T1)

S

∥∥∥
2
+

∑
T21≤τ≤t

(1− Ω(ηd/n))τ−T21O(ησ/
√
n)

=O(
√
s(n/d) log2(d)(Bξ + σ

√
n/d))

For ∥v∥2, we have

∥∥∥v(t+1) − v(T21)
∥∥∥
2
≤ η

∑
T21≤τ≤t

∥∥∥∥ 1nX⊤r(τ)
∥∥∥∥
2

≤
∑

T21≤τ≤t

(1− Ω(ηd/n))τ−T21O(ησ/
√
n) = O(σ

√
n/d).

Note that
∥∥v(T21)

∥∥
2
= O(σ

√
n/d), thus we have

∥∥v(t+1)
∥∥
2
= O(σ

√
n/d).

In this way, we finish the induction proof. It remains to bound T22 − T21. Given
∥∥r(t)∥∥

2
= (1−Ω(ηd/n))tO(σ), we know

T22 − T21 = O(n log(σ/ε)/ηd). Moreover, we can see in the above proof that it will still hold after T22, thanks to the
geometric decreasing of ∥r∥2.

D. Proof of main result Theorem 3.1
In this section, we give the proof of main result. Given that we have already characterized the training dynamics to
the convergence in Stage 1 and Stage 2, it immediately follows from the results for Stage 1 (Lemma 5.3) and Stage 2
(Lemma 5.6).

Theorem 3.1 (Main result). Under Assumption 2.2, suppose there exists constant C such that σ ≤ C. We train model (1) with
initialization v(0) = 0, w(0) = u(0) = α1 and follow the gradient descent update (2). If Ω̃ (s) ≤ n ≤ Õ

(
min{d/s, d2/3}

)
and we choose λ = Θ

(
dσ−1n−1(

√
log(d)/n+

√
n/d)−1 log−1(n)

)
,

α = 1/poly(d), η ≤ O(
√
n/sd/λ3), then for every t ≥ T = O(log(n/αε)n/ηd) with any given ε > 0 we have training

29



Implicit Regularization Leads to Benign Overfitting for Sparse Linear Regression

loss L(u(t),w(t),v(t)) ≤ ε and test loss∥∥∥β(t) − β∗
∥∥∥
2

= O

(
√
s log2(d)

(
σ

√
log(d)

n
+ σ

√
n

d

))
.

Proof. First note that Lemma 5.6 follows from the Lemma C.1 for Stage 2.1 and Lemma C.6 for Stage 2.2. Then, it suffices
to combine Lemma 5.3 and Lemma 5.6 in Section 5, since

∥β − β∗∥2 ≤
∥∥∥∥ dnvS + λw⊙2

S+
− λu⊙2

S−
− β∗

∥∥∥∥
2

+

∥∥∥∥ dnvS

∥∥∥∥
2

+ ∥v∥2 +
∥∥∥λw⊙2

e+ − λu⊙2
e−

∥∥∥
2

= O

(
√
s log(n) log(n/α)

(
σ

√
log(d)

n
+ σ

√
n

d

))

E. Synthetic Experiments
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Figure 2. Test loss vs. dimension d when fixing the ratio d/n =
√
d/3 for 3 different interpolating method: hybrid interpolation with

Lasso (Muthukumar et al., 2020), model v + λw⊙2 − λu⊙2 as we focused in the paper and model w⊙2 − u⊙2 that only keeps the
second order term. Solid lines represent the mean and shaded regions represent the standard deviation of test loss during 3 experiments.
Dashed lines represent the corresponding order.

In this section, we run synthetic experiments to verify our theoretical results. We choose d from 100 to 106 and set n = 3
√
d.

The target β∗ = (1/
√
3,−1/

√
3, 1/
√
3, 0, . . . , 0)⊤, data xi ∼ N(0, I) sampled from Gaussian distribution and noise level

σ = 0.1. We compare 3 different interpolation method:

• hybrid interpolation (Muthukumar et al., 2020): As a 2-step procedure, we first use Lasso (implemented in sklearn)
with ℓ1 regularization coefficient on the order of Θ(σ

√
log(d)/n) (Theorems 7.13 and 7.20 in Wainwright (2019)).

We choose the coefficient with the best test loss among the choice of {1/10, 1/5, 1/2, 1, 2, 5, 10} ∗ σ
√
log(d)/n. In

the second step, we use the min-ℓ2-norm interpolator to fit the residual.

• Model v + λw⊙2 − λu⊙2: As suggested in our main result, we initialize v = 0 and w = u = α1 with α = 10−10.
We set λ = 100d/σn log(n)(

√
log(d)/n +

√
n/d) and run gradient descent with stepsize η = 10−6 until training

loss reaches 10−4.

• Model w⊙2 − u⊙2: We use small initialization that sets w = u = α1 with α = 10−15. We run gradient descent with
stepsize η = 10−6 until training loss reaches 10−4.
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Our results are shown in Figure 2. We can see that with fixed ratio d/n =
√
d/3, as d increases, the test loss of

different method decreases with different rate. The hybrid interpolation gives the smallest test loss and our learner model
v+λw⊙2−λu⊙2 gives a similar performance. This agrees with what our theoretical result suggests. The model w⊙2−u⊙2

that only uses second-order term performs worse than others. This is expected as we know such parametrization with small
initialization converges to min-ℓ1-norm interpolator (Woodworth et al., 2020), and min-ℓ1-norm interpolator gives large test
loss Ω(σ2/ log(d/n)) in the sparse noisy regression setting (Chatterji & Long, 2022; Wang et al., 2022).
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