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Abstract

As a type of valuable intellectual property (IP),
deep neural network (DNN) models have been
protected by techniques like watermarking. How-
ever, such passive model protection cannot fully
prevent model abuse. In this work, we propose
an active model IP protection scheme, namely
NNSplitter, which actively protects the model by
splitting it into two parts: the obfuscated model
that performs poorly due to weight obfuscation,
and the model secrets consisting of the indexes
and original values of the obfuscated weights,
which can only be accessed by authorized users
with the support of the trusted execution envi-
ronment. Experimental results demonstrate the
effectiveness of NNSplitter, e.g., by only modi-
fying 275 out of over 11 million (i.e., 0.002%)
weights, the accuracy of the obfuscated ResNet-
18 model on CIFAR-10 can drop to 10%. More-
over, NNSplitter is stealthy and resilient against
norm clipping and fine-tuning attacks, making it
an appealing solution for DNN model protection.
The code is available at: https://github.
com/Tongzhou0101/NNSplitter.

1. Introduction
Despite the success of deep neural networks (DNNs) in
various applications (Duong et al., 2019; Wang et al., 2018),
building a DNN model with high accuracy is costly, i.e.,
requiring a large number of labeled samples and massive
computational resources (Jiang et al., 2020). As a result, a
high-performance DNN model presents valuable intellectual
property (IP) of the model owner, which should naturally
be adequately protected against potential attacks. However,
recent studies have demonstrated that millions of on-device
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Requirements Definitions

Effectiveness The obfuscated model exhibits poor per-
formance (e.g., random-guess accuracy).

Efficiency The number of model secrets stored in
the secure space should be minimized.

Integrity The functionality of the model is
preserved for the legitimate users.

Resilience The obfuscated model should be
resilient against potential attack surfaces.

Stealthiness The obfuscated weights should be
indistinguishable from normal weights.

Table 1. The design requirements for an efficient model protection
scheme, and the guidance for our proposed NNSplitter.

ML models are vulnerable to model IP attacks (Sun et al.,
2021), wherein the attacker can extract the model and deploy
it on unauthorized devices. Such unauthorized usage leads
to significant financial losses for the model owners.

Several studies have addressed the issue of DNN model
protection, which can be broadly classified into two cate-
gories: passive protection (after IP infringement) and active
protection (before IP infringement). Although passive pro-
tection techniques, e.g., watermarking, help model owners
declare the ownership and guard their rights (Yang et al.,
2021; Zhang et al., 2018), they cannot effectively prevent
unauthorized usage as the model can perform very well in
most cases. Thus, attackers are still motivated to steal the
well-performed model and use it without the knowledge of
the model owner.

In contrast, active protection only allows legitimate users to
use the well-performed model, while intentionally degrad-
ing the model functionality for attackers, thus protecting the
interests of the model owner (Chakraborty et al., 2020; Fan
et al., 2019; Zhou et al., 2022). Nonetheless, such an ad-
vantage of the active protection methods is not free, which
either requires hardware support, e.g., a hardware root-of-
trust (Chakraborty et al., 2020), or introduces extra model
parameters (Fan et al., 2019). Moreover, the existing ac-
tive protection approaches are not generic, i.e., they require
special training strategies for model protection, rendering

1

https://github.com/Tongzhou0101/NNSplitter
https://github.com/Tongzhou0101/NNSplitter


NNSplitter: An Active Defense Solution for DNN Model via Automated Weight Obfuscation

them inapplicable to pre-trained models. It is also worth
noting that some fault injection methods can also cause accu-
racy deterioration (Liu et al., 2017), using software-oriented
(Rakin et al., 2019) or hardware-oriented (Luo et al., 2021;
Rakin et al., 2021) attacking schemes. However, the design
of those works is from the perspective of an attacker, which
can not satisfy requirements (shown in Tab. 1) for active
protection, with detailed discussion in Sec. 2.4.

Considering these limitations of existing defense strategies,
we are motivated to develop a generic active model IP pro-
tection scheme. Specifically, we propose to split the victim
model into an obfuscated model and model secrets, which
should fulfill the requirements detailed in Tab. 1. The design
of such a scheme presents the following substantial chal-
lenges (C). C1: Given the limited size of secure memory we
can leverage, e.g., the trusted execution environment (TEE)
(Costan & Devadas, 2016), the stored model secrets need
to be kept small, while there are millions of, if not more,
weights in modern DNN models. C2: The model function-
ality should be preserved for legitimate users. C3: The
obfuscated weights should be imperceptible and not easily
identified by attackers. C4: Attackers can not significantly
improve the degraded accuracy with reasonable efforts.

To address C1, our proposed scheme, namely NNSplitter,
generates a mask that selectively obfuscates weights within
a small range. This range is chosen to be small enough,
so that the original values of the obfuscated weights can
be replaced by a single value, thereby reducing the stor-
age requirements for model secrets. To achieve this goal,
we utilize a reinforcement learning (RL) algorithm to de-
sign a controller that efficiently identifies important filters
with significant influences on model predictions. By fo-
cusing on these filters, we can minimize the number of
obfuscated weights while still achieving a significant ac-
curacy drop. For C2, we profile the model weights and
adjust the aforementioned small range to ensure that the
original model accuracy can be preserved, after applying
the obfuscated weights restoration rule (details are given
in Sec. 3.1). Besides, we set a limit to ensure the obfus-
cated weights remain within the original weight range to
avoid being identified by attackers (addressing C3). Last,
we force the weight changes to spread across various layers
to increase the resilience against potential attack surfaces to
improve accuracy (addressing C4).

Overall, NNSplitter achieves model IP protection by split-
ting a victim model into two parts: the obfuscated model
and the model secrets. Specifically, the obfuscated model
is vulnerable to model extraction, but its degraded accuracy
resulting from weight obfuscation renders it practically use-
less, effectively mitigating the vulnerability. Meanwhile,
the model secrets are secured by TEE to provide authorized
inference, which can only be accessed by authorized users.

The contributions of this work are as follows:

• We systematically define the requirements for active
model protection and propose NNSplitter that can au-
tomatically split the victim model into the obfuscated
model and model secrets with all of these design re-
quirements fulfilled.

• The accuracy of the obfuscated model can drop to
random guess by modifying only 0.001% weights (∼
300) of the victim model, which is hardware-friendly
due to low secure memory requirement.

• We demonstrate that the proposed NNSplitter is re-
silient against potential attacks, including norm clip-
ping and fine-tuning attacks.

2. Related Works and Background
2.1. Threat Model

To ensure highly effective model protection, we consider a
strong attacker who has the capability to extract the exact
victim DNN model, including its architecture and model pa-
rameters, using techniques like in-memory extraction men-
tioned in (Sun et al., 2021). For example, attackers can
download a mobile application built with a DNN model, de-
compile it, extract the model file, and deploy it on their own
devices. Besides, we assume the attackers only have limited
training data; otherwise, they can train a competitive model
on their own, without strong incentives to steal the victim
model. By considering these scenarios, we aim to design a
model protection scheme that can effectively safeguard the
victim model IP against such strong attackers.

2.2. Trusted Execution Environment

While passive model IP protection fails to protect models
from being stolen or used, we envision the TEE (e.g., ARM
TrustZone on mobile devices (Ngabonziza et al., 2016)) as a
promising solution to achieve active model protection. TEE
provides a physical isolation scheme in the hardware devices
that separates memory into the normal (untrusted) world
and the secure (trusted) world, where the normal world can
communicate with the secure world by invoking a secure
monitor call (Ye et al., 2018). This setup ensures that only
legitimate users can access the secure world, while attack-
ers are blocked. Given the effectiveness of TEE in model
protection as demonstrated in previous works (Chen et al.,
2019; Sun et al., 2023), we adopt the TEE implementation
scheme following (Sun et al., 2023) without delving into
the technical details or considering the vulnerability of TEE
(e.g., side-channel attacks), as it is not the primary focus in
this work.

It is important to note that the secure memory of TEE is
limited, e.g., ∼ 10 MB for trusted applications (Sun et al.,
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2023). On the other hand, the size of state-of-the-art (SOTA)
DNN models continues increasing, e.g., large models like
ResNet-101 exceed 155M parameters (He et al., 2016). To
accommodate this limitation, our approach NNSplitter aims
to obfuscate as few weights as possible, to minimize the
overhead on secure memory usage.

2.3. Model IP Protection

The existing literature has actively addressed model security
issues on edge devices (Sun et al., 2021; Xu et al., 2019;
Shukla et al., 2021), and demonstrated that attackers can
easily extract the model even without sophisticated skills
(Sun et al., 2021). As discussed above, the existing passive
model protection methods like watermarking (Yang et al.,
2021) have limitations in fully preventing model piracy. On
the other hand, active protection methods, such as model en-
cryption (Al-Garadi et al., 2020), have been proposed where
the model files are encrypted and stored in memory. How-
ever, the encrypted model needs to be decoded at runtime
for inference, which can still be vulnerable to attacks.

To enhance the model IP security, Chakraborty et al.leverage
secure hardware support and propose a key-dependent back-
propagation algorithm to train a DNN architecture with the
weight space obfuscated (Chakraborty et al., 2020). After
obfuscation, only authorized users are allowed to use the
model on trusted hardware with the key embedded on-chip,
while the model accuracy will drop significantly if attackers
extract the model and deploy it on other devices. However,
this method requires hardware modification and cannot be
generally used to protect pre-trained models. Similarly, Fan
et al. propose a method to protect the model IP by embed-
ding a passport layer within the DNN model, so that the
DNN inference performance of an original task will be sig-
nificantly deteriorated due to forged passports (Fan et al.,
2019). However, this work aims to defend against ambigu-
ity attacks, and can only be applied to the models already
embedded with watermarks. These existing approaches pro-
vide valuable insights into model protection, but they either
require hardware modifications or have specific limitations
in their applicability.

2.4. Difference from Fault Injection

A key point of active model protection is to introduce perfor-
mance degradation (e.g., accuracy drop) into the protected
model. Although the objective is similar to fault injection
attacks that manipulate the DNN model parameters to cause
abnormal inference (Liu et al., 2017), the fundamental de-
sign requirements are largely different: (i) Stealthiness:
fault injection attacks do not consider stealthiness in model
manipulations, which introduce extremely large magnitudes
changes and can be easily distinguished and removed by
applying weights range restriction (Chen et al., 2021; Liu

et al., 2017). (ii) Resilience: most fault injection attacks
only target the most direct parameters of outputs, e.g., those
in the last layer. However, such an attack is not resilient
against fine-tuning. Also, although existing attacks like bit-
flip (Rakin et al., 2019) modify the weight bits in different
layers to degrade model accuracy, such gradient-ranking-
based attacks can be mitigated by weights reconstruction
(Li et al., 2020). Moreover, bit-flip targets the quantized
DNN models, where the weight magnitude is constrained
based on the quantization method, while how to ensure the
stealthiness and resilience of attacks on the floating-point
precision DNN models is significantly under-explored.

In sharp contrast to these studies on attacks, we rethink
and address all the aforementioned design limitations from
a defense perspective. Specifically, we mainly explore an
active defense scheme leveraging hardware support from the
TEE, to actively prevent attackers from obtaining functional
DNN models and make such model extraction attacks less
motivated. Our work is orthogonal to the existing literature
and can be generally applied to any pre-trained models.

3. Our Proposed Method: NNSplitter
This section presents our proposed active DNN model pro-
tection method, NNSplitter, which meets the requirements
of effectiveness, efficiency, integrity, resilience, and stealthi-
ness, as described in Tab. 1.

The overview of NNSplitter is illustrated in Fig. 1, includ-
ing the offline model obfuscation and the online secured
inference. In the offline phase, taking the pre-trained DNN
model as input ( 1⃝), the mask generator profiles the weight
distribution to determine the parameters of the mask follow-
ing certain rules (Sec. 3.1). The mask parameters and the
DNN model will be fed into the optimization loop ( 2⃝) along
with the dataset. In the loop, we build a RL-based controller
to help form a filter-wise mask, which is used to guide the
weight obfuscation optimized by the model optimizer. Then
the negative accuracy evaluated on the test dataset will serve
as a reward to optimize the controller. When the reward con-
verges, i.e., the accuracy stops decreasing, the optimization
loop will generate two parts — the obfuscated model ( 4⃝)
deployed in the normal world (untrusted memory), and the
model secrets ( 3⃝) that include the indexes and the original
values of the obfuscated weights stored in the secure world
(trusted memory).

During online secured inference, the model is executed layer
by layer. At each layer, the obfuscated weights are used to
compute an output feature map, which may contain errors
in certain output channels. These errors are intentionally
propagated to subsequent layers, resulting in a substantial
drop in accuracy. This mechanism effectively prevents unau-
thorized use by attackers, as the model they extract from
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Figure 1. An overview of NNSplitter. (a) Offline model obfuscation: NNSplitter splits the pre-trained model into two parts once the
reward is converged, i.e., the obfuscated model and the model secrets (including the indexes and the original weight values). (b) Online
secured inference: an attacker can only extract the obfuscated model stored in the normal world, which exhibits poor performance.
However, the original model accuracy can be preserved by integrating the model secrets stored in the secure world of the victim’s device.

the normal world will perform poorly due to the presence
of obfuscated weights ( 6⃝ and 7⃝). However, in the secure
world, the model secrets are utilized to correct these errors
in the specific output channels, ensuring that the model func-
tions as intended for legitimate users who have access to
the secure world ( 5⃝). In this way, the majority of the DNN
inference computation is performed in the main memory
of the normal world, reducing the computation overhead
within the secure world.

3.1. Problem Formulation

Given a pre-trained DNN modelM containing L convolu-
tional/fully connected layers with weights W := {W(l)}Ll=1,
we aim to find the optimal weight changes ∆W (the same
size as W) that maximize the classification loss function
LM. For simplicity, we denote each element in W and ∆W
as wi and ∆wi, respectively, where i ∈ [1, N ] and N is the
total number of model weights. Upon achieving the optimal
weight obfuscation, we store the indexes of non-zero ∆wi

and original wi to preserve the performance of the victim
model for legitimate users.

Mask Generator. To reduce the secure storage requirement,
we design a mask M for ∆W to determine the weights to
be obfuscated, which is defined by:

M(wi) =

{
1 if |wi − c| ≤ ϵ,

0 otherwise,
(1)

where c and ϵ are both controllable hyper-parameters. Using
this mask, we can refine the weight changes ∆W′ := ∆W
⊙M, where ⊙ denotes element-wise multiplication. The
benefits of the mask design are two-fold: (i) M only allows
weights in the range [c − ϵ, c + ϵ] to be obfuscated. By
selecting a small ϵ, we ensure that the obfuscated weights
are close to a constant value c. This allows us to store a
single value for these obfuscated weights instead of multiple
different values, thus saving the secure space while preserv-
ing the model functionality; (ii) by carefully selecting c, we

can distribute the weight obfuscation across various layers,
significantly improving the resilience against the potential
attack surfaces, such as fine-tuning (see results in Sec. 5.2).
Besides, we apply ℓ0-norm regularization to ∆W′ to further
save the secure storage space.

Model Optimizer. To improve the stealthiness of weight
obfuscation, we restrict the values of obfuscated weights,
i.e., W+∆W′, within the original value range of W, which
is achieved by the hyperparameters α and β in Eq. (2).
Thus, the optimal ∆W′ can be found by minimizing the loss
function L(∆W′):

min
∆W′

L(∆W′) = −LM
(
f
(
x;W +∆W′) ,y)+ λ

∥∥∆W′∥∥
0

s.t. α∗min{wi} ≤ wi +∆w′
i ≤ β ∗max{wi} ∀i,

(2)

where f denotes the functionality of the DNN modelM,
x is the training samples with y being the corresponding
labels, and λ controls the sparsity of weight changes.

However, considering the SOTA DNN models consisting
of millions of parameters, only using ℓ0-norm to minimize
the number of weight changes is not sufficient. Inspired by
the fact that the importance of different filters varies (You
et al., 2019), e.g., the filters learning the background fea-
tures contribute less compared to these learning the object
edge, we propose to embed the filter-wise weights selection
strategy into the mask design. This strategy involves adding
weight changes only to selected important filters while still
satisfying the constraints in Eq. (1). By doing so, we can
further reduce the storage space required for weight obfus-
cation, while still achieving the desired level of accuracy
degradation.

Nonetheless, manually selecting filters to design an opti-
mal filter-wise mask is impractical due to the large number
of filters in SOTA DNNs. Thus, we propose a RL-based
controller to automatically select the optimal filters.
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3.2. RL-based Controller

As an important component of NNSplitter, the RL-based
controller aims to form a filter-wise mask. While a straight-
forward approach would be to use the controller to generate
all the hyperparameters required by the design of M, includ-
ing c and ϵ in Eq. (1), this design principle would increase
the complexity and optimization difficulty of developing the
controller. To overcome the challenges while maintaining
the effectiveness of the controller, we leverage the domain
knowledge about the distribution of the model weights to
determine the values of these two hyper-parameters (see
details in Sec. 4.2), and leave the difficult part, i.e., selecting
important filters, to the controller.

The developed controller consists of three parts: an en-
coder for encoding the initialized state, a policy network
for decision-making, and decoders for different layers to
decode the output of policy networks into filter indexes. In
this controller, an agent selects a filter with index k for each
layer (i.e., actions), where k ∈ [1,K(l)] and K(l) denotes
the number of filters (i.e., output channels) of the l-th layer.
Since the state K(l) is determined by the architecture of the
victim modelM, the environment is static for the agents. To
select n filters for each layer (n could be 1), we will have n
agents making n ∗L actions in total, denoted as a1:n∗L. All
agents will share the same controller with weights θ, which
will be optimized by maximizing the expected reward J(θ):

J(θ) = Eπ(a1:n∗L;θc)[R], (3)

where π(·) denotes the probabilities of taken actions given
θ, and reward R is constructed by the negative inference
accuracy of the obfuscated model, defined by Eq. (4):

R = −ACC
(
f
(
xt;W +∆W′),yt

))
, (4)

where ACC is accuracy, xt is the validation dataset and
yt denotes the corresponding labels. Considering R is non-
differentiable with respect to the controller output, we use a
policy gradient method: REINFORCE algorithm (Williams,
1992) to maximize J(θ), which is the same as minimizing
the loss function of the controller:

Lc(θ) = −
1

m

m∑
j=1

n∗L∑
t=1

log π (at; θc) (Rj − b) , (5)

where m represents the number of trails in each episode of
the controller, and b denotes an exponential moving average
of the rewards used to reduce the variance for updating θ.

The obfuscated model generation is described in Alg. 1.
With the mask parameters c and ϵ obtained from the mask
generator (line 1), the initialized controller will first design
a filter-wise mask to optimize the victim model by minimiz-
ing the Eq. (2) (line 4-8), then the controller use rewards

Algorithm 1 Offline obfuscated model generation
Input: pre-trained modelM with weights W; initialized
controller with θ; training data (x,y); test data (xt,yt);
K(l), α, β, λ.
Parameters: learning rate η1, η2.
Output: model secrets (the indexes of ∆w′

i and c), obfus-
cated modelM′.

1: FeedM into model generator and obtain c and ϵ
2: repeat

// Optimization loop
3: for m batches do
4: Use controller to generate filter indexes
5: Form filter-wise mask M and feed into model

optimizer
// Optimize ∆W′

6: for training epochs do
7: Minimize L(∆W′) ▷ Eq. (2)
8: Update ∆W′ ← ∆W′ − η1∇L(∆W′)
9: Measure accuracy on (xt,yt)

10: Collect the reward R ▷ Eq. (4)
11: end for

// Optimize the controller θ
12: Calculate the average reward b
13: Minimize Lc(θ) ▷ Eq. (5)
14: Update controller: θ ← θ − η2∇Lc(θ)
15: end for
16: until Reward R is converged

obtained from the victim model to optimize itself (line 9-
14). When the reward converges, NNSplitter will output two
parts, which are the obfuscated model and model secrets
that will be stored in the secure world.

4. Experimental Validation
4.1. Experimental Setup

Datasets. We evaluate the effectiveness of NNSplitter on
models trained with three datasets: Fashion-MNIST (Xiao
et al., 2017), CIFAR-10, and CIFAR-100 (Krizhevsky et al.,
2009). For Fashion-MNIST, there are 60k 28× 28 grayscale
images from 10 classes in the training dataset and 10k im-
ages in the test dataset. Besides, CIFAR-10/100 both have
50k training images and 10k test images of 32 × 32, except
that CIFAR-10 includes 10 classes while CIFAR-100 has
100 classes.

Baseline DNN Models. While NNSplitter applies to any
pre-trained models, here we consider several commonly-
used DNNs as the proof-of-concept, including VGG-11 (Si-
monyan & Zisserman, 2015), MobileNet-v2 (Sandler et al.,
2018), and ResNet-18/20 (He et al., 2016) trained on the
aforementioned datasets. To demonstrate that NNSplitter is
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a generic defense solution regardless of the victim model’s
training strategies, i.e., training-free, we use pre-trained
models with weights public online, where the parameter
settings (e.g., layer dimensions) could be different for the
same DNN class for different datasets. We use the structures
and pre-trained weights as they are released online, despite
that they may not reach the best-known accuracy on these
datasets.

Comparison Methods. Since there are no existing works
that follow the same settings and objectives as NNSplitter,
we propose the following methods for comparison in order
to demonstrate its effectiveness. (i) Random: instead of
using domain knowledge and the RL-based controller to
design a filter-wise mask, we assume a model protection
method that randomly generates a binary mask to select
weights and obfuscate them by optimizing Eq. (2). For
a fair comparison, the binary mask will select the same
number of obfuscated weights as NNSplitter. (ii) Base-
NNSplitter: this method randomly selects filters in each
layer instead of using the RL-based controller to optimize
the selection.

4.2. Hyper-parameters Setting

Weight Constraints. To enhance the stealthiness of weight
changes, we use two hyper-parameters α and β in Eq. (2)
to ensure that the values of obfuscated weights are indistin-
guishable from the normal weights, thereby avoiding outlier
detection. Considering min{wi} < 0 and max{wi} > 0 in
general, the values of α and β are in the range (0,1]. Specif-
ically, they are set to 0.95 for the following experiments.
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Figure 2. The obfuscated weights spread across all layers, illus-
trated in a VGG-11 model trained on CIFAR-10 as an example.

Mask Design. The mask design depends on the domain
knowledge of the weight distribution. Specifically, to de-
termine the mask hyper-parameters c and ϵ, we profile the
weight distribution of each layer and take the average of the
median values as the c, which will encourage the weight
changes to spread across various layers, as shown in Fig.
2. As for determining ϵ, the principle is to ensure that the

accuracy can be preserved when replacing weights in the
range of [c − ϵ, c + ϵ] with c. Therefore, the closer c is
to the median of the total weights, the smaller ϵ should be.
Otherwise, the baseline accuracy cannot be restored due to
a great precision loss. The details are shown in Tab. 2.

Dataset Model Hyper-parameters

c ϵ

Fashion
MNIST

VGG-11 -1.7e-3 1e-4
ResNet-18 -2.3e-4 3e-5

MobileNet-v2 -3.8e-4 4e-3

CIFAR-10
VGG-11 -7.0e-4 1e-4

ResNet-18 -1.2e-3 8e-5
MobileNet-v2 -2.5e-4 1e-4

CIFAR-100
VGG-11 -1.9e-3 5e-4

ResNet-20 -6.7e-3 6e-4
MobileNet-v2 -9.4e-4 3e-4

Table 2. The settings of mask hyper-parameters.

Controller Design. The RL-based controller in our ap-
proach follows a similar design to the neural architecture
search in (Zoph & Le, 2017; Zoph et al., 2018; Pham et al.,
2018), i.e., using a recurrent neural network (RNN) to build
the policy network, where the embedding dimension and
the hidden dimension of the RNN policy network are set to
256 and 512, respectively. Besides, we use one-hot encod-
ing to encode the initialized state as the input of the policy
network. For decoding the output of the policy network
into filter indexes, we build a decoder for each layer in the
DNN victim model with a linear layer, where its output
dimension is equal to the number of output channels in the
corresponding DNN layer.

4.3. Performance Evaluation

To find the optimal changes added to the pre-trained mod-
els, we leverage the designed RL-based controller to select
filters in both convolutional layers and fully connected lay-
ers. Here, we also refer to each output channel of the fully
connected layer as a filter for simplicity. The results of
NNSplitter, baseline, and random methods are shown in
Tab. 3. Following our defined requirements for DNN model
protection schemes in Tab. 1, we evaluate the performance
of NNSplitter from three perspectives: effectiveness, effi-
ciency, and integrity.

Effectiveness. As shown in column 5 and column 6 in
Tab. 3, NNSplitter successfully degrades the victim model
inference accuracy to random guessing, rendering the at-
tacker’s effort useless. Specifically, for 10-class datasets
like Fashion-MNIST and CIFAR-10, the obfuscated top-1
accuracy of all victim models is lower than 11%, while for
CIFAR-100 including 100 classes, the top-1 accuracy of vic-
tim models after obfuscation is lower than 2%. In contrast,
randomly selecting weights to achieve model obfuscation
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Dataset Model Baseline Obfu. Weights Obfu. Acc. (%) Restored
Acc. (%)Acc. 1 (%) Para. (M) Num. / Ratio 2(%) NNSplitter Random

Fashion
MNIST

VGG-11 93.73 28.14 313/ 0.001 10.00 92.90±0.40 93.73
ResNet-18 93.71 11.17 231/ 0.002 10.00 92.03±0.93 93.71

MobileNet-v2 93.97 2.24 340/ 0.015 10.00 86.41±1.58 93.97

CIFAR-10
VGG-11 92.39 28.15 876/ 0.003 10.78 91.42±0.25 92.39

ResNet-18 93.07 11.17 275/ 0.002 10.00 91.35±0.27 93.07
MobileNet-v2 93.91 2.24 835/ 0.037 10.48 78.18±1.38 93.91

CIFAR-100
VGG-11 70.50 9.80 782/ 0.008 1.34 64.34±0.75 70.50

ResNet-20 68.28 0.28 96/ 0.034 1.31 56.35±1.38 68.27
MobileNet-v2 74.29 2.25 447/ 0.019 1.00 50.92±1.33 74.28

Table 3. NNSplitter applied to multiple DNN models on three datasets. The number of obfuscated weights is the median value when
the obfuscated (Obfu.) accuracy degraded to random guess (<11% for Fashion-MNIST/CIFAR-10, and <2% for CIFAR-100). The
obfuscated accuracy of random is reported as mean±std with the same number of obfuscated weights.

only causes a limited accuracy drop (column 7 in Tab. 3),
e.g., ∼1% (92.90±0.40 % vs. 93.73%) accuracy drop for
VGG-11 model trained on Fashion-MNIST. Besides, the
number of obfuscated weights is below 1k for all cases,
which is small enough to store in TEE (Costan & Devadas,
2016). The smaller storage requirement can support more
models deployed on the same device.

Efficiency. Given the ever-increasing size of DNN models,
we aim to achieve active model protection by modifying
only a very small fraction of the model weights. Specifi-
cally, by obfuscating 0.001% weights of the VGG-11 model
on Fashion-MNIST, the model becomes completely mal-
functional, i.e., with inference accuracy equal to random
guess. Besides, for even more complicated datasets like
CIFAR-100, the ratio of weight obfuscation is still small,
e.g., 0.008% for VGG-11. Note that our proposed design
could further reduce this ratio by tuning the mask hyper-
parameters c and ϵ. However, for a fair comparison, we
follow the generic strategy for all victim models to deter-
mine these parameters as described in Sec. 4.2.

Furthermore, Fig. 3 demonstrates that fewer weight changes
are required when the desired accuracy degradation is
smaller. For example, with 300 obfuscated weights and
301 model secrets (including 300 indexes and the value
of c), NNSplitter achieves an accuracy drop to 10.23% for
the VGG-11 model on Fashion-MNIST. Besides, a notice-
able accuracy drop can still be observed as the number of
obfuscated weights decreases to 150. In contrast, by ran-
domly obfuscating 300 weights, the accuracy only drops to
92.49%, while the number of secrets is almost doubled, i.e.,
600, since the original values of obfuscated weights are not
close and thus cannot be replaced by a single value.

Integrity. Ensuring normal model inference for legitimate
users is essential for an active model protection method.
Thus our method should securely eliminate the adverse ef-
fects of obfuscated weights for authorized use. Specifically,
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Figure 3. Number of obfuscated weights vs. accuracy for VGG-11
trained on CIFAR-10 (line plot), with the number of corresponding
model secrets shown in the bar plot (associated with the y-axis on
the right).

with access to the model secrets stored in TEE, the obfus-
cated weights can be located according to stored indexes.
Since our proposed method carefully selects weights within
[c − ϵ, c + ϵ] with a very small ϵ (reported in Tab. 2), we
can replace the constant c with the obfuscated weights dur-
ing computation, thus preserving the baseline accuracy, as
shown in column 8 in Tab. 3.

4.4. Ablation Study

We conduct an ablation study to verify the effectiveness of
the RL-based controller. By applying the Base-NNSplitter
defined in Sec. 4.1 to the same victim models, we can mea-
sure the number of obfuscated weights required to cause
the same accuracy drop, the increment ratio of the Base-
NNSplitter compared to NNSplitter is reported in Tab. 4.
The increment can reach up to 125% in the worst case,
demonstrating the effectiveness of the controller in optimiz-
ing filter selection. In conclusion, our developed RL-based
controller achieves a drastic accuracy drop with fewer ob-
fuscated weights.

1Acc. denotes the top-1 accuracy for all cases.
2Ratio is calculated by the number of obfuscated weights di-

vided by the total number of model parameters.
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Dataset Model Ratio

Fashion
MNIST

VGG-11 +53.03%
ResNet-18 +81.82%

MobileNet-v2 +26.18%

CIFAR-10
VGG-11 +41.32%

ResNet-18 +81.45%
MobileNet-v2 +36.05%

CIFAR-100
VGG-11 +51.28%

ResNet-20 +125.00%
MobileNet-v2 +89.71%

Table 4. The increment ratio of the obfuscated weights for Base-
NNSplitter compared to NNSplitter when both cause the random-
guessing accuracy.

5. Discussion
In addition to the effectiveness, NNSplitter also considers
the potential attack surfaces, i.e., whether an adversary can
identify the obfuscated weights and mitigate their adverse
effects, or improve the accuracy of the obfuscated model
through further attacks, such as fine-tuning the model using
limited training data. Thus, we evaluate the stealthiness and
resilience of NNSplitter, following our defined requirements
in Tab. 1. Furthermore, we conduct a comparison between
a straightforward obfuscation strategy and our method to
highlight the superiority of NNSplitter in terms of mitigating
potential strong attacks as in Sec. 5.2.

5.1. Stealthiness

As discussed in Sec. 2.4, previous works achieving accu-
racy drop by manipulating weights fall into two categories:
magnitude-based and gradient-ranking-based (Liu et al.,
2017; Rakin et al., 2019). However, compared to the former
category (Liu et al., 2017), NNSplitter constrains the obfus-
cated weights within the original range of weight values,
thus avoiding being easily identified. As for the latter cate-
gory, attackers can potentially locate the obfuscated weights
by examining the weight gradients, allowing them to im-
prove the degraded accuracy through weight reconstructions
(Chen et al., 2021). However, NNSplitter mitigates this
threat by employing an optimization method instead of a
greedy method. This makes it more difficult for attackers
to reverse engineer the obfuscated weights and improve the
accuracy based on existing knowledge, thus ensuring a high
level of stealthiness.

5.2. Resilience against Potential Attack Surfaces

Following our threat model in Sec. 2, we assume a strong
attacker, who strives to improve the accuracy of the obfus-
cated models using SOTA techniques, like norm clipping
(Yu et al., 2021) and fine-tuning (Adi et al., 2018).

Against Norm Clipping. The norm clipping proposed in
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Figure 4. Apply norm clipping to improve the accuracy of obfus-
cated models on CIFAR-10/100.

(Yu et al., 2021) aims to defend against universal adversarial
patches by restricting the norm of feature vectors. In our
case, since the accuracy drop is caused by the magnitude
change of some weights (from small to large), attackers may
adopt norm clipping to weights and try to clip the obfuscated
weights and eliminate their adverse effect. Specifically, the
weight values outside an interval will be clipped to the
interval edges, where the interval is defined by

Interval = t ∗ [min{W+∆W′},max{W +∆W′}] (6)

and t is a coefficient in the range [0, 1].

We conduct experiments to evaluate the effectiveness of
norm clipping as an attack against NNSplitter. The results,
shown in Fig. 4, demonstrate that as the clipping threshold
decreases, the accuracy of the obfuscated models initially
increases due to more obfuscated weights being clipped.
However, after reaching a certain point, the accuracy starts
to decrease because normal weights are also being clipped.
It is important to note that the highest accuracy achieved by
the attacker is still below 50%, indicating the resilience of
NNSplitter against norm clipping attacks.
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Figure 5. Apply fine-tuning to improve the accuracy of obfuscated
VGG-11 models on different datasets. For each ratio, the average
(solid line) and the error band (shadow region) are taken from 5
trials, with baseline accuracy as comparisons (dotted line).

Against Fine-tuning. Assuming stronger attackers who are
aware of weight obfuscation in various layers (as illustrated
in Fig. 2), they may attempt to reconstruct the weights
through fine-tuning the obfuscated models using limited data
(Adi et al., 2018). To evaluate the resilience of NNSplitter
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against fine-tuning attacks, we consider different sizes of
datasets available to the attackers, ranging from 1% to 10%
of the training data used by the victim models. As shown
in Fig. 5, in general, the accuracy will improve with the
increased ratio of datasets used for fine-tuning. However,
since the dataset is randomly sampled for each trial, some
data may contribute more to the model fine-tuning than
others, which explains the fluctuation in Fig. 5.

Moreover, our study demonstrates that distributing weight
changes across multiple layers is more effective in protect-
ing against the fine-tuning attack compared to concentrating
them in a single layer. This finding highlights the benefit
(ii) of our mask design as discussed in Section 3.1. Specifi-
cally, with the number of model secrets fixed, we add weight
changes only to the first or the last layer of VGG-11 models
on three datasets, respectively, and fine-tune the obfuscated
models with 10% of training data. As shown in Fig. 6, ob-
fuscating only the last layer results in a slight accuracy drop
(< 2%), which could be recovered close to the baseline ac-
curacy through the fine-tuning attack. Although obfuscating
the first layer achieves a drastic accuracy drop as NNSplit-
ter from the defense perspective, its defense effects are not
resilient against the fine-tuning attack at all. In summary,
our proposed NNSplitter outperforms these strategies in the
expected design requirements in Tab. 1.
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Figure 6. The performance comparison between the obfuscated
model generated by NNSplitter and obfuscating a single layer
(either the first or the last layer). Figure (a) displays the accuracy
of the obfuscated model, while (b) shows the improved accuracy
achieved through fine-tuning.

5.3. Obfuscation Strategy

We conduct experiments using VGG-11 on CIFAR-10 to
compare the straightforward obfuscation method that modi-
fies the scale and bias parameters of the normalization layer
with NNSplitter. The results are presented in Tab. 5. By
obfuscating the scale parameter to 1 and the bias parameter
to 0 in the normalization layer, resulting in 5504 altered
parameters, the obfuscated accuracy of the model decrease
significantly to 13.77%. This demonstrates the effectiveness
of the straightforward obfuscation technique in degrading
the model’s performance.

However, we observe that this obfuscated model is less ef-

fective in providing long-term protection against fine-tuning
attacks. In particular, when attackers have access to only
10% of the training dataset and perform fine-tuning, they
are able to restore the accuracy to 59.15%. In contrast, our
proposed NNSplitter achieves a greater accuracy drop, i.e.,
10.4% lower than obfuscating the normalization statistics,
while obfuscating fewer weights (876 vs. 5504). This find-
ing demonstrates the effectiveness of our proposed defense
approach.

Num. / Ratio (%) Obfu. Acc. Fine-tuned Acc.

Scale/bias 5504/0.019 13.77% 59.15%
Weights (our) 876/0.003 10.78% 48.75%

Table 5. Comparison of different obfuscation strategies.

Furthermore, this experiment comparison verifies our intu-
ition that reconstructing the convolutional weights is more
challenging for attackers compared to reconstructing the
normalization statistics, which serves as a motivation for us
to design a sophisticated weight obfuscation strategy as part
of our model protection approach.

6. Conclusion
We propose a novel model IP protection scheme NNSplitter
to actively protect the DNN model by preserving the model
functionality exclusively for legitimate users. By leveraging
the support of TEE, NNSplitter automatically splits a victim
model into two components: the obfuscated model, stored
in the normal world, and the model secrets, securely stored
in the secure world. Through extensive experiments, we
demonstrate the effectiveness of NNSplitter in achieving ef-
ficient model protection, e.g., by modifying around 0.001%
weights (313 out of 28.14M), the victim model only outputs
random prediction, rendering it useless for model attack-
ers. Conversely, legitimate users can successfully execute
authorized inferences by utilizing the safeguarded model
secrets. Furthermore, we address the important aspects of
stealthiness and resilience against potential attacks in the de-
sign of NNSplitter. This ensures that attackers are unable to
identify our obfuscation technique or improve the degraded
accuracy with reasonable efforts. By fulfilling these critical
design requirements, NNSplitter emerges as a promising
solution for protecting DNN models in real-world scenarios.
Its ability to maintain the integrity and functionality of the
models while preventing attackers from unauthorized use
makes it an attractive option for model owners looking to
safeguard their valuable intellectual property.
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