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Abstract
Deep neural networks have been found to be vul-
nerable to adversarial noise. Recent works show
that exploring the impact of adversarial noise on
intrinsic components of data can help improve ad-
versarial robustness. However, the pattern closely
related to human perception has not been deeply
studied. In this paper, inspired by the cognitive
science, we investigate the interference of adver-
sarial noise from the perspective of image phase,
and find ordinarily-trained models lack enough
robustness against phase-level perturbations. Mo-
tivated by this, we propose a joint adversarial
defense method: a phase-level adversarial train-
ing mechanism to enhance the adversarial robust-
ness on the phase pattern; an amplitude-based
pre-processing operation to mitigate the adversar-
ial perturbation in the amplitude pattern. Experi-
mental results show that the proposed method can
significantly improve the robust accuracy against
multiple attacks and even adaptive attacks. In
addition, ablation studies demonstrate the effec-
tiveness of our defense strategy.

1. Introduction
Many studies have demonstrated that deep neural networks
(DNNs) are easily fooled by imperceptible but misleading
perturbations, i.e, carefully crafted adversarial noise (Good-
fellow et al., 2015; Szegedy et al., 2014; Ma et al., 2018;
Zhang et al., 2019; Croce & Hein, 2020b; Wu et al.,
2020; Yu et al., 2022b). This vulnerable behavior has seri-
ously threatens many decision-critical deep learning appli-
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Figure 1. The illustrations of the low-frequency component, high-
frequency component and phase pattern. Nat. and Adv. samples
denote natural and adversarial samples. The noise is crafted by
PGD attack (Madry et al., 2018).

cations (LeCun et al., 1998; He et al., 2016; Zagoruyko &
Komodakis, 2016; Simonyan & Zisserman, 2015; Kaiming
et al., 2017; Ma et al., 2021), and thus may lead to a lack of
trustworthiness in deep learning.

To alleviate the vulnerability, in addition to improving regu-
larization terms in loss functions (Zhang et al., 2019; Wang
et al., 2019), recent works study the impact of adversarial
noise on the different intrinsic components of the data. The
work in Tsipras et al. (2018) explores the different distri-
butions of adversarial noise on the background and objects.
Some works (Yin et al., 2019; Wang et al., 2020; Olivier
et al., 2021; Song & Deng, 2021) analyze the destructive-
ness of perturbations in the high-frequency component or
the low-frequency component, respectively. They then guide
the model to focus on more robust components to enhance
the adversarial robustness at the source. However, these
components usually do not sufficiently and explicitly reflect
structural information (see Figure. 1), and are not perceiv-
able to humans (Wang et al., 2020; Chen et al., 2021). The
studies in (Biederman, 1987; Landau et al., 1998; Geirhos
et al., 2018; Samuelson & Smith, 2005; Schmidt et al., 2020)
show that the human vision mainly relies on structural se-
mantics to robustly distinguish objects. We thus expect to
mine a component that is closely related to human percep-
tion to help defend against adversarial noise.

The image signal in the pixel space can be converted into the
frequency signal by Fourier transform, and further decou-
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pled into the amplitude spectrum and the phase spectrum.
The amplitude spectrum carries the pixel intensity informa-
tion. The phase spectrum can reflect the highly informative
structural features (Ghiglia & Pritt, 1998; Morrone et al.,
1986; Morrone & Owens, 1987; Kovesi, 2000; Zhang et al.,
2011) (see Figure. 1), which is consistent with the need
of the human perception. In addition, the psychophysical
and neuroscience evidences (Pollen & Ronner, 1981; 1983;
Concetta Morrone & Burr, 1988; Freeman & Simoncelli,
2011; Zhang et al., 2014; Gladilin & Eils, 2015) suggest
that humans tend to leverage more phase information to
understand and recognize objects. Based on this, we rethink
the impact of adversarial noise from the phase perspective.

We first visually observe the adversarial perturbation in the
phase pattern by constructing samples containing only phase
pattern. As shown in Fig. 1, adversarial noise can perturb or
eliminate some structural semantics of the objective, e.g., the
bird’s head. In this case, ordinarily-trained models may fail
to extract sufficient features for making correct predictions.
Therefore, we believe that the adversarial noise can cause
severe perturbations to the phase pattern and speculate that
these perturbations are important negative factors leading to
the degradation of performance.

To validate the above surmise, proof-of-concept studies are
conducted (see Section. 3). They show that phase-level
perturbations severely degrade the classification accuracy,
even more destructively than amplitude-level perturbations.
If the phase-level robustness can be enhanced, the model
is expected to be less vulnerable to adversarial noise. In
addition, these studies present that not all phase features are
conducive to adversarial robustness. We argue that the mod-
els based on the ordinary training manner may pay biased
attention to predictive but easily perturbed phase features,
but ignore pivotal semantics. These phenomena indicate
that defending adversarial noise on the phase pattern is ben-
eficial in help models achieve more robust performances.

Motivated by above studies, we propose an adversarial
defense method from the perspective of phase (see Sec-
tion. 4.2.1). Specifically, considering that the ordinary train-
ing manner lack an explicit guidance on the phase pattern,
we design a phase-level adversarial training mechanism.
To enforce the model to mine and learn robust features over
the phase pattern, this mechanism leverages the amplitude
spectrum of natural data to replace that of the adversarial
data. It recombines the clean amplitude spectrum with the
adversarial phase spectrum to obtain new training data. This
strategy can help the model further leverage key phase fea-
tures to make predictions and learn a more robust decision
boundary against the adversarial noise (see Section. 5.2),
which may be consistent with human perception (Chen et al.,
2021; Zhang et al., 2011).

In the inference stage, the input adversarial sample does

not have a clean amplitude spectrum. This results in the
threat of perturbations remain in the amplitude pattern (even
if the model is trained to focus on the phase pattern). To
alleviate this problem, a straightforward approach is to take a
natural sample as a reference sample and swap its amplitude
spectrum with that of the input sample. Unfortunately, this
approach is easy to cause obfuscated information in the
recombined images, which affects the normal prediction of
the model, and even interferes with human perception (see
Section. 4.2.2). We therefore design an amplitude-based
pre-processing operation that leverages the style transfer
technique to construct an transitional reference sample as
the new reference. In this way, the recombined sample has
less obfuscation and amplitude-level perturbations.

Considering the overall effect of the defense, we combine
the adversarial training and pre-processing operation to
jointly optimize model parameters for optimal performance.
Experimental results show that our method can provide sig-
nificant gains in the robust accuracy.

The main contributions are summarized as follows:

• We qualitatively and quantitatively investigate the im-
pact of adversarial noise from the perspective of hu-
man perception-related phase. We find that ordinarily-
trained models lack enough adversarial robustness
against phase-level perturbations.

• We propose a Phase-aware Adversarial Defense (PAD)
method to alleviate the vulnerability of models. The
method aims to enhance the adversarial robustness on
the phase pattern and help attenuate the interference of
amplitude-level perturbations.

• Experimental results show that our method could effec-
tively improve adversarial robustness against multiple
adversarial attacks, including adaptive attacks. Abla-
tion studies are performed to demonstrate the effective-
ness of each module.

2. Related Work
Adversarial attacks. Existing studies have proposed a va-
riety of adversarial attacks. For example, gradient-based
attacks have projected gradient descent (PGD) attack (the
strongest first-order attack) (Madry et al., 2018), autoat-
tack (AA) (Croce & Hein, 2020b), variance tuning mo-
mentum iterative fast gradient sign method (VMI-FGSM)
(Wang & He, 2021) and optimization-based attacks: fast
adaptive boundary (FAB) attack (Croce & Hein, 2020a),
Carlini&Wagner (C&W) attack (Carlini & Wagner, 2017b).
Moreover, some attacks, such as the spatial transform at-
tack (STA) (Xiao et al., 2018) aims to perturb the spatial
structure information of the objective. In addition to above
attacks, we examine the defense by using an expectation
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over transformation (EOT) attack (Athalye et al., 2018b)
and a backward pass differentiable approximation (BPDA)
attack (Athalye et al., 2018a).

Adversarial defenses. The adversarial noise promotes the
development of adversarial defenses. A representative de-
fense strategy is devoted to enhancing the adversarial robust-
ness of models in an adversarial training manner (Madry
et al., 2018; Ding et al., 2019; Zhang et al., 2019; Wang
et al., 2019; Wu et al., 2020; Yu et al., 2022a; Zhou et al.,
2022; Wang et al., 2022; Zhang et al., 2022; Clarysse et al.,
2022; Carlini et al., 2022; Li et al., 2023). In addition,
the pre-processing based defense strategy has also been ex-
tensively studied. This strategy typically aims to remove
adversarial noise by learning denoising maps (Liao et al.,
2018; Naseer et al., 2020; Zhou et al., 2021a) or feature-
squeezing functions (Guo et al., 2018b). The work in Ilyas
et al. (2019) constructed robust training set to guide the
model to learn robust features and achieve robust perfor-
mances. The works in Yin et al. (2019); Wang et al. (2020);
Olivier et al. (2021); Zhou et al. (2021b); Song & Deng
(2021) analyzed adversarial noise in the high-frequency or
low-frequency component and devised targeted methods to
enhance robustness. Differently, our work designs adversar-
ial training from a phase perspective. The phase pattern is
closely consistent with structural information. More details
can be found in Appendix. A.

3. Adversarial Perturbation on Phase Pattern
Studying the impact of adversarial noise from a phase per-
spective is considered to be beneficial for enhancing ad-
versarial robustness. This is because human vision mainly
relies on semantic information to robustly identify the objec-
tive (Biederman, 1987; Landau et al., 1998; Geirhos et al.,
2018; Samuelson & Smith, 2005; Schmidt et al., 2020). The
phase pattern of an image is closely related to the struc-
tural information of the image. The phase is a description
of the position of the signal. The phase spectrum carries
the position information of different parts, that is, it can
reflect the outline and structural information of the object
in the image (Pollen & Ronner, 1981; 1983; Ghiglia &
Pritt, 1998; Kovesi, 2000; Zhang et al., 2011; Freeman &
Simoncelli, 2011). Some studies (Oppenheim & Lim, 1981;
Concetta Morrone & Burr, 1988; Zhang et al., 2014; Glad-
ilin & Eils, 2015) also show that humans tend to leverage
more phase information to understand and recognize ob-
ject. If we can understand whether the noise has serious
perturbations to the phase pattern, and clear the damage de-
gree of these perturbations to model performances, we can
infer a potential cause for the vulnerability and design tar-
geted adversarial defense. Therefore, we conduct intuitive
observations as well as proof-of-concept studies.

Qualitative study. We first concretize the phase pattern

Natural

Adversarial

Amplitude

Phase

Recombined

Figure 2. Schematic representation of replacing the natural phase
spectrum with the adversarial phase spectrum. We obtain the am-
plitude spectrum of a natural sample and the phase spectrum of an
adversarial sample, and perform inverse Fourier Transformation on
them. The similar operation is conducted for replacing the natural
amplitude spectrum with the adversarial amplitude spectrum.

of the image by performing the inverse Fourier transform
on only the phase spectrum (replacing the amplitude spec-
trum with a constant matrix). As shown in Figure. 1 and
Appendix. B, adversarial noise perturb or eliminate some
structural semantics of the objective. For example, the con-
tour of the bird’s head is significantly faded. We note that
these features are often not the core information for identify-
ing birds or snakes, as we humans can still clearly recognize
them via the beak, claws or overall contour features. They
may be predictable but easily disturbed phase features. The
observation leads us to believe that adversarial noise causes
malicious perturbations to the phase patterns, and specu-
late that these perturbations play an important role in the
vulnerability of the deep learning model.

Quantitative study. To validate the above speculation, we
perform a quantitative study. Specifically, as shown in Fig-
ure. 2, we utilize the phase spectrum and amplitude spec-
trum of the adversarial sample to replace the corresponding
spectrum of the natural sample respectively, and then recom-
bine the adversarial spectrum and the natural spectrum via
the inverse Fourier transform. We next input the recombined
samples into an ordinarily-trained model and calculate the
classification accuracy.

As shown in Figure. 3, we find that the phase-level pertur-
bation significantly reduces the classification accuracy, and
its reduction is greater than that caused by the amplitude-
level perturbation. As the number of attack steps increases,
phase-level perturbations continue to cause damage, even
if amplitude-level perturbations no longer degrade the ac-
curacy. This shows that the phase-level perturbation is
indeed an important factor causing model vulnerability, and
it is more destructive to the model than the amplitude-level
perturbation. As the attack deepens, the attack is able to
further find weak points in the phase pattern. Considering
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Figure 3. The impact of phase-level and amplitude-level pertur-
bations on the classification accuracy. Adv. Noise indicates that
the sample contains normal adversarial noise. Adv. Amp./Pha.
indicates that only the phase/amplitude spectrum contains adver-
sarial perturbations. Step denotes the number of attack steps. The
adversarial noise are crafted by using PGD (Madry et al., 2018)
with perturbation budget 8/255 and step size 1/255. The dataset
and network architecture are CIFAR-10 and ResNet-18.

Table 1. The pixel-level noise norm caused by phase-level pertur-
bations and amplitude-level perturbations on CIFAR-10. ‘Original’
denotes the original adversarial sample, ‘Amplitude’ denotes the
adversarial sample with only amplitude-level perturbations and
‘Phase’ denotes the adversarial sample with only phase-level per-
turbations. The step size of PGD attack is 15.

Original Amplitude Phase
Accuracy 0.01% 24.32% 6.12%

Accuracycom 0.01% 24.34% 6.12%
ℓ∞ 0.0314 0.0515 0.0374
ℓ2 1.3860 0.9931 0.9385

the above visual and statistical results together, we argue
that the model lacks enough robustness on the phase pattern
due to its insufficient attention to core phase features, which
is rarely mentioned in previous works.

In addition, considering that lower accuracy caused by
phase-level perturbations may due to the larger noise size,
we present the noise norm at an attack step of 15 in Table. 1.
‘Original’ denotes the original adversarial sample, ‘Ampli-
tude’ denotes the adversarial sample with only amplitude-
level perturbations and ‘Phase’ denotes the adversarial sam-
ple with only phase-level perturbations. It can be seen that
phase-level perturbations lead to less noise norms while hav-
ing stronger attack effects (i.e., lower ‘Accuracy’), which
indicates that phase-level perturbations do have greater
impacts on the performance of the target model than the
amplitude-level perturbations. We note that the ℓ∞ norms
of ‘Amplitude’ and ‘Phase’ are larger than that of ‘Original’.
This is because ℓ∞ norm calculates the maximum difference

100 80 60 40 20 0 20 40 60 80 100

Sta.

Pha.

Amp.

Accuracy (%)
ResNet-18 Wide-ResNet-28-10

Figure 4. The consistency between model’s predictions and the
phase/amplitude pattern on CIFAR-10. Sta. denotes the standard
accuracy. Pha./Amp. mean to use the label of the sample corre-
sponding to the phase/amplitude pattern as the ground-truth label.
The results show that the model is more dependent on the phase
than the amplitude, but the consistency is still insufficient.

of pixel intensity, and there may be individual pixels that
vary significantly during the recombination. Fortunately,
as can be seen from the values of ℓ2 norm, the perturba-
tion degrees of ‘Amplitude’ and ‘Phase’ are significantly
lower than that of ‘Original’. In addition, we calculate the
accuracy (‘Accuracycom’) for the recombined adversarial
samples restricted within a ℓ∞ of 8/255. The new results
are almost identical to the original results. These results
show that the phase-level perturbations play important roles
in misleading the target model.

Furthermore, we investigate the consistency between the
model’s predictions and the phase information. Given a set
of test samples, we randomly swap their amplitude spec-
trum, and then feed the recombined samples into the model.
The result in Figure. 4 shows that the prediction results are
not consistent with the structural information in the phase
pattern (only about 30% and 40% accuracy). The models
do not rely closely on the phase pattern to make predictions.
This counter-intuitive phenomenon does not fully fit with
human perception. The investigation again suggests that the
ordinarily-trained model do not (or cannot) stably capture
key structural semantics in the phase pattern for classifica-
tion, which will naturally lead to its sensitivity to amplitude
variations and phase-level perturbations.

Based on our qualitative and quantitative studies, we hope
to find a defense that can enforce the model to focus on core
features in the phase pattern. Defending against adversarial
noise from a phase perspective is expected to effectively help
models achieve more robust performances, as confirmed by
empirical results in Section. 5.1.

4. Methodology
In this section, we first describe some preliminaries about
notation and the problem setting. Then, we introduce the
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composition of the proposed method and present its algo-
rithm procedure.

4.1. Preliminary

Notation. We use capital letters such as X and Y to denote
random variables, and lower-case letters such as x and y
to denote instances of random variables X and Y , respec-
tively. For norms, we use ∥x∥ to denote a generic norm.
Specific examples of norms include ∥x∥∞, the L∞-norm
of x, and ∥x∥2, the L2-norm of x. Let B(x, ϵ) represent
the neighborhood of x: {x̃ : ∥x̃− x∥ ≤ ϵ}, where ϵ is the
perturbation budget. We define the classification function
as f : X → {1, 2, . . . , C}, where X is the feature space of
X . The function can be parameterized by neural networks.

Problem setting. This paper mainly focuses on the is-
sue of adversarial robustness in classification tasks. Let
X and Y be the variables for natural samples and natu-
ral labels (i.e., the ground truth labels of natural samples)
respectively. We sample natural examples {(xi, yi)}ni=1 ac-
cording to the distribution of the variables (X,Y ), where
(X,Y ) ∈ X×{1, 2, . . . , C}. Given a natural example (x, y)
and a classifier f parameterized by a deep learning model
hθ with the model parameter θ, the adversarial sample x′

satisfies one of the following constraints:

f (x′) ̸= y s.t. ∥x− x′∥ ≤ ϵ. (1)

In this paper, our aim is to design an adversarial defense
to improve the robustness of the model from the phase per-
spective, which is closely related to the human perception.
Since our work is mainly concerned with adversarial attacks
and defenses on images, we thus utilize the discrete Fourier
transforms (DFT). We denote DFT and the inverse discrete
Fourier transform (IDFT) by F(·) and F−1(·, ·). In addi-
tion, we utilize ϕx, ξx to denote the phase spectrum and
amplitude spectrum of x, and utilize ϕx′ , ξx′ to denote the
phase spectrum and amplitude spectrum of x′. The proce-
dure to obtain the phase and amplitude spectra is denoted as
ϕx = Fϕ(x) and ξx = Fξ(x). Similarly, the procedure to
recover sample from its phase spectrum and amplitude spec-
trum is denoted by x = F−1(ϕx, ξx). The more details on
the discrete Fourier transform can be found in Appendix. C.

4.2. Phase-aware adversarial defense

In this paper, we are committed to defending against adver-
sarial noise from a image phase perspective. We propose an
combined Phase-aware Adversarial Defense (PAD) method.
This method consists of a phase-level adversarial training
and an amplitude-based pre-processing mechanism. A joint
optimization strategy is provided to achieve the optimal
overall performance.

4.2.1. PHASE-LEVEL ADVERSARIAL TRAINING

Based on our explorations, we note that the phase pattern
contains explicit structural information. Cognitive science
researches have demonstrated that the phase pattern play
a crucial role in the process of human understanding and
recognizing objectives (Pollen & Ronner, 1981; 1983; Con-
cetta Morrone & Burr, 1988; Freeman & Simoncelli, 2011;
Zhang et al., 2014; Gladilin & Eils, 2015). However, the
ordinary training and standard adversarial training strategies
lack explicit phase-level guidance. They thus may fail to
sufficiently and effectively mine phase features.

To address this issue, we plan to enforce the model to de-
vote itself to extracting and learning pivotal phase features
for enhancing its adversarial robustness against phase-level
perturbations. Given a natural sample x and its adversarial
sample x′, we obtain the adversarial phase spectrum ϕx′

of x′ and the natural amplitude spectrum ξx of x via DFT,
respectively. Then, we recombine them and generate re-
combined sample F−1(ϕx′ , ξx) via IDFT. We exploit the
recombined sample to construct a classification loss:

Lc(x, x
′, y) = − 1

N

N∑
i=1

yi · log(hθ(F−1(ϕx′
i
, ξxi

))), (2)

where N denotes the number of samples, hθ denotes the
target model and y denotes the one-hot label. This loss can
promote the model to autonomously learn robust decision
boundaries on the phase pattern.

In addition, we note that there are still residual structural se-
mantics in the phase pattern of adversarial examples, which
may be difficult to be disturbed by adversarial noise. More-
over, in human vision, we can recognize the object via these
residual semantics, which means that they may be pivotal
phase features. Of course, this phase pattern also contains
a lot of adversarial perturbations, and using it directly may
not be a good choice. Therefore, we can jointly utilize
the natural phase pattern and the adversarial phase pattern
to guide the model to learn their shared features, i.e., the
pivotal phase features. A similarity loss is formulated as:

Ls(x, x
′) =

1

N

N∑
i=1

ℓd(hθ(F−1(ϕx′
i
, ξxi

)), hθ(xi)), (3)

where ℓd denotes the distance metric, we use the Kullback-
Leibler divergence here. The optimization objective for the
target model hθ is as follows:

argmin
θ∈Θ

Lc(x, x
′, y; θ) + α · Ls(x, x

′; θ), (4)

where Θ is the set of model parameters and α is a hyper-
parameter to tune the weights of these two terms.
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Figure 5. The training procedure of the phase-aware adversarial defense. Adv., Nat., Ref., Tra., Pha., Amp. and Pha-Adv. mean the
adversarial sample, natural sample, reference sample, transitional reference sample, phase spectrum, amplitude spectrum and recombined
phase-level adversarial sample, respectively. ∆ denotes the distance metric used in Equation. 3. The pre-processing procedure of our
method in the inference stage is similar to the pink and orange parts.

4.2.2. AMPLITUDE-BASED PRE-PROCESSING

The phase-level adversarial training strategy replaces the
amplitude spectrum of the adversarial sample with that of
the natural sample during the training process. However,
the threat of the adversarial perturbation on the amplitude
pattern remains in the inference stage. To decrease this
risk for further prompting the robust accuracy, we design a
amplitude-based pre-processing mechanism.

A simple approach is to utilize an additional natural sample
as a reference sample, and use its amplitude spectrum to re-
place that of the test sample. This per-processing procedure
can be formulated as:

x̂t = F−1(Fϕ(xt),Fξ(xr)), (5)

where xt denotes the test sample and xr denotes the natural
reference sample. The generated sample x̂e is then input
into the target model for prediction. This procedure needs to
be performed for all input samples as it is unknown whether
the input samples are malicious.

Unfortunately, this approach may cause some recombined
samples to suffer from obfuscated information, which af-
fects the normal prediction of the model. These obfuscations
even interfere with human perception (See Figure. 6). This
indicates that using a random sample directly as a reference
is not an optimal choice. The matching of the amplitude
spectrum used for replacement with the original phase spec-
trum is an important factor to be considered. We therefore

Adv. Ref. Rec. Tr-Rec. Tr-Ref. 

Figure 6. The illustration of recombined samples. Adv., Ref., Rec.,
Tr-Ref. and Tr-Rec. denote the adversarial sample, original ref-
erence sample, the recombined sample with Ref., the transitional
reference sample and the recombined sample with Tr-Ref.. The
obfuscated information in Tr-Rec. is significantly less than that
in Rec. and the objective can be clearly seen in Tr-Rec.. More
examples can be found in Appendix. E.

plan to build new reference samples.

The amplitude spectrum mainly represents the pixel inten-
sity distribution, which is closely related to the style texture
(Oppenheim & Lim, 1981; Tolhurst et al., 1992; Hansen
& Loschky, 2013; Zibar et al., 2015). Based on this, we
leverage the style transfer technology to overwrite the style
of the input sample with the natural style of the reference
sample, and generate an transitional reference sample as
the new reference. This transitional reference sample has a
similar (but not identical) phase pattern to the test sample,
while having natural amplitude information. It can thus
match well with the phase spectrum of the test sample and
facilitate the recombined sample to reduce obfuscated in-
formation. Empirical results in Section. 5.3 demonstrate its
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effectiveness. The pre-processing procedure in Equation. 5
is thus reformulated as:

x̂t = F−1(Fϕ(xt),Fξ(T (xt, xr))), (6)

where T (xt, xr) means to transfer the style of xr to xt.
We utilize the classic AdaIN (Huang & Belongie, 2017) to
perform the style transfer.

4.2.3. JOINT OPTIMIZATION

To improve the overall effectiveness of our combined de-
fense, we incorporate the transitional reference sample used
in the pre-processing mechanism into the training process.
This can enable the target model to adapt to the data distri-
bution of the recombined samples, resulting in better natural
and robust performance. The schematic diagram of the pro-
posed method is shown in Figure. 5. The loss functions in
Equation. 2 and 3 are reformulated as:

Lc(xr, x
′, y; θ) =

1

N

N∑
i=1

[yi · log(hθ(ζ(x
′
i, xri))), (7)

Ls(x, x
′, xr; θ) =

1

N

N∑
i=1

ℓd(hθ(ζ(x
′
i, xri)), hθ(xi)), (8)

where ζ(x′
i, xr)=F−1(ϕx′ ,Fξ(T (x′, xr))) and xr denotes

the reference sample. The definitions of other symbols are
the same as in Equation. 7. The optimization objective is
reformulated as:

min
θ∈Θ

Lc(xr, x
′, y; θ) + α · Ls(x, x

′, xr; θ). (9)

The overall training procedure is presented in Algo-
rithm. 1. Specifically, for each mini-batch natural samples
B={xi}ni=1 sampled from natural training set, we first gen-
erate adversarial samples {x′

i}ni=1 via a strong attack algo-
rithm. At the same time, we randomly select samples differ-
ent from B from the natural training set as the reference set
R={xri}ni=1. We then construct the transitional reference
sample xtr=T (x′, xr) and the phase-level adversarial sam-
ple x′

ϕ=F−1(ϕx′ ,Fξ(xtr)). Next, we compute the classifi-
cation loss via Equation. 7 and the similarity loss via Equa-
tion. 8. Finally, we update the model parameter θ via Equa-
tion. 9. By iteratively conducting the procedures of generat-
ing adversarial samples and training the models, the model
parameters are expected to be adversarially optimized. The
code can be found in https://github.com/dwDavidxd/PAD.

5. Experiment
5.1. Experiment setup

Dataset. We use two classic datasets CIFAR-10 (Krizhevsky
et al., 2009) and Mini-ImageNet (Vinyals et al., 2016) to

Algorithm 1 Phase-aware Adversarial Defense (PAD).
Input: Target model hθ, batch size n, perturbation budget

ϵ and training set D.
1: repeat
2: Obtain mini-batch natural samples B = {xi}ni=1 and

reference samples R = {xri}ni=1 from D;
3: for i = 1 to n (in parallel) do
4: Craft adversarial sample x′

i at the given perturba-
tion budget ϵ against xi;

5: Construct the transitional reference sample xtri =
T (x′

i, xri);
6: Obtain the phase-level adversarial sample x′

ϕ =

F−1(ϕx′
i
,Fξ(xtri));

7: Compute the classification loss Lc via Eq. 7;
8: Compute the similarity loss Ls via Eq. 8;
9: end for

10: Back-pass the gradients and update θ via Eq. 9;
11: until training converged.
Output: Model parameter θ.

evaluate the effectiveness of our method. All images are
normalized into [0,1], and are performed data augmentations
in the training stage. we utilize ResNet-18 (He et al., 2016)
and Wide-ResNet (WRN-28-10) (Zagoruyko & Komodakis,
2016) as target models for CIFAR-10 and Mini-ImageNet,
respectively.

Attack settings. We use seven types of adversarial attack
algorithms to evaluate the performances of defenses. They
are L∞-norm PGD (Madry et al., 2018), L∞-norm AA
(Croce & Hein, 2020b), L∞-norm VMIFGSM(Wang & He,
2021), L∞-norm EOT-PGD (Athalye et al., 2018b), L∞-
norm FAB(Croce & Hein, 2020a), L2-norm CW (Carlini &
Wagner, 2017b) and STA (Xiao et al., 2018). The iteration
numbers for PGD, EOT-PGD, VMIFGSM and FAB are set
to 20, and those for STA and CW are 10 and 200, respec-
tively. For CIFAR-10 and Mini-ImageNet, the perturbation
budget ϵ for L∞-norm attacks is set to 8/255.

Defense settings. We use three classic adversarial training
methods as the baselines: standard adversarial training (AT)
(Madry et al., 2018), optimized adversarial training methods
TRADES (Zhang et al., 2019) and MART (Wang et al.,
2019). For all defenses, we use the L∞-norm non-target
PGD-10 to craft adversarial noise in the training stage. All
the defenses are trained using SGD (Andrew & Gao, 2007)
with momentum 0.9. For adversarial training, the initial
learning rate is set to 2× 10−1 corresponding to the batch
size 256 according to work in Pang et al. (2020), and is
divided by 10 at the 75-th and 90-th epoch. The weight
decay is 2× 10−4 for CIFAR-10, and is 5× 10−4 for Mini-
ImageNet. The epoch number is set to 91 by using the
early-stopping strategy (Rice et al., 2020). More details can
be found in Appendix. D.
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Table 2. Robust accuracy (percentage) of defense methods against
adversarial attacks on CIFAR-10 and Mini-ImageNet. We show the
most successful defense with bold.

CIFAR-10 (ResNet-18)
Defense AT TRADES MART PAD
None 83.34 80.71 79.38 83.56
PGD 47.23 50.97 52.83 58.24
AA 44.45 47.36 46.32 57.07
VMIFGSM 47.15 50.90 52.71 58.12
EOT-PGD 47.06 50.84 52.69 57.98
FAB 46.28 48.56 47.47 74.90
CW 12.25 40.33 33.88 75.06
STA 0.59 3.19 2.72 56.61

Mini-ImageNet (WRN-28-10)
Defense AT TRADES MART PAD
None 50.76 49.92 47.88 50.63
PGD 24.50 25.55 25.86 30.04
AA 18.11 19.17 19.02 24.79
VMIFGSM 24.57 25.21 25.46 29.91
EOT-PGD 24.53 25.15 25.34 29.83
FAB 20.05 21.76 20.69 37.62
CW 32.55 35.10 34.27 46.67
STA 0.21 1.67 1.34 23.15

Table 3. Robust accuracy (percentage) of defense methods against
adaptive adversarial attacks on CIFAR-10.

Attack None PGD-10 PGD-20 BPDA
APE-G 81.63 35.19 32.37 31.60
HGD 82.05 40.93 38.26 37.52
PAD 82.83 55.32 54.91 54.33

5.2. Robustness evaluation

Defending against general attacks. We first evaluate the
effectiveness of the proposed method against general ad-
versarial attacks. The hyper-parameter α in our method
is set to 6.0. The adversarial noise is crafted against the
target classification model. The natural accuracy and robust
accuracy are shown in Table. 2. The results show that our
defense method achieve a great defense effect against gen-
eral adversarial attacks. In addition, we use an expectation
over transformation (EOT) attack. The adversarial samples
generated by EOT are simultaneously adversarial over an
entire distribution of transformations. The result in Table. 2
further indicates that our defense is effective to enhance the
robustness of the deep learning model.

Defending against adaptive attacks. In addition to gen-
eral adversarial attacks, a powerful adaptive attack strategy
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Figure 7. The robust accuracy against phase/pixel-level adversarial
perturbations. Adv. Pha. shows the robust accuracy against phase-
level perturbations and Adv. Noise presents the robust accuracy
against pixel-level adversarial noise. None denotes the ordinarily-
trained model. The attack is the same as the one in Figure. 3.

has been proposed to break defenses (Athalye et al., 2018a;
Carlini & Wagner, 2017a). This strategy allows attackers
access all information of defenses, including the architec-
tures, model parameters and other proprietary procedures
(e.g., the pre-processing procedure). Thus, attackers can
design targeted attacks.

We design a white-box attack against the overall defense.
The attack focuses on generating adversarial noise for the
phase pattern. The optimization objective is given by

max
δ

ℓce(hθ(F−1(Fϕ(x+δ),Fξ(T (x+δ, xr)))), y), (10)

where ℓce is the cross-entropy loss. Similar to the operation
in PGD, we compute the gradient of the loss and add it
to the natural sample. Two classic pre-processing based
defenses APE-G (Jin et al., 2019) and HGD (Liao et al.,
2018) are used as baselines. They are trained together with
the target model in an adversarial training manner. The
adversarial noise are crafted by attacking the combination
of the defense and the target model. In addition, we combine
PGD-20 and a backward pass differentiable approximation
(BPDA) attack to craft adversarial noise against the defense
with pre-processing procedure. As shown in Table. 3, our
defense presents better robust accuracy, which indicates the
stability of our method.

Robustness on the phase pattern. We evaluate the effec-
tiveness of defenses on the phase pattern. Similar to the ex-
periment in Figure. 3, we compute the performance against
the samples with only phase-level adversarial perturbations.
For a fair comparison, the amplitude-based pre-processing
procedure is not used in the inference stage. As shown in
Figure. 7, our method achieves a large gain in accuracy
against both the adversarial noise and phase-level perturba-
tions. This result also reflects that enhancing phase-level
robustness is beneficial for improving pixel-level robust ac-
curacy. More comparisons are shown in Appendix. F. In
addition, we perform adversarial training on both phase and
amplitude patterns, which are presented in Appendix. G.
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Table 4. Robust accuracy (percentage) of adversarially-trained
models on CIFAR-10. PAT denotes the phase-level adversarial
training, i.e., the PAD with the pre-processing procedure removed.

Attack None PGD-20 AA FAB
AT 83.34 47.23 44.45 46.28
APR 80.38 46.08 42.60 41.88
PAT 83.63 51.50 47.61 48.57
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Figure 8. The impact of different reference samples on robust accu-
racy. M(x)/M(xr)/M(xtr) represents that using the amplitude
spectrum of the natural/reference/transitional reference sample to
combine with the adversarial phase spectrum, respectively. In the
inference stage, M(x) and M(xr) both use xr to provide ampli-
tude spectrum for the pre-processing procedure.

5.3. Ablation studies

Removing the pre-processing operation. In the inference
stage, we remove the amplitude-based pre-processing op-
eration and evaluate the inherent robustness of the model.
We use AT and an amplitude-phase recombination (APR)
method (Chen et al., 2021) as the baselines. As shown in
Table. 4, the results show that focusing on the phase-level
perturbations during the training process can improve the
robust accuracy. This reflects the importance and criticality
of the phase pattern to the robustness.

Transitional reference samples. To verify the effective-
ness of the transitional reference sample xtr, we replace
xtr with the natural sample x and the reference sample xr,
respectively. The former is to show the difference between
Equation. 4 and Equation. 9, and the latter is to illustrate
the benefits of constructing suitable reference samples. As
shown in Figure. 6, xtr can help reduce the obfuscated
information in the recombined sample compared with xr.
The results in Figure. 8 indicate using xtr can effectively
improve both natural and robust accuracy.

The hyper-parameter. We explore the impact of the hyper-
parameter α in Equation. 9 on defense effectiveness. α is set
to 6.0 by default and adjusted to adjacent values in turn. The
results in Figure. 9 show the positive effect of the similarity
loss (lower accuracy when α=0), and present the stability of
our method to the changes of α within a suitable range (the
accuracy is almost unchanged when α ∈ [4, 8]).
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Figure 9. The impact of α on CIFAR-10. The light blue band
presents the standard deviation of the accuracy against PGD-20.

6. Conclusion
The phase pattern in an image can reflect the structural se-
mantics of objects and is a crucial concern in the human
perception. Defending against adversarial noise from a
phase perspective has not been deeply studied. In this paper,
inspired by cognitive science, we explore the impact of the
adversarial noise on the phase pattern and the robustness
of the model against phase-level adversarial perturbations.
Motivated by these observations, we propose a Phase-aware
Adversarial Defense (PAD) method. This method designs a
phase-level adversarial training to enhance the robustness
on the phase pattern and constructs an amplitude-based
pre-processing mechanism to mitigate the perturbation in
the amplitude pattern. The empirical results show that our
method can effectively defense the model against general
and adaptive adversarial attacks. The limitation is that this
work does not deeply consider more advanced style trans-
fer techniques and amplitude-level measures. In future, we
will design more powerful phase-level constraint and apply
the phase-aware adversarial defense to other advanced ro-
bust learning frameworks (e.g., causal-based methods) to
further enhance the robustness of the model. Overall, our
work is expected to provide a new defense strategy for the
community of adversarial deep learning.
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A. Related work
Adversarial attacks. Adversarial noise is an imperceptible but seriously misleading noise crafted by adversarial attack
algorithms (Szegedy et al., 2014; Goodfellow et al., 2015). The sample with adversarial noise added is called the adversarial
sample. Existing studies have proposed a variety of adversarial attack strategies. For example, some works proposed to craft
adversarial noise following the gradient direction of loss functions, such as projected gradient descent (PGD) attack (the
strongest first-order attack) (Madry et al., 2018), powerful autoattack (AA) (Croce & Hein, 2020b) and variance tuning
momentum iterative fast gradient sign method (VMI-FGSM) (Wang & He, 2021). These adversarial noise is bounded by
a small norm-ball ∥ · ∥p ≤ ϵ, so that their adversarial samples are visually similar to natural samples for humans. Some
works designed optimization-based strategies, such as fast adaptive boundary (FAB) attack (Croce & Hein, 2020a) and
Carlini&Wagner (C&W) attack (Carlini & Wagner, 2017b). These works aimed to minimize the perturbation size while
ensuring that the predictions of models are wrong. Moreover, some attacks, such as spatial transform attack (STA) (Xiao
et al., 2018) aims to perturb the spatial structure information of the objective.

In addition to above attack algorithms, we examine the defense by using a backward pass differentiable approximation
(BPDA) attack (Athalye et al., 2018a) and a expectation over transformation (EOT) attack (Athalye et al., 2018b). In
addition, we design specific adaptive attacks against the phase pattern to comprehensively verify the effectiveness of the
proposed method.

Adversarial defenses. The vulnerability of deep learning models to adversarial noise promotes the development of
adversarial defenses. A representative defense strategy is devoted to enhancing the adversarial robustness of models in an
adversarial training manner (Madry et al., 2018; Ding et al., 2019). Methods based on this strategy utilize adversarial noise
to augment training data and train the model via a min-max optimization formulation. Some works modified or reformulated
the regularization term to perform more effective adversarial training (Zhang et al., 2019; Wang et al., 2019). The work in
Ilyas et al. (2019) constructed robust training set to guide the model to learn robust features and achieve robust performances.
The works in Yin et al. (2019); Wang et al. (2020); Olivier et al. (2021); Zhou et al. (2021b) analyzed adversarial noise
in the high-frequency component and devised targeted methods to enhance robustness. The studies in (Guo et al., 2018a;
Sharma et al., 2019; Song & Deng, 2021) developed adversarial noise against low-frequency information, which provokes
defenses on the low-frequency component.

Differently, our work designs adversarial training from a phase perspective. The phase pattern is closely consistent with
structural information. Note that although high-frequency components can exhibit some boundary information, they
essentially reflect the parts with rapidly changing pixel intensities, which cannot accurately represent structural semantics
(see Figure. 10) and are not perceivable to humans (Wang et al., 2020; Ilyas et al., 2019). Although the work in (Chen
et al., 2021) discussed the influence of phase on the generalization behavior of convolutional neural networks, the impact
of adversarial noise on the phase pattern and the defense against phase-level perturbations have not been well studied.
Moreover, some works use data selection (Xia et al., 2023) or dependence relations (Li et al., 2022; Xia et al., 2020) to
explore the negative effects on target models from the intrinsic components of noisy data, which have similar motivations to
our work.

In addition, the pre-processing based defense strategy has also been extensively studied. This strategy typically aims to
remove adversarial noise by learning denoising maps or feature-squeezing functions. For example, the works in Liao et al.
(2018); Naseer et al. (2020) learned a mapping from adversarial data to natural data via natural-adversarial data pairs, to
remove adversarial noise in the inference stage. The work in Guo et al. (2018b) utilized the learned feature-squeezing
function to reduce adversarial and redundant information. However, the denoising models themselves are likely to be
corrupted by adversarial noise and lose their functionality, which brings new threats. Differently, the pre-processing
mechanism in our method mainly involves the replacement of the amplitude spectrum, which is based on the rigorous
Fourier transform.

B. Qualitative study on phase-level adversarial perturbations
We concretize the phase pattern of the image by performing the inverse Fourier transform on only the phase spectrum
(replacing the amplitude spectrum with a constant matrix). As shown in Figure. 11, adversarial noise perturb or eliminate
some structural semantics of the objective. For example, the snake scales, the contour of the bird’s head, the bucket and
the dog’s nose are significantly perturbed. We note that these features are often not the core information for identifying
birds or snakes, as we humans can still clearly recognize them via the beak, claws or overall contour features. They may be
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predictable but easily disturbed phase features.

C. Discrete Fourier transform
Since the work in this paper is mainly concerned with adversarial attacks and defenses on images, we utilize the discrete
Fourier transforms (DFT). We denote x in the frequency domain by Fx, the amplitude spectrum of x by ξx and the phase
spectrum of x by ϕx. For an image x of size H ×W , its mapping in frequency domain is as follows:

Fx(u, v) =

H−1∑
h=0

W−1∑
w=0

x(h,w)e−i2π(uh
H + vw

W ), (11)

where (h,w) denotes the pixel coordinates, (u, v) denotes the coordinates of spectrum values, u = 0, 1, 2, . . . ,H − 1 and
v = 0, 1, 2, . . . ,W − 1. The amplitude and phase of Fx are as follows:

ξx(u, v) =
√
Re(Fx(u, v))2 + Im(Fx(u, v))2,

ϕx(u, v) = arctan

[
Im(Fx(u, v))

Re(Fx(u, v))

]
,

(12)

where Re and Im denote the real and imaginary signals of Fx. The image x can be recovered from Fx via the inverse
Discrete Fourier transform (IDFT):

x(h,w) =
1

HW

H−1∑
u=0

W−1∑
v=0

Fx(u, v)e
i2π(uh

H + vw
W ). (13)

For a more intuitive presentation, we reformulate Equation. 11 and 13 in matrix form as:

Fx = F(x) = ξx ⊗ ei·ϕx , (14)

x = F−1(Fx) = F−1(ξx ⊗ ei·ϕx), (15)

where ⊗ denotes the element-wise multiplication of two matrices, F and F−1 denote the Fourier transform and the inverse
Fourier transform, respectively.

D. Experiment setup
Dataset. In this paper, we use two classic datasets CIFAR-10 (Krizhevsky et al., 2009) and Mini-ImageNet (Vinyals
et al., 2016) to evaluate the effectiveness of our method. CIFAR-10 has 10 classes of images with a resolution of 32× 32.
Mini-ImageNet has 100 classes of images with a resolution of 84× 84. They both have 50,000 training images and 10,000
test images. All images are normalized into [0,1], and performed simple data augmentations in the training process, including
random crop and random horizontal flip. For the target model, we mainly utilize ResNet-18 (RN) (He et al., 2016) for
CIFAR-10 and Wide ResNet-28-10 (WRN) for Mini-ImageNet (Zagoruyko & Komodakis, 2016).

Attack settings. We utilize seven types of adversarial attacks to evaluate the performances of defenses. They are L∞-norm
PGD (Madry et al., 2018), L∞-norm AA (Croce & Hein, 2020b), L∞-norm VMIFGSM(Wang & He, 2021), L∞-norm
EOT-PGD (Athalye et al., 2018b), L∞-norm FAB(Croce & Hein, 2020a), L2-norm CW (Carlini & Wagner, 2017b) and
STA (Xiao et al., 2018). Among them, the AA attack algorithm integrates three non-target attacks and a target attack. Other
attack algorithms belong to non-target attacks. The perturbations crafted by STA mainly make small modifications to the
contour of the objective. The iteration numbers for PGD, EOT-PGD, VMIFGSM and FAB are set to 20, and those for STA
and CW are 10 and 200, respectively. For CIFAR-10 and Mini-ImageNet, the perturbation budget ϵ for L∞-norm attacks is
set to 8/255.

Defense settings. We use three representative adversarial training methods as the baselines: standard adversarial training
(AT) (Madry et al., 2018), optimized adversarial training methods TRADES (Zhang et al., 2019) and MART (Wang et al.,
2019). In addition, we use two great pre-processing based defense as additional baselines. For all defense methods, we use
the L∞-norm non-target PGD-10 with random start and step size ϵ/4 to craft adversarial noise in the training stage. The
perturbation budget ϵ is set to 8/255 for both CIFAR-10 and Tiny-ImageNet. All the defense models are trained using SGD
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(Andrew & Gao, 2007) with momentum 0.9. For adversarial training, the initial learning rate is set to 2e−1 corresponding to
the batch size 256 according to work in Pang et al. (2020). The weight decay is 2× 10−4 for CIFAR-10, and is 5× 10−4 for
Mini-ImageNet. We set λ = 6 for TRADES and MART. The epoch number is set to 91 by using the ear-stopping strategy.
For pre-processing based methods, we use the settings from their original papers.

E. Examples of obfuscated information
The phase-level adversarial samples (i.e., recombined samples) are shown in Figure. 12. The obfuscated information in
the recombined samples using transitional reference sample is significantly less than that in the recombined samples using
general reference samples. The objective can be clearly seen in the former.

F. Robustness on the phase pattern
We investigate the performances against the samples with only phase-level adversarial perturbations. As shown in Figure. 13,
compared with ordinary training mechanism and standard adversarial training (AT), our method achieves more gains in
accuracy against both the adversarial noise and phase-level perturbations.

G. Adversarial training on both phase and amplitude patterns
In this work, we mainly perform phase-level adversarial training (PAT). Here, we further consider adversarial training on
phase and amplitude patterns, i.e., phase-amplitude-level adversarial training (PAAT). To obtain the clean phase pattern, we
utilize the corresponding natural sample as the reference for the replacement of the phase spectrum. The classification loss
is formulated as:

Lc(x, x
′, y) = − 1

N

N∑
i=1

[yi · log(hθ(F−1(ϕx′
i
, ξxtri

)))

+ yi · log(hθ(F−1(ϕxi
, ξx′

i
)))],

(16)

where hθ denotes the target model, y denotes the one-hot label, x denotes the natural sample, x′ denotes the adversarial
sample, xtr denotes the transitional reference sample, ϕx denotes the phase spectrum of x and ξx denotes the amplitude
spectrum of x. The optimization objective is the same as Eq.9 in the main text. The experimental results are shown in
Table. 5. Adding amplitude-level adversarial training does not bring significant improvement or even cause some declines.
This indirectly shows that the phase pattern may be a more critical role for the adversarial robustness.

Table 5. Robust accuracy (percentage) on CIFAR-10. The pre-processing procedure is not used.

Attack None PGD-20 AA FAB
AT 83.34 47.23 44.45 46.28
PAT 83.63 51.50 47.61 48.57
PAAT 83.41 50.06 46.27 47.19
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Low-frequenc
Nat. Low-fre High-fre Pha.

Figure 10. The low-frequency components, high-frequency components and phase patterns of images. Nat., Low-fre., High-fre. and Pha.
denote the natural sample, low-frequency component, high-frequency component and the phase pattern, respectively.
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Nat. Adv. Nat. Pha. Adv. Pha. Pha. Noise

Figure 11. The examples of the natural phase patterns and the perturbed phase patterns. Nat., Adv., Nat. Pha., Adv. Pha. and Pha.
Noise. denote the natural sample, adversarial sample, natural phase pattern, adversarial phase pattern and phase-level adversarial noise,
respectively.
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Adv. Ref. Rec. Tr-Rec. Tr-Ref. 

Figure 12. The phase-level adversarial samples (recombined samples) generated using different reference samples. Adv., Ref., Rec., Tr-Ref.
and Tr-Rec. denote the adversarial sample, original reference sample, the recombined sample with Ref., the transitional reference sample
and the recombined sample with Tr-Ref.. The obfuscated information in Tr-Rec. is significantly less than that in Rec. and the objective can
be clearly seen in Tr-Rec..
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Figure 13. The robust accuracy against phase/pixel-level adversarial perturbations. Adv. Pha. shows the robust accuracy against phase-
level perturbations and Adv. Noise presents the robust accuracy against pixel-level adversarial noise. None denotes the ordinarily-trained
model. The attack PGD with perturbation budget 8/255 and step size 1/255.
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