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Abstract
Relational pooling (RP) is a framework for build-
ing more expressive and permutation-invariant
graph neural networks (GNN). However, there is
limited understanding of the exact enhancement
in the expressivity of RP and its connection with
the Weisfeiler–Lehman (WL) hierarchy. Starting
from RP, we propose to explicitly assign labels to
nodes as additional features to improve graph iso-
morphism distinguishing power of message pass-
ing neural networks. The method is then extended
to higher-dimensional WL, leading to a novel k, l-
WL algorithm, a more general framework than
k-WL. We further introduce the subgraph con-
cept into our hierarchy and propose a localized
k, l-WL framework, incorporating a wide range
of existing work, including many subgraph GNNs.
Theoretically, we analyze the expressivity of k, l-
WL w.r.t. k and l and compare it with the tradi-
tional k-WL. Complexity reduction methods are
also systematically discussed to build powerful
and practical k, l-GNN instances. We theoreti-
cally and experimentally prove that our method is
universally compatible and capable of improving
the expressivity of any base GNN model. Our
k, l-GNNs achieve superior performance on many
synthetic and real-world datasets, which verifies
the effectiveness of our framework.

1. Introduction
Graph-structured data has recently revealed a significant
importance in many fields, including bio-informatics, com-
binatorial optimization and social-network analysis, among
which graph neural networks (GNNs) achieve great suc-
cesses (Bronstein et al., 2016; Klicpera et al., 2020; Dai
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Figure 1. The expressivity hierarchy of k, l-WL. The blue arrows
indicate Theorem 5.5 and Theorem 5.6, showing that increasing
k and l will strictly increase expressivity. The yellow arrows
imply Theorem 5.7, which states that k + 1, l-WL is strictly more
powerful than k, l + 1-WL when k ≥ 2.

et al., 2017). Message passing neural network (MPNN) is
one of the simplest and most commonly used GNNs (Zhou
et al., 2018), whereas its expressivity in distinguishing
non-isomorphic graphs is bounded by the one-dimensional
Weisfeiler-Lehman test (1-WL) (Xu et al., 2018; Morris
et al., 2018). Therefore, designing GNNs with stronger
expressivity has aroused increasing attention.

Numerous approaches have been proposed to enhance
GNN’s expressivity. Relational Pooling (RP) (Murphy et al.,
2019; Chen et al., 2020) is a framework to build powerful
permutation-invariant models by symmetrizing expressive
permutation-sensitive base models. Concretely, RP first feed
adjacency matrix to a powerful permutation-sensitive model,
like Multi-Layer Perceptron (MLP), to achieve strong ex-
pressivity. Then the permutation invariance is guaranteed
by averaging or summing over representations under all per-
mutations of node IDs (hence all permutations of adjacency
matrix). However, RP is impractical for most real-world
graphs due to the O(n!) complexity, where n is the number
of nodes. Based on RP, Chen et al. (2020) further introduce a
local version called Local Relational Pooling (LRP), which
performs permutation and averaging within an induced sub-
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graph. LRP’s time complexity is reduced to the number of
subgraphs O(nl), where l is the subgraph size. But so far,
there is a lack of theoretical analysis on the expressivity of
LRP. In this paper, we propose ID-MPNN, a variation of
LRP that avoids the time complexity of RP. Instead of using
MLP as the base encoder, ID-MPNN runs MPNN on the
whole graph. Meanwhile, to improve expressivity, l nodes
in the whole graph are labeled with 1, 2, ..., l. Through the
lens of ID-MPNN, we establish a connection between (local)
Relational Pooling and subgraph GNNs.

Furthermore, by replacing MPNN with more powerful base
encoders k-WL, we propose k, l-WL, a universal framework
for many expressive GNNs (shown in Figure 2). Intuitively,
k, l-WL can be viewed as running k-WL on a graph with
l nodes labeled and symmetrizing over l. We theoretically
analyze the expressivity of k, l-WL and build a complete
expressivity hierarchy of the algorithms with different k, l
as shown in Figure 1. As a universal framework, k, l-WL
incorporates a wide range of existing algorithms and GNN
models, including relational pooling, the original k-WL,
many subgraph GNNs, and some other GNN extensions.

In summary, the organization of this paper and our main
contributions are as follows.

1. Section 4 proposes ID-MPNN to improve LRP. ID-
MPNN is further extended to a general framework
k, l-WL, which incorporates a majority of existing WL
and GNN variations, including RP and many subgraph
GNNs.

2. Section 5 theoretically analyzes the algorithm’s expres-
sivity and builds a strict k, l-WL expressivity hierarchy,
which is more general than the k-WL hierarchy.

3. Section 6 discusses practical issues in our k, l-WL
framework and proposes techniques to improve scala-
bility.

4. Section 7 evaluates k, l-WL with extensive experi-
ments on both synthetic and real-world datasets. Our
models achieve state-of-the-art results on several tasks
and significantly outperforms previous works based on
RP.

2. Related Work
Graph Neural Network and Weisfeiler-Lehman test
Weisfeiler-Lehman tests are a classical family of algorithms
to distinguish non-isomorphic graphs. Previous works have
built connections between the expressivity of GNNs and
WL hierarchy (Xu et al., 2018; Frasca et al., 2022; Morris
et al., 2019; 2020). We propose k, l-WL hierarchy, which is
finer than k-WL and covers a wide range of existing models.
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Figure 2. Procedure of k, l-WL algorithm. Given an input graph,
we label all l-tuples with explicit l IDs. Then k-WL is performed
on every labeled graph, whose initialization considers the isomor-
phism type of k-tuples under the l labels. Finally, a hash function
maps the multiset of colors computed in all labeled graphs to out-
put the final color of the original graph. In this example, l = 2.

Subgraph GNNs Subgraph GNNs encode a set of sub-
graph instead of the original graph for graph representation
learning. Through careful designs, they can have both strong
expressivity and good scalability. Many subgraph GNNs
sample a subgraph for each node (You et al., 2021; Zhang &
Li, 2021; Bouritsas et al., 2023; Sun et al., 2021; Zhao et al.,
2021). Frasca et al. (2022); Zhang et al. (2023) upper bound
the expressivity of these subgraph GNNs by 3-WL. I2-GNN
extracts a subgraph for each connected node pair and boosts
the cycle counting power (Huang et al., 2022). Qian et al.
(2022) further extract a subgraph for each l-tuple of nodes
and propose l-OSAN, which is equivalent to our ID-MPNN
and 2, l-WL. We propose a more general framework k, l-WL
to incorporate most existing subgraph GNNs.

3. Preliminary
Given an undirected graph G = (V,E,X), where V,E are
the node set and edge set respectively, andXi is the node fea-
ture of node i, let N(v,G) = {u ∈ V |(u, v) ∈ E} denote
the set of neighbors of node v in graphG. Let [n] denote the
set {1, 2, ..., n}. Given k-tuple a ∈ V k and l-tuple b ∈ V l,
let a||b denote a k + l-tuple, the concatenation of a and b.
Let ai denote the i-th element in tuple a, ψi(a, u) denote a
tuple produced by replacing ai with u. Let aa:b denote the
slice of tuple a containing a, a + 1, ..., b − 1-th elements,
where a is omitted if a = 1, b is omitted if b = |a|+ 1, and
|a| is the length of a.

Weisfeiler-Lehman test (1-WL) is a common graph isomor-
phism test, which also bounds the expressivity of message
passing neural networks (MPNNs) (Xu et al., 2018). It as-
signs a color c01(v,G) to each node v in graph G initially
according toXv . If the graph has no node feature, the colors
of all nodes are the same. Then, 1-WL iteratively updates
the node colors. The t-th iteration is as follows.

ct1(v,G)=Hash(ct−1
1 (v,G), {{ct−1

1 (u,G)|u∈N(v,G)}}), (1)
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where ct1(v,G) is the color of node v at the t-th iteration.
The color of v is updated by its original color and the colors
of its neighbors. The color of the whole graph is the multiset
of the node colors

ct1(G) = Hash({{ct1(v,G)|v ∈ V (G)}}). (2)

There still exist non-isomorphic graphs that 1-WL cannot
differentiate. k-dimensional Weisfeiler-Lehman test has
stronger expressivity. It assigns colors to all k-tuples and
iteratively updates them. The initial color c0k(v, G) of tuple
v ∈ V (G)k is determined by the isomorphism type of tuple
v (Maron et al., 2019) (see Appendix E). At the t-th iteration,
the color updating scheme is

ctk(v, G) = Hash(ct−1
k (v, G), ({{

ct−1
k (ψi(v, u), G)|u ∈ V (G)}}|i ∈ [k])), (3)

where ψi(v, u) means replacing the i-th element in v with
u. The color of v is updated by its original color and the
color of its high-order neighbors ψi(v, u). The color of the
whole graph is the multiset of all tuple colors,

ctk(G) = Hash({{ctk(v, G)|v ∈ V (G)k}}). (4)

Note that k-WL (k ≥ 2) takes a different form from 1-WL.
Our discussion mainly focuses on k ≥ 2 cases. Since 1-WL
has the same expressivity as 2-WL, we can directly apply
the conclusion of 2-WL to 1-WL.

4. k, l-WL: A Universal Framework
4.1. Message passing with labels: enhancement by

asymmetry

The expressivity of models built by Relational Pooling (RP)
depends on the power of the base encoder before sym-
metrization. Some previous works use MLP (Chen et al.,
2020) and RNN (Huang et al., 2022) to capture relations
between nodes. They have high expressivity but little in-
ductive bias for graph data. Moreover, in practical settings,
where Local Relational Pooling (LRP) is used, they can only
encode induced subgraphs and lose the global information
of graph. To solve these problems, we introduce asymme-
try to MPNN by assigning nodes unique labels (which are
additional features, different from the node indices only to
name different nodes) and use MPNN with labels as the base
encoder.

Given an input graph G, MPNN with labels first assigns
label i (node ID) to each node i as an additional feature and
then runs standard message passing on the labeled graph.
MPNN with full labels is expressive enough to encode the
full graph information: MPNN can encode the multiset

of neighbors into node representations. With node ID la-
bels, each node’s representation can identify the neighbor-
ing nodes connected to it. Therefore, the representation
of the whole graph can identify the connectivity between
nodes in the whole graph and thus enable distinguishing
non-isomorphic graphs. Moreover, the standard message
passing introduces inductive bias on graph data. MPNN
with labels can also be easily adapted to the LRP setting.
Instead of assigning all nodes unique labels, MPNN with
labels can assign 1, 2, .., l to only l nodes and run message
passing on the whole graph. Therefore, MPNN with labels
can still capture global graph feature, unlike standard LRP
only taking induced subgraphs as input.

Our ID-MPNN combines MPNN with labels with LRP. An
ID-MPNN parameterized by l (called l-IDMPNN) explicitly
assigns l unique labels (IDs) to l nodes (can be duplicated,
thus nl labeled graphs in total) as an additional feature.
Then, a standard message passing is performed on each
labeled graph. Finally, the representations of these labeled
graphs are aggregated to produce the original graph repre-
sentation. A contemporary work by Qian et al. (2022) also
proposes similar models. However, they neither connect ID-
MPNN with LRP nor extend ID-MPNN to a more general
framework k, l-WL as in the following section.

4.2. k, l-WL: enhancement by higher dimension

So far, it is natural to ask: what if we replace the MPNN
with other more powerful GNNs? Equivalently, can 1-WL
be replaced by higher-dimensional WL tests on the labeled
graphs? When all nodes are assigned with unique labels,
even MPNN can distinguish all non-isomorphic graphs and
thus using more powerful models is meaningless. However,
when the number of nodes labeled is fixed, we give a positive
answer: if we run k-WL (k ≥ 3) with l labels, it will be
more powerful than 1-WL (with l labels). We name running
k-WL on labeled graphs with l IDs as k, l-WL, which is
formally defined as follows.

1. Given an l-tuple of nodes v in graph G = (V,E,X),
the labeled graph is Gv = (V,E,Xv), where ∀u ∈
V,Xv

u = Hash (Xu, {{i|vi = u, i ∈ [l]}}). In other
words, node vi will have an extra label i.

2. k, l-WL then runs k-WL on each labeled graph Gv .

• c0k(u, G
v), the color of k-tuple u in graph Gv is

initialized by the isomorphism type of u in Gv .

• The tuple color at the t-th iteration:

ctk(u, G
v) = Hash(ct−1

k (u, Gv),

({{ct−1
k (ψi(u, w), G

v)|w ∈ V }}|i ∈ [k])). (5)
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• The full graph color at the t-th iteration:

ctk(G
v) = Hash({{ctk(u, Gv)|u ∈ V k}}). (6)

3. The color of the whole graph is produced by aggregat-
ing the colors of all labeled graphs.

ctk,l(G)=Hash
(
{{ctk(Gv)|v ∈ V l}}

)
. (7)

Here, we briefly explain the k, l-WL algorithm, a more
general and powerful form of k-WL. The key difference
between k, l-WL and traditional k-WL lies in the initializa-
tion process. In k-WL, by applying a hash function, two
k-tuples will get the same initial color if and only if they
are from the same isomorphism class. However, this ini-
tialization results in limited initial colors due to the limited
size of isomorphism classes within k-tuples. For example,
1-WL assigns all nodes the same color since there is only
one isomorphism type of 1-tuple, which further restricts the
expressivity of the following steps in the algorithm. In com-
parison, at the initialization of k, l-WL, unique labels are
assigned to l-nodes. We then assign colors to these k-tuples
according to their isomorphism types concerning the labeled
tuples. See Appendix E for details and the mathematical
forms. We will show this initialization makes k, l-WL more
expressive than k-WL. Then the update scheme in k, l-WL
is the same as that of k-WL.

The method to explicitly assign IDs to certain nodes aligns
well with the original k-WL hierarchy, and we will show
in Section 5 that k, l-WL is strictly more powerful than
k-WL when l > 0. We refer our readers to Appendix E for
detailed proofs, Appendix G for an example which helps
to understand better the effect of explicitly introducing IDs,
and Appendix H for more insights.

Additionally, note that any k, l-WL algorithm has a cor-
responding GNN implementation, which we name as k, l-
GNN. Theoretically, if the instance contains a base GNN
encoder equivalent to k-WL, explicitly embeds IDs to l-
tuples, and uses an injective pooling function, k, l-GNN is
as powerful as k, l-WL. To align with existing methods, we
design two practical network architectures to implement
k, l-GNN as shown in Figure 3.

4.3. Unifying existing hierarchies

Here we briefly discuss the connection between our frame-
work and previous work, including subgraph GNNs, rela-
tional pooling, GNN extensions mentioned in (Papp & Wat-
tenhofer, 2022), and other methods. We refer our readers to
Appendix F for more details.

Firstly, k, l-WL can incorporate all relational pooling (RP)
and Local Relational Pooling methods, since node marking
is the most general and expressive form and can simulate all
other extensions (Papp & Wattenhofer, 2022).

Secondly, k, l-WL incorporates a wide range of subgraph
GNNs. Zhang et al. (2023) shows that all node-based sub-
graph GNNs fall in one of 6 equivalent classes of Subgraph
Weisfeiler-Lehman Tests. Remarkably, SWL is exactly 1, 1-
WL (and equivalently, 2, 1-WL) in our framework, which
reveals the connection between our work and many other
subgraph GNNs unified by Zhang et al. (2023). Moreover,
k, l-WL also incorporates some subgraph GNNs out of the
scope of SWL (Zhang et al., 2023), such as I2-GNN (Huang
et al., 2022). Our 1, 2-WL is a slightly more powerful
version than I2-GNN since we consider all 2-tuples to la-
bel, while I2-GNN only considers those connected 2-tuples.
1, 2-WL can distinguish some non-isomorphic graph pairs
that SWL and 3-WL fail to discriminate, and the algorithm
becomes even more powerful as we increase k or l.

Thirdly, while a number of works such as OSAN (Qian
et al., 2022) are a strict subclass of our framework, there
are still some works cannot be incorporated directly. For ex-
ample, k, l-WL operates independently on different labeled
graphs and does not include interaction between labeled
(sub)graphs as in Zhao et al. (2021) and those more expres-
sive SWL variants in Zhang et al. (2023). Introducing inter-
labeled-graph message passing will increase the expressivity
of k, l-WL, but at the price of additional computation cost.
It will also be complicated to analyze its theoretical expres-
sivity if we introduce labeled graph interactions, which we
leave for future work.

Finally, our framework incorporates all four kinds of GNN
extensions in Papp & Wattenhofer (2022): higher-order
WL, counting substructures, injecting local information,
and marking nodes. Due to the limited space, the detailed
discussion is in Appendix F.

5. The Expressivity Hierarchy of k, l-WL
In this section, we theoretically analyze the expressivity of
k, l-WL. We first define the comparison between algorithms’
expressivity:

For any algorithm A and B, we denote the final color of
graph G computed by them as cA(G) and cB(G), we say:

• A is more powerful than B (B ⪯ A) if for any pair
of graphs G and H , cA(G) = cA(H) ⇒ cB(G) =
cB(H). Otherwise, there exists a pair of graphs that B
can differentiate while A cannot, denoted as B ̸⪯ A.

• A is as powerful as B (A ∼= B) if B ⪯ A ∧A ⪯ B.

• A is strictly more powerful than B (B ≺ A) if
B ⪯ A ∧ A ≇ B, i.e., for any pair of graphs
G and H , cA(G) = cA(H) ⇒ cB(G) = cB(H),
and there exists at least one pair of graphs H,G s.t.
cB(G) = cB(H), cA(G) ̸= cA(H).

4



From Relational Pooling to Subgraph GNNs

• A and B are incomparable (A ≁ B) if A ⪯̸ B ∧
B ⪯̸ A. In this case, A can distinguish a pair of non-
isomorphic graphs that cannot be distinguished by B
and vice versa.

5.1. Connection with existing hierarchies

A special case of k, l-WL is that l = 0 and no extra labels
is attached to the graph. We have

Theorem 5.1. ∀k ≥ 2, k, 0-WL ∼= k-WL.

Another special case of k, l-WL is the k = 1 case. With no
label, 2-WL is of the same expressivity to 1-WL. We find
that with l labels, the equality still holds.

Theorem 5.2. ∀l ≥ 0, 1, l-WL ∼= 2, l-WL

where 1, l-WL is just l-OSAN (Qian et al., 2022).

A variant of k-WL test is k-Folklore Weisfeiler-Lehman
(k-FWL) test. It is known that ∀k ≥ 1, k-FWL ∼= k+1-WL.
With labels, the equality still holds:

Theorem 5.3. ∀k ≥ 1, l ≥ 0, k, l-FWL ∼= k + 1, l-WL

where k, l-FWL runs k-FWL on l-labeled graphs. See Ap-
pendix A for more details.

1, 1-WL is equivalent to the vanilla subgraph Weisfeiler-
Lehman test (SWL(VS)) proposed by Zhang et al. (2023).

Theorem 5.4. 1, 1-WL ∼= SWL(VS).

SWL(VS) further unifies various subgraph GNNs, like
Nested GNN (Zhang & Li, 2021) and ID-GNN (You et al.,
2021).

5.2. Expressivity hierarchy of k, l-WL

Similar to WL tests, we can establish a hierarchy for k, l-
WL in terms of distinguishing non-isomorphic graphs. The
full hierarchy is shown in Figure 1.

∀k ≥ 2, l ≥ 0, k, l-WL essentially produces colors for
|V |k+l tuples. Intuitively, increasing k and l will boost ex-
pressivity as more tuple colors will be computed. We show
increasing k and l both strictly increases the expressivity.

Theorem 5.5. ∀k ≥ 2, l ≥ 0, k, l-WL ≺ k + 1, l-WL.

Theorem 5.6. ∀k ≥ 1, l ≥ 0, k, l-WL ≺ k, l + 1-WL.

However, with fixed k + l and number of colors, a larger k
will lead to more message passing processes between tuples
and stronger expressivity, shown in the following.

Theorem 5.7. ∀k ≥ 2, l ≥ 0, k, l + 1-WL ≺ k + 1, l-WL.

With these theorems, we can prove a lot of useful corollaries.
For example, k, l-WL is less expressive than k + l-WL:

Corollary 5.8. ∀k ≥ 2, l ≥ 1, k, l-WL ≺ k + l-WL.

Moreover, l+1-WL is not more powerful than 2, l-WL (Qian
et al., 2022).

Theorem 5.9. ∀l ≥ 1, 2, l-WL ̸⪯ l + 1-WL.

When l = 2, the above result recovers the known result of
I2-GNN (Huang et al., 2022).

Besides graph isomorphism power, counting power is also
an important measure of the representation capability of
GNNs. We conclude that k, l-WL is able to count all con-
nected substructures within k + 1 nodes, see also Yan et al.
(2023). This is also verified by our experiments on substruc-
ture counting.

6. Practical k, l-GNN: Improving Scalability
and Compatibility

In this section, we will discuss k, l-GNN, the neural imple-
mentation of k, l-WL. k, l-GNN runs GNNs with the same
expressivity as k-WL (Xu et al., 2018; Maron et al., 2019)
on l-labeled graphs. We will discuss practical issues affect-
ing the performance and scalability as well as our solutions.
Our framework can also be applied to any other expressive
GNNs to improve expressivity.

6.1. Implementation of k, l-GNN

Our k, l-WL runs k-WL on l-labeled graphs. Therefore, in
implementation, we run a base encoder on all labeled graphs
and pool their representations. Generally speaking, we can
adopt any architecture as our base encoder and improve its
expressive power via labeling. Specifically, when the base
encoder has the same expressivity as k-WL, it reduces to
our standard k, l-GNN. The base encoder, however, does not
need to have exactly the same expressive power as certain
k-WL in practice, since we can always upper bound the
expressive power of the lifted model by some k, l-WL. In
other words, our method can lift the expressivity of many
existing architectures through labeling.

To make our framework applicable to any model, we pro-
pose two architectures to lift the expressive power of a base
model. For convenience, we first suppose that the base en-
coder has k-WL-equivalent expressivity, and we will lift
its expressivity to k, l-WL. Architecture (a) in Figure 3 (a)
exactly simulates the original form of k, l-WL: The input
node feature matrix (represented by blue rectangles) is repli-
cated to the number of labeled graphs and concatenated
(or by other combination methods like add) with the cor-
responding label features. Then the original node features
and label features are jointly learned by the same k-WL-
equivalent GNN (base encoder). If the pooling function is
injective (like Deepset (Zaheer et al., 2017)), architecture
(a) fully preserves the expressivity of k, l-WL. Architecture
(b) in Figure 3 (b) is slightly different from the original
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Figure 3. Two architectures of k, l-GNN. (a) The input graph fea-
ture (represented by blue rectangle) is duplicated for each labeled
subgraph, and one base encoder jointly learns ID features (rep-
resented by squares of different colors) and graph features. (b)
The graph features and ID features are parallelly learned by the
base encoder and a structure encoder, respectively, which are then
aggregated together and passed to downstream architectures.

k, l-WL, which learns original node features and new label
features by two models separately. The k-WL-equivalent
base encoder learns the original node features only once.
An extra k′-WL (k′ ̸= k is permitted) equivalent structure
encoder learns label features without node features in each
l-labeled graph. The l-labeled graph representations are
then aggregated by an aggregator and concatenated to the
representation of the original graph. We call it structure
encoder since label features do not introduce information
more than graph structure.

Theoretical analysis and comparison between these two
architectures are presented in Appendix I. In short, archi-
tecture (b) is less expressive but more scalable. As the
number of labeled graphs is nl, and the complexity of k-WL-
equivalent GNN can be nk, architecture (a) can preserve
the expressivity of k, l-WL with a complexity of O(nk+l).
Architecture (b) can use different structure encoder and base

encoder, i.e. k′ < k. Then the complexity of architecture
(b) can be reduced to O(nk + nk

′+l). Moreover, we ex-
perimentally find that architecture (b) tends to outperform
(a). One intuition behind is that we may need two different
sets of parameters to learn label feature and node features,
respectively.

In summary, architecture (b) is designed to reduce the com-
plexity at the cost of losing part of expressive power com-
pared with architecture (a), the original GNN implementa-
tion of k, l-WL. However, the decoupled architecture tends
to perform better in real-world tasks. Despite their differ-
ences, we emphasize that both architectures can boost the
expressivity.

Below, we propose several k, l-GNN instances parameter-
ized by different k and l, including ID-MPNN and ID-PPGN.
We as well lift some other base models through our frame-
work, such as ID-Transformer. Note that the following in-
stances can all adopt either architecture (a) or (b), depending
on application scenarios.

ID-MPNN An l-IDMPNN is an instance of 1, l-WL, since
Message Passing Neural Network (MPNN) is equivalent to
1-WL (Xu et al., 2018). The model is easy to implement but
reveals strong expressivity as l increases. One can easily
verify that ID-MPNN incorporates Identity-aware GNN (l =
1), I2-GNN (l = 2) and l-OSAN. With our implementation,
ID-MPNN outperforms the above models experimentally.

ID-PPGN For 3-WL equivalent base encoders, we select
PPGN (Maron et al., 2019) as our base encoder. An ID-
PPGN with l labels is as powerful as 3, l-WL, which is
strictly more powerful than 3-WL when l > 0.

ID-Transformer We also apply our framework to graph
transformers. It is not a k, l-GNN strictly as graph trans-
former is not k-WL equivalent. However, our framework is
general enough to take any base graph learning model.

Additionally, many techniques can be applied in the imple-
mentation of k, l-GNN, such as positional encodings (PE)
and structure encodings (SE) (Rampásek et al., 2022), GNN
as kernel techniques (Zhao et al., 2021), etc. In conclusion,
our method is a universal framework to improve the expres-
sivity of base models while being compatible with many
other methods and techniques. Please refer to Appendix J
for more implementation details. In the next section, we
discuss how to reduce the complexity when l is large.

6.2. Labeled graph selection

As k, l-GNN runs a base encoder on each labeled graph, the
total complexity is proportional to the number of labeled
graphs. This section focuses on how to select a subset of
labeled graphs. We also discuss how to segregate a subgraph
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from the labeled graph and thus reduce the size of labeled
graphs in Appendix B, as subgraph size also affects the
scalability and reduced subgraph size is important for the
successes of many subgraph GNNs (Zhang & Li, 2021).

We list some labeled graph selection strategies as follows.
Among them, random sampling and node-based policies are
commonly used. We propose two new sampling policies:
constraint-based policy and hierarchical policy.

• Random sampling. This is one of the most common
methods in existing subgraph GNNs. Statistically, the
graph representation is permutation invariant and un-
biased but with a variance among different samplings.
We can conduct parallel samplings for variance reduc-
tion and use mean/median/voting as the final represen-
tation. The complexity of randomly sampling l-tuples
is O(αnl), where α is the sampling rate.

• Node-based policies. This is another family of invari-
ant sampling methods. For example, we can extract a
K-hop ego-net for each root node and select all l-tuples
in the ego-net with the root node always being the first
node in each l-tuple. The complexity is O(nml−1),
where m is the average size of ego-nets.

• Constraint-based policies. These methods search
within all possible l-tuples and filter out those fail-
ing to meet certain constraints. For example, if we
upper-bound the shortest path distance 3 between any
pair of nodes in a 6-tuple, we can sample many 6-rings
while excluding any 6-paths. Compared with node-
based policy, constraint-based methods do not sample
the same induced subgraphs repetitively and enjoy a
higher design freedom. In implementation, this can
be efficiently implemented by dynamic programming,
e.g., Floyd-Warshall algorithms. The number of sub-
graphs depends on the graph and constraints.

• Hierarchical policies. Theses methods hierarchically
select subgraphs. We can use algorithms like min-cut
or node clustering (e.g., spectral clustering) to divide
the graph into clusters with an average size m. La-
beled nodes are then selected only within each cluster,
resulting in an average complexity ofO(ml · n

m ). Since
m ≪ n, the hierarchical policy can significantly re-
duce the number of subgraphs while still being able to
encode sufficient local structure information.

In most real-world task experiments, we use constraint-
based and hierarchical policies, achieving impressive ex-
perimental results at a low computation complexity. See
Appendix L for an ablation study on different sampling
policies.

Learn to sample and Learn to label Aside from travers-
ing or sampling according to certain rules, Qian et al. (2022)
use Implicit-MLE framework (Niepert et al., 2021) (which
allows us to back-propagate through continuous-discrete
architecture) to sample subgraphs in a data-driven fashion.
With this method, k, l-GNN can also learn to label tuples
and sample subgraphs to minimize the target loss function
in a data-driven manner. See Appendix L for more details
and experimental results.

7. Experiments
In this section, we conduct experiments on both synthetic
and real-world tasks to verify our models’ expressivity and
real-world performance.

7.1. Graph isomorphism task

Dataset We select two synthetic datasets, EXP and SR25,
to empirically verify our models’ expressivity for graph
isomorphism tasks. EXP (Abboud et al., 2020) contains
600 pairs of non-isomorphic graphs that 1-WL and 2-WL
fail to distinguish. SR25 (Balcilar et al., 2021) contains
15 non-isomorphic strongly regular graphs (i.e., 105 non-
isomorphic pairs) that 3-WL fails to distinguish. An ac-
curacy of 50% on EXP and 6.67% on SR25 suggest the
model fails to distinguish any non-isomorphic graphs in the
dataset.

Models For baseline models, we choose GIN, PNA (Corso
et al., 2020), Identity-aware GNN (You et al., 2021), GIN-
AK+ (Zhao et al., 2021) and PPGN (Maron et al., 2019).
In comparison, we choose our ID-MPNN and ID-PPGN to
understand the expressivity hierarchy better.

Results The results are shown in Table 2. When the num-
ber of IDs l ≥ 2, ID-MPNN and ID-PPGN achieve perfect
performance on the two datasets. In comparison, all other
models fail on the SR25 dataset. By comparing the results
of GIN and l-IDMPNN as well as PPGN and l-IDPPGN, we
verify that our framework can improve expressivity. Con-
cretely, we have the following conclusions:

• 1, 1-WL is more powerful than 1-WL and 2-WL.

• 1, 2-WL and 3, 2-WL can distinguish some non-
isomorphic graph pairs that are indistinguishable by
3-WL.

These results are consistent with our theoretical analysis in
Section 5.
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Table 1. QM9 results (MAE ↓)

TARGET MPNN DTNN DEEPLRP PPGN NESTED GNN IDMPNN(L=4)

µ 0.358 0.244 0.364 0.231 0.433 0.398
α 0.89 0.95 0.298 0.382 0.265 0. 226
ϵHOMO 0.00541 0.00388 0.00254 0.00276 0.00279 0.00263
ϵLUMO 0.00623 0.00512 0.00277 0.00287 0.00276 0.00286
∆ϵ 0.0066 0.0112 0.00353 0.00406 0.00390 0.00398
⟨R2⟩ 28.5 17.0 19.3 16.7 20.1 10.4
ZPVE 0.00216 0.00172 0.00055 0.00064 0.00015 0.00013
U0 2.05 2.43 0.413 0.234 0.205 0.0189
U 2.00 2.43 0.413 0.234 0.200 0.0152
H 2.02 2.43 0.413 0.229 0.249 0.0160
G 2.02 2.43 0.413 0.238 0.253 0.0159
cV 0.42 0.27 0.129 0.184 0.0811 0.0890

Table 2. Synthetic dataset performances

MODEL EXP (ACC↑) SR25 (ACC↑)

GIN 50 6.67
PNA 50 6.67

ID-AWARE GNN 100 6.67
GIN-AK+ 100 6.67

PPGN 100 6.67

l-IDMPNN(l ≥ 2) 100 100
l-IDPPGN(l ≥ 2) 100 100

Table 3. Counting substructures (MAE ↓)

MODEL TRI. TAILED TRI. STAR CHORDAL CYCLE

GCN 4.19E-1 3.25E-1 1.80E-1 2.82E-1
KP-GIN+ 3.77E-2 3.14E-2 2.40E-3 2.58E-2
GIN-AK+ 1.23E-2 1.12E-2 1.50E-2 1.26E-2
DEEPLRP 1.76E-7 1.41E-5 1.41E-5 9.81E-5

IDMPNN 5.86E-46 2.25E-7 7.67E-6 1.49E-45

7.2. Substructure counting

Dataset To verify our model’s expressivity of counting
substructures, we evaluate on random regular graph dataset
(Chen et al., 2020). There are four target substructures:
triangle, tailed triangle, star and chordal-cycle. Test MAE
measures the results.

Models We choose GCN, KP-GIN+ (Feng et al., 2022),
GIN-AK+ (Zhao et al., 2021), and DeepLRP (Chen et al.,
2020) as the baseline models. We use l-IDMPNN, and
additionally restricts message passing only on the labeled
tuples, where l is the size of the target substructure.

Results The results are shown in Table 3. Our model
achieves state-of-the-art performance on all tasks, and the
test MAE is nearly 0. This verifies our theoretical results

Table 4. Zinc12K results (MAE ↓)

METHOD TEST MAE

GIN 0.163± 0.004
PNA 0.188± 0.004
GSN 0.115± 0.012
DEEPLRP 0.223± 0.008
OSAN 0.187± 0.004
KP-GIN+ 0.119± 0.002
GNN-AK+ 0.080± 0.001
CIN 0.079± 0.006
GPS 0.070 ± 0.004

4-IDMPNN 0.083± 0.003
3-IDMPNN 0.085± 0.003

Table 5. ogbg-molhiv results (AUC ↑)

METHOD TEST AUC

PNA 79.05± 1.32
DEEPLRP 77.19± 1.40
NGNN 78.34± 1.86
KP-GIN+-VN 78.40± 0.87
I2 -GNN 78.68± 0.93
CIN 80.94 ± 0.57
SUN(EGO) 80.03± 0.55

4-IDMPNN 79.31± 0.63

that 1, l-GNN can completely count substructures within l
nodes.

7.3. Molecular properties prediction

Dataset For real-world tasks, we choose three popular
molecular property prediction datasets: QM9 (Ramakrish-
nan et al., 2014), ZINC (Dwivedi et al., 2020) and ogbg-
molhiv (Hu et al., 2020). QM9 is a graph property regres-
sion dataset containing 130k small molecules and 19 re-
gression targets, such as the energy of the molecules. We
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follow a commonly used training/validation/test split ratio
of 0.8/0.1/0.1, and the results of the first 12 targets are re-
ported. ZINC12k is a subset of ZINC250k containing 12k
molecules. The task is also molecular property (constrained
solubility) regression. ogbg-molhiv contains 41k molecules
for graph binary classification (whether a molecule inhibits
HIV virus replication or not). We use the official split for
ZINC and ogbg-molhiv.

Models For QM9 dataset, MPNN, DTNN (Wu et al.,
2017), DeepLRP (Chen et al., 2020), PPGN (Maron et al.,
2019) and Nested GNN (Zhang & Li, 2021) are chosen as
baseline models. For ZINC12k, we choose GIN (Xu et al.,
2018), PNA (Corso et al., 2020), DeepLRP (Chen et al.,
2020), OSAN (Qian et al., 2022), KP-GIN+ (Feng et al.,
2022), GNN-AK+ (Zhao et al., 2021), CIN (Bodnar et al.,
2021) and GPS (Rampásek et al., 2022) for comparison. For
ogbg-mohiv, PNA (Corso et al., 2020), DeepLRP (Chen
et al., 2020), NGNN (Zhang & Li, 2021), KP-GIN (Feng
et al., 2022), I2-GNN (Huang et al., 2022), CIN (Bodnar
et al., 2021) and SUN(EGO) (Frasca et al., 2022) are se-
lected.

Results Our 4-IDMPNN achieves superior performance
in 7 out of 12 tasks on QM9 dataset (Table 1), while results
for the remaining targets are also highly competitive. On
ZINC12k (Table 4) and ogbg-molhiv (Table 5), although
IDMPNN does not achieve the best results, it is still compa-
rable to the state-of-the-art models. Moreover, we do not use
any additional features or pretraining in any datasets, reflect-
ing the power of our model. This suggests that our method
can effectively enhance the performance of base encoders
for real-world tasks in addition to increasing the expres-
sivity.While our k, l-GNN framework captures DeepLRP,
GSN and OSAN, we find instances such as 4-IDMPNN that
greatly surpass these works in real-world tasks.

8. Conclusions
In this work, we establish a novel k, l-WL framework that
explicitly assigns labels to l nodes while running a k-WL
algorithm. We theoretically analyze the expressivity hierar-
chy of k, l-WL, which incorporates many existing relational
pooling methods and subgraph GNNs. Due to its strong
compatibility, our framework can improve the expressiv-
ity of any base model by just augmenting ID features on
(sampled) subgraphs. Various acceleration methods are also
discussed to build practical, effective models. Some of our
k, l-GNN instancees achieve state-of-the-art performance on
several synthetic and real-world tasks, verifying the power
of our framework.
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A. k-FWL
In our main text, we mainly use the family of Weisfeiler-Lehman (WL) algorithm. Note that there’s another form of graph
isomorphic algorithm called Folklore Weisfeiler-Lehman (FWL) test, and the difference between k-WL and k-FWL lies in
their tuple color update process. Concretely, at t-th iteration,

ctk(v, G) = Hash
(
ct−1
k (v, G),

{{
(ct−1

k (ψi(v, u), G)|i ∈ [k])|u ∈ V (G)
}})

, (8)

In this paper, we will strictly distinguish k-WL and k-FWL. A well known result is ∀k ≥ 1, k-FWL is equivalent to
k + 1-WL, and we will show that ∀l,∀k ≥ 1, k, l-FWL is equivalent to k + 1, l-WL in our proof. For simplicity, we will
use k, l-FWL in most of our contexts and theorems.

B. Localized k, l-WL: enhancement by locality
Recently, various subgraph-enhanced GNNs have been proved to lift up expressivity of GNNs. However, it has been
proved that the expressivity of traditional node-based subgraph-GNNs are upper-bounded by 3-WL, see (Frasca et al.,
2022). In this section, we put forward a localized variation of k, l-WL by considering locality, which is more computational
efficient and is able to incorporate more existing subgraph GNNs. Concretely, we first select a subgraph according to some
permutation-invariant strategies, then select labeled l-tuples within the subgraph. Further, in every single run of k-WL with l
labels, a localized update procudure is performed on the selected subgraph instead of on the whole graph. Note that different
subgraphs do not need to have the same sizes as long as the subgraph selection policy is permutation invariant. While a
localized k, l-WL obviously has less computation cost than full k, l-WL, it is even more expressive in some situations, see
Appendix G for an intuitive example.

While all three parameters, dimension of WL algorithm k, number of IDs l, and subgraph size m will affect graph
isomorphism power of the algorithm, see Appendix G for illustration. However, complete theoretical analysis of localized
k, l-WL is non-trivial, which we leave for future work.

While localization affects the expressive power of k, l-WL, a comprehensive theoretical analysis is non-trivial, which
we leave for future work. Here we only give a preliminary discussion on the relationship between parameters k, l and
localization. We prove in this paper that for k ≥ 2, k+1, l-WL is strictly more powerful than k, l+1-WL (see Theorem 5.7),
though at same magnitude of complexity. This implies that k is more important than l. Similarly, effects of localization
can be simulated by parameter l to some extent. For example, t rounds of message passing starting from the labeled root
node results to a t-hop subgraph. This observation indicates that localization is generally less important and is likely to be
simulated by labeling. An interesting phenomenon is that increasing subgraph size does not necessarily increase expressivity.
However, the concrete analysis is complicated, and we leave complete theoretical analysis of the impact of localization on
expressivity as an open question.

After introducing the localization, there are also some additional complexity reduction methods to be discussed. We mainly
focus on selecting subgraph (so called ’message passing’ range) to reduce number of labeled tuples and decrease duplicated
computation. While the labeled nodes should definitely be included in the selected subgraph, a localized update is able to
accelerate the algorithm.

Some of common and useful subgraph selection policies applicable to localized k, l-WL include:

• Label based selection: we only perform k, l-WL on the labeled nodes, while unlabeled nodes are ignored for each
labeled l-tuple. This subgraph selection is useful for counting substructure.

• Full graph: we directly run k, l-WL on the original whole graph. This is the original form of k, l-WL with no complexity
reduction.

• Node based selection: for example, extract K-hop ego-net of each labeled node. Node based selection recovers a wide
range of subgraph GNNs, including K-hop GNN.

C. Algorithm of localized k, l-WL
We formally use pseudo code to describe our localized k, l-WL in Algorithm 1.
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Algorithm 1 Localized k, l-WL
Input: An uncolored, undirected. unlabeled graph G = (V,E), subgraph generation policy Ps, label node tuple
generation policy Pt, dimension of WL test k, number of labels l, subgraph selection policy (optional, align with Ps)

Generate unordered subgraph {Gi} according to Ps.
for Gi ∈ {Gi} do

Generate labeled tuple (vg1, ..., vgl) ∈ Gi

for ordered graph Gg do
Initialization: C[v⃗] =0 χ

k
Gg (v⃗), for all v⃗ ∈ V k;M = ∅;List = {0χk

Gg (v⃗) : v⃗ ∈ V (Gg)k};S = ∅.
** All tuples initially colored with their isomorphism types and labels L(v⃗);multiset M empty; work list initialized
with the initial color-label classes of k-tuples in order subgraph Gg; multiset S storing color-labels of ordered
subgraphs emtpy.
while L ̸= do

for each tuple color-label class c = (C,L) ∈ List do
remove c from List
for each tuple w⃗ with C[w⃗] = c do

for each j ≤ k do
for each u ∈ V (Gg) do

let v⃗ = w⃗[j, u];
add (v⃗, (C,L)[v⃗[1, u]], ..., (C,L)[v⃗[k, u]]) to M.

end for
end for

end for
end for
Perform Radix Sort of M .
Scan M replacing tuples (v⃗, c11, ..., c

1
k), ..., (v⃗, c

r
1, ..., c

r
k) with the single tuples

(C[v⃗]; (v⃗, c11, ..., c
1
k), ..., (v⃗, c

r
1, ..., c

r
k); v⃗).

Perform Radix Sort of M . Scan M for each color-label class c = (C,L) that has been split, leave the larget part
still color-labeled c, and update the colors C of other parts, remain labels L unchanged; add new color-label types
to List.

end while
Append the current color-labeling of all k-tuples in the labeled subgraph V (Gg)k to S.

end for
end for
Output multiset S that contains color-labels for k-tuples in all ordered subgraphs.

D. Mathematical form of 1, l-WL
Here, we will give an example of tensor implementation for 1, l-WL. Each node v is represented using a l-dimensional
vector h(v), and the jth component of the vector hj(v) corresponds to label j(j = 1, 2, ..., l). To keep the representation
permutation invariant, we need to adopt a permutation invariant labeling method, for instance, pool over a permutation
group of IDs on the k-tuple. Denote set M = (1, 2, ..., l), we can use the symmetric group Sym(M) (i.e. the full
permutation with k! elements) as the permutation group acting on the ID set. The group is not unique as long as it makes
the graph level representation permutation invariant, but to facilitate understanding, we will select Sym(M) at first in our
illustration. For each element g of the permutation group, the labeled graph Xg is represented by a matrix shaped (n, k):
H(Xg) = (hg(v1), ...,h

g(vn))
T . Since there are k! elements in Sk, thus the representation for the graph X will be a

(l!, n, l) shaped tensor: H(X) = (H(Xg1), ...,H(Xgl!)))T .

At initialization, in each labeled subgraph Gg, node vi with label j is initialized as xg
0(vi) = (1(j = 1), ...,1(j = l)), i.e.

the jth element is 1 and other elements are 0. The vector will be 0 if the node is unlabeled. Thus the Hg
0 (X) is a sparse

matrix with l elements of 1.

In each iteration t of the 1-WL on k-tuple algorithm, the update process is performed as below. First, we aggregate
information from neighbors of each node in each subgraph and update the representation of nodes. One instance of

12
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aggregation can be described as follows:

h̄g
t+1(vi) = Ut

(
hg
t (v),

∑
j:vj∈N (vi)

Mt

(
hg
t (vj)

))
(9)

As a simple instance, the message function Mt can be identity mapping, and the node update function Ut simply adds two
terms (vector in the last iteration, and aggregated neighbors’ information). The summation can also be replaced by other
permutation invariant pooling methods, e.g. mean or max.

Note that we then apply hash functions on three dimensions respectively to get final representation of iteration t+ 1. On
the node level in each permutation, the hash function fnode is applied on vector (tuple) x(m)(v), so there are 2l different
output hash values. Then we apply hash function flbg on each labeled graph Gm, in which we regard the multi-set (instead
of tuple) of nodes as in 1-WL. Finally, hash function fgraph is applied to the graph level, in which the multi-set of labeled
subgraphs will be considered.

hg
t+1(vi) = fnode(h̄

g
t+1(vi)),∀g ∈ Sl,∀i ∈ (1, 2, ..., n) (10)

Hg
t+1 = flbg({hg

t+1(vi)|i ∈ (1, 2, ..., n)}),∀g ∈ Sl (11)

Ht+1(X) = fgraph({Xg
t+1|g ∈ Sl}) (12)

where {·} means a multi-set. Actually, in the hash step, each latter equation can use the tensors in the previous equation
either before or after hashing.

E. Proof
E.1. Notations

Isomorphism type of node tuple k, l-WL and k-WL use the isomorphism type of tuple to initialize colors, which is
defined as follows:

Given graphs G1 = (V 1, E1, X1), G2 = (V 2, E2, X2) and k-tuples v1,v2 in G1, G2 respectively. v1,v2 have the same
isomorphism type iff

1. ∀i1, i2 ∈ [k], v1
i1

= v1
i2

↔ v2
i1

= v2
i2

.

2. ∀i ∈ [k], X1
v1
i
= X2

v2
i
.

3. ∀i1, i2 ∈ [k], (v1
i1
,v1

i2
) ∈ E1 ↔ (v2

i1
,v2

i2
) ∈ E2.

Expressivity comparison Given two function f, g, f can be expressed by g means that there exists a function ϕ ϕ ◦ g = f ,
which is equivalent to given arbitrary input H,G, f(H) = f(G) ⇒ g(H) = g(G). We use f → g to denote that f can be
expressed with g. If both f → g and g → f , there exists a bijective mapping between the output of f to the output of g,
denoted as f ↔ g.

Here are some basic rule.

• g → h⇒ f ◦ g → f ◦ h.

• g → h, f → s⇒ f ◦ g → s ◦ h.

• f is bijective, f ◦ g → g

k, l-WL In this section, we use ctk to denote the color produced by k-WL in t iteration and ck to denote the stable color.

Let Gv = (V,E,Xv) denote the graph labeled by tuple v. The only difference from the original graph is that node feature
X add extra label. Xv

u = (Xu, {{i|vi = u, i ∈ [l]}}).

Let ψa(v,u) denote a tuple produced by replacing vai with ui for i = 1, 2, ..., |a|, where a is an index tuple, i < j ⇒
ai < aj . Given v ∈ V k,a ∈ [k]l, va denote a l-tuple whose i-th element is vai .

13
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We need to reduce colors ct(u, Gv) of |V |l+k tuples v,u to a single color ct(G) of the full graph. Two pooling methods
exist.

• Tuple-label (TL) pooling: First aggregate tuple representations of the same labeled graph, then aggregate representations
of different labeled graphs. It is also the pooling method used in maintext.

ct(G) = Hash({{Hash({{c(t)(u, Gv)|u ∈ V k}})|v ∈ V l}}). (13)

• Label-tuple (LT) pooling: First aggregate representations of the same tuple in different labeled graphs, then aggregate
tuple representations.

ct(G) = Hash({{Hash({{c(t)(u, Gv)|v ∈ V l}})|u ∈ V k}}). (14)

Let k, l-WL(LT ) and k, l-WL(TL) denote k, l-WL with the two pooling methods. By default, k, l-WL use TL-pooling,
which is more similar to relational pooling. However, we prove that LT pooling leads to higher expressivity.

If the number of iteration t is specified, t is by default large enough to produce stable color: Given two graphs ∀u1,u2 ∈
V k,v1,v2 ∈ V l,

ct(u1,G
v1)=ct(u2,G

v2)↔ct+1(u1,G
v1) = ct+1(u2,G

v2) (15)

Tuple colors of k, l-WL is ck on labeled graph. We use ck,l,TL, ck,l,LT to denote graph color produced by k, l-WL with TL
and LT pooling.

E.2. Connection to existing hierarchy

Proposition E.1. Given two algorithms A B, which produce color cA(G), cB(G) with graph G as input. If A ∼= B, then
forall graph G = (V,E,X), H = (V ′, E′, X ′),

{{cA(Gv)|v ∈ V l}} = {{cA(Hv)|v ∈ V ′l}} ⇔ {{cA(Gv)|v ∈ V l}} = {{cA(Hv)|v ∈ V ′l}} (16)

Therefore, as 1−WL ∼= 2−WL, k + 1−WL ∼= k − FWL, 1, l −WL ∼= 2, l −WL, k, l − FWL ∼= k + 1, l −WL.

E.3. expressivity hierarchy

Lemma E.2. Given a graph G = (V,E,X), ∀k ≥ 2, ∀t ≥ 0, 0 < h ≤ k,∀v ∈ V k,a ∈ [k]h with no duplicated elements,
ct+h
k (v, G) → {{ctk(ψa(v,u), G)|u ∈ V h}}

Proof. We enumerate h,

h = 1: ∀i ∈ k

ct+1
k (v, G) = Hash(ctk(v, G),

(
{{ctk(ψj(v, u), G)|u ∈ V }}|j ∈ [k]

)
→ {{ctk(ψi(v, u), G)|u ∈ V }} (17)

Assuming that h > 1, ∀v ∈ V k,a ∈ [k]h−1 with no duplicated elements, ct+h−1
k (v, G) → {{ctk(ψa(v,u), G)|u ∈

V h−1}}.

∀a ∈ [k]h

ct+h
k (v, G) → {{ct+h−1

k (ψah
(v, u), G)|u ∈ V }} (18)

→ {{{{ctk(ψa:h
(ψah

(v, u),u), G)|u ∈ V h−1}}|u ∈ V }} (19)

→ {{ctk(ψa(v,u), G)|u ∈ V h}} (20)

Lemma E.3. ∀k ≥ 2, l ≥ 0, k, l-WL(TL) ⪯ k, l + 1-WL(TL), k, l-WL(LT) ⪯ k, l + 1-WL(LT)

Proof. Given graph G = (V,E,X), we first prove that ∀v ∈ V k,u ∈ V l+1, ctk(v, G
u) → ctk(v, G

u:l+1) by enumerating
t.

14
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1. t = 0, the color is isomorphism type. ∀G1 = (V1, E1, X1), G2 = (V2, E2, X2),∀v1 ∈ V k
1 ,v

2 ∈ V k
2 ,u

1 ∈ V l+1
1 ,u2 ∈

V l+1
2 ,

c0k+1(v
1, Gu1

1 ) = c0k+1(v
2, Gu2

2 ) ⇒ (∀i1, i2 ∈ [k],v1
i1 = v1

i2 ↔ v2
i1 = v2

i2) (21)

∧(∀i ∈ [k], Xu1

1 v1
i
= Xu2

2 v2
i
) ∧ (∀i1, i2 ∈ [k], (v1

i1 ,v
1
i2) ∈ E1 ↔ (v2

i1 ,v
2
i2) ∈ E2) (22)

⇒ (∀i1, i2 ∈ [k + 1],v1
i1 = v1

i2 ↔ v2
i1 = v2

i2) (23)

∧(∀i ∈ [k], X
u1

:l+1

1 v1
i
= X

u2
:l+1

2 v2
i
) ∧ (∀i1, i2 ∈ [k], (v1

i1 ,v
1
i2) ∈ E1 ↔ (v2

i1 ,v
2
i2) ∈ E2) (24)

⇒ c0k(v
1, G

u1
:l+1

1 ) = c0k(v
2, G

u2
:l+1

2 ) (25)

Therefore, c0k(v, G
u) → c0k(v, G

u:l+1)

2. ∀t > 0,

ctk(v, G
u) = Hash

(
ct−1
k (v, Gu), ({{ct−1

k (ψi(v, u), G
u)|u ∈ V }}|i ∈ [k])

)
(26)

→ Hash
(
ct−1
k (v, Gu:l+1), ({{ct−1

k (ψi(v, u), G
u:l+1)|u ∈ V }}|i ∈ [k])

)
(27)

→ ctk(v, G
u:l+1). (28)

With TL pooling:

ctk,l+1,TL(G) = Hash({{{{ctk(v, Gu)|v ∈ V k}}|u ∈ V l+1}}) (29)

→ Hash({{{{ctk(v, Gu:l+1)|v ∈ V k}}|u ∈ V l+1}}) (30)

→ Hash({{{{ctk(v, Gu)|v ∈ V k}}|u ∈ V l}}) (31)

→ ctk,l,TL(G) (32)

With LT pooling:

ctk,l+1,LT (G) = Hash({{{{ctk(v, Gu)|u ∈ V l+1}}|v ∈ V k}}) (33)

→ Hash({{{{ctk(v, Gu:l+1)|u ∈ V l+1}}|v ∈ V k}}) (34)

→ Hash({{{{ctk(v, Gu)|u ∈ V l}}|v ∈ V k}}) (35)

→ ctk,l,LT (G) (36)

Lemma E.4. ∀k ≥ 2, l ≥ 0, k, l-WL(TL) ⪯ k + 1, l-WL(TL), k, l-WL(LT) ⪯ k + 1, l-WL(LT)

Proof. Given graph G = (V,E,X), we first prove that ∀v ∈ V k+1,u ∈ V l, ctk+1(v, G
u) → ctk(v:k+1, G

u) by enumerat-
ing t.

1. t = 0, the color is isomorphism type. ∀G1 = (V1, E1, X1), G2 = (V2, E2, X2),∀v1 ∈ V k+1
1 ,v2 ∈ V k+1

2 ,u1 ∈ V l
1 ,u

2 ∈
V l
2 ,

c0k+1(v
1, Gu1

1 ) = c0k+1(v
2, Gu2

2 ) ⇒ (∀i1, i2 ∈ [k + 1],v1
i1 = v1

i2 ↔ v2
i1 = v2

i2) (37)

∧(∀i ∈ [k + 1], Xu1

1 v1
i
= Xu2

2 v2
i
) ∧ (∀i1, i2 ∈ [k + 1], (v1

i1 ,v
1
i2) ∈ E1 ↔ (v2

i1 ,v
2
i2) ∈ E2) (38)

⇒ (∀i1, i2 ∈ [k + 1],v1
i1 = v1

i2 ↔ v2
i1 = v2

i2) (39)

∧(∀i ∈ [k], Xu1

1 v1
i
= Xu2

2 v2
i
) ∧ (∀i1, i2 ∈ [k], (v1

i1 ,v
1
i2) ∈ E1 ↔ (v2

i1 ,v
2
i2) ∈ E2) (40)

⇒ c0k(v
1
:k+1, G

u1

1 ) = c0k(v
2
:k+1, G

u2

2 ) (41)

Therefore, c0k(v, G
u) → c0k(v, G

u:l+1)
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2. ∀t > 0,

ctk+1(v, G
u) = Hash

(
ct−1
k+1(v, G

u), ({{ct−1
k+1(ψi(v, u), G

u)|u ∈ V }}|i ∈ [k + 1])
)

(42)

→ Hash
(
ct−1
k+1(v, G

u), ({{ct−1
k+1(ψi(v, u), G

u)|u ∈ V }}|i ∈ [k])
)

(43)

→ Hash
(
ct−1
k (v:k+1, G

u), ({{ct−1
k (ψi(v:k+1, u), G

u)|u ∈ V }}|i ∈ [k])
)

(44)

→ ctk(vk+1, G
u). (45)

With TL pooling:

ctk+1,l,TL(G) = Hash({{{{ctk+1(v, G
u)|v ∈ V k+1}}|u ∈ V l}}) (46)

→ Hash({{{{ctk(v, Gu)|v ∈ V k+1}}|u ∈ V l}}) (47)

→ Hash({{{{ctk(v, Gu)|v ∈ V k}}|u ∈ V l}}) (48)

→ ctk,l,TL(G) (49)

With LT pooling:

ctk+1,l,LT (G) = Hash({{{{ctk(v, Gu)|u ∈ V l}}|v ∈ V k+1}}) (50)

→ Hash({{{{ctk(v:k+1, G
u)|u ∈ V l}}|v ∈ V k+1}}) (51)

→ Hash({{{{ctk(v, Gu)|u ∈ V l}}|v ∈ V k}}) (52)

→ ctk,l,LT (G) (53)

Lemma E.5. ∀k ≥ 2, l ≥ 0, k, l + 1-WL(TL) ⪯ k + 1, l-WL(TL)

Proof. Given graph G = (V,E,X), we first prove that ∀v ∈ V k,u ∈ V l, w ∈ V, ctk+1(v||w,Gu) → ctk(v, G
u||w) by

enumerating t.

1. t = 0, the color is isomorphism type. ∀G1 = (V1, E1, X1), G2 = (V2, E2, X2),∀v1 ∈ V k
1 ,v

2 ∈ V k
2 , w

1 ∈ V1, w2 ∈
V2,u

1 ∈ V l
1 ,u

2 ∈ V l
2 ,

c0k+1(v
1||w1, Gu1

1 ) = c0k+1(v
2||w2, Gu2

2 ) ⇒ (54)(
∀i1, i2 ∈ [k + 1], (v1||w1)i1 = (v1||w1)i2 ↔ (v2||w2)i1 = (v2||w2)i2

)
(55)

∧(∀i ∈ [k], Xu1

1 v1
i
= Xu2

2 v2
i
) ∧ (Xu1

1 w1 = Xu2

2 w2) (56)

∧(∀i1, i2 ∈ [k + 1], ((v1||w1)i1 ,v
1
i2) ∈ E1 ↔ ((v2||w2)i1 , (v

2||w2)i2) ∈ E2) (57)

⇒ (∀i1, i2 ∈ [k],v1
i1 = v1

i2 ↔ v2
i1 = v2

i2) (58)

∧(∀i ∈ [k], X
u1||w1

1 v1
i
= X

u2||w2

2 v2
i
) ∧ (∀i1, i2 ∈ [k], (v1

i1 ,v
1
i2) ∈ E1 ↔ (v2

i1 ,v
2
i2) ∈ E2) (59)

⇒ c0k(v
1, G

u1||w1

1 ) = c0k(v
2, G

u2||w2

2 ) (60)

Therefore, ctk+1(v||w,Gu) → ctk(v, G
u||w).

2. ∀t > 0,

ctk+1(v||w,Gu) = Hash
(
ct−1
k+1(v||w,G

u), ({{ct−1
k+1(ψi(v||w, u), Gu)|u ∈ V }}|i ∈ [k + 1])

)
(61)

→ Hash
(
ct−1
k+1(v||w,G

u), ({{ct−1
k+1(ψi(v, u)||w,Gu)|u ∈ V }}|i ∈ [k])

)
(62)

→ Hash
(
ct−1
k (v, Gu||w), ({{ct−1

k (ψi(v, u), G
u||w)|u ∈ V }}|i ∈ [k])

)
(63)

→ ctk(v, G
u||w). (64)
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With TL pooling:

ctk+1,l,TL(G) = Hash(
{{
{{ctk+1(v||w,Gu)|v ∈ V k, w ∈ V }}|u ∈ V l

}}
) (65)

(66)

According to Lemma E.2,

ctk+1,l,TL(G) → Hash(
{{{{

{{ct−k
k+1(v

′||w,Gu)|v′ ∈ V k}}|v ∈ V k, w ∈ V
}}

|u ∈ V l
}}

) (67)

→ Hash(
{{
{{ct−k

k+1(v
′||w,Gu)|v′ ∈ V k}}|w ∈ V,u ∈ V l

}}
) (68)

→ Hash(
{{

{{ct−k
k (v′, Gu||w)|v′ ∈ V k}}|w ∈ V,u ∈ V l

}}
) (69)

→ ck−1
k,l+1,TL(G) (70)

E.4. ̸⪯ Results

According to Lemma 27 from (Qian et al., 2022),

Proposition E.6. ∀k ≥ 1, there exists a pair of graphs that 2, k-WL(TL) can differentiate while k + 1-WL cannot.

Corollary E.7. ∀k ≥ 2, l ≥ 0, k, l-WL(TL) ≺ k, l + 1-WL(TL), k, l-WL(TL) ≺ k + 1, l-WL(TL).

Proof. According to Lemma E.5, 2, k + l − 1-WL ⪯ 3, k + l − 2-WL ⪯ ... ⪯ k, l + 1-WL ⪯ k + 1, l-WL. Therefore,
there exists a pair of graphs that k, l + 1-WL and k + 1, l-WL can differentiate while k, l-WL cannot. Moreover, according
to Lemma E.4 and Lemma E.3, k, l-WL ⪯ k, l + 1-WL and k, l-WL ⪯ k + 1, l-WL. Therefore, k, l-WL ≺ k, l + 1-WL,
k, l-WL ≺ k + 1, l-WL.

Then we prove that k + 1, l-WL(TL) ̸⪯ k, l + 1-WL in the following paragraphs.

Pebble Game Cai et al. (1992) propose Ck game as follows:

Given two graphs G,H , and k pairs of pebbles x1, x2, ..., xk. Initially, no pebbles is placed on the graph. Two players act
as follows in one epoch.

1. Player 1 picks up the xi pebble pair for some i.

2. Player 1 chooses a graph F from {G,H}.

3. Player 1 chooses a set A of vertices from F . Player 2 answers with a set B of vertices from the other graph. |B| = |A|
4. Player 1 places one of the xi pebbles on some vertex b ∈ B. Player 2 answers by placing the other pebble on some
a ∈ A.

5. If the subgraph induced by pebbles of Player 1 is not isomorphism to that of Player 2, player 1 wins. Otherwise, player
2 wins.

Cai et al. (1992) also prove that

Proposition E.8. Player 2 has an winning strategy in Ck game on two graphs G,H iff ck(G) = ck(H)

CFI graph Cai et al. (1992) have built a family of graphs that k + 1-WL can differentiate while k-WL cannot. We restate
their conclusion here.

First, Cai et al. (1992) define a kind of basic block χk as follows:

1. 2k−1 nodes, each representing a k-bit binary with an even number of 1’s. They all have the same color.

2. 2k nodes, representing k binary bits 0/1 (ai, bi). Each bit has a different color.

3. Edges that connects a binary with each of its k bits.
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Figure 4. (a) Xk

A χ3 block is shown in Figure 4(a). The block has the following property (Lemma 6.1 in (Cai et al., 1992)).

Proposition E.9. There are exactly 2k−1 automorphisms of χk. Each is determined by interchanging ai and bi for each i in
some subset S of {1, ..., n} of even cardinality.

Let G = (V,E,X) denote an undirected graph whose minimal node degree ≥ 2. The graph χ(G) is defined as follows.

1. ∀v ∈ V , we replace v by a copy of χd(v), namely χ(v), where d(v) is the node degree of v. Each node in χ(v) inherit
the node feature Xv .

2. ∀(v, w) ∈ E(G), we associate one of the pairs {ai, bi} from X(v), call this pair a(v, w) and b(v, w). Then, we draw
the edges (a(u, v), a(v, u)), (b(u, v), b(v, u)).

The twist of χ(G) (χ̃(G)) is produced by arbitrarily choosing one edge (v, w) ∈ E(G) and twist it ( replace
(a(u, v), a(v, u)), (b(u, v), b(v, u)) with (a(u, v), b(v, u)), (b(u, v), a(v, u)). Two graphs are not isomorphic (Lemma 6.2
in (Cai et al., 1992)).

Proposition E.10. Let χ̂(G) be constructed like χ(G), but with exactly t of its edges twisted. Then χ̂(G) is isomorphic to
χ(G) iff t is even, and χ̂(G) is isomorphic to χ̃(G) iff t is odd.

Such graphs is called CFI graph. Cai et al. (1992) prove that some CFI graphs is k-WL indistinguishable.

Proposition E.11. Let T be a graph such that every seperator of T has at least k + 1 vertices. Then k-WL cannot
differentiate X(T ) and X̃(T ).

Note that Proposition E.11 and Proposition E.10 do not use any property of the basic block other than Proposition E.9.
Therefore, we can use other basic blocks to keep these these two conclusions.

Based on results above, Morris et al. (2020) build a family of graphs. Let Kl denote l-cluster with nodes colored as 1, 2, ..., l.
Let Hk = X(Kk+1), Gk = X̃(Kk+1). A direct corollory of Proposition E.11 is

Corollary E.12. ∀k ≥ 2, k-WL cannot differentiate Hk, Gk.

Moreover, Morris et al. (2020) and Qian et al. (2022) prove the following conclusion.

Proposition E.13. k + 1-WL and 2, k − 1-WL(TL) can differentiate Hk, Gk

Extended CFI graph We propose the following basic block to build other family of graphs. ωk are as follows:

1. 2k−1 nodes, each representing a k-bit binary with an even number of 1’s. They all have the same color ce.

2. 2k−1 nodes, each representing a k-bit binary with an odd number of 1’s. They all have the same color co.

3. 2k nodes, representing k binary bits 0/1 (ai, bi). Each bit has a different color.
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4. Edges that connects a binary with each of its k bits.

Am ω3 block is shown in Figure 4(b). The block has the following property as χk block.

Proposition E.14. There are exactly 2k−1 automorphisms of ωk. Each is determined by interchanging ai and bi for each i
in some subset S of {1, ..., n} of even cardinality.

Proof. Any automorphism ϕ of X ′
k must keeps node colors. Therefore, ϕ must map Ce nodes to Ce nodes, and {ai, bi} to

{ai, bi}, so ϕ is also an automorphism of Xk.

Therefore, ϕ is determined by interchanging ai and bi for each i in some subset S of {1, ..., n} of even cardinality. Moreover,
each of such interchanging is also an automorphism.

Similar to χk, we can define CFI graph ω(G) and its twist ω̃(G). The following proposition still holds.

Proposition E.15. Let ω̂(G) be constructed like ω(G), but with exactly t of its edges twisted. Then ω̂(G) is isomorphic to
ω(G) iff t is even, and ω̂(G) is isomorphic to ω̃(G) iff t is odd.

Proposition E.16. Let T be a graph such that every seperator of T has at least k + 1 vertices. Then k-WL cannot
differentiate ω(T ) and õmega(T ).

A direct corollary is

Proposition E.17. k-WL cannot distinguish ω(Kk+1), ω̃(Kk+1).

Moreover, as algorithms can directly ignore nodes with co color

Proposition E.18. k + 1-WL and 2, k − 1-WL(TL) can distinguish ω(Kk+1), ω̃(Kk+1).

A pair of graph that k+1, l-WL can distinguish while k, l+1-WL cannot We propose the another kind of basic block
similar to ωk. γa,b are as follows:

1. 2b−1 nodes, each representing a k-bit binary with an even number of 1’s. Each node is connected to all nodes of a
instance of Ga, which has a fixed special color cbr on each node.

2. 2b−1 nodes, each representing a k-bit binary with an odd number of 1’s. They all have the same color co. Each node is
connected to all nodes of a instance of Ha, which has a fixed special color Cbr on each node.

3. 2b nodes, representing k binary bits 0/1 (ai, bi). Each bit has a different color.

4. Edges that connects a binary with each of its k bits.

Ga, Ha is generally called branch in the block. A γ3,k block is shown in Figure 4(b). Branches Ga, Ha can be considered
as co and ce in ωk. Similar to ωk, we can define CFI graph γa(G) and its twist γ̃a(G), which is produced by using block
γk,a. The following proposition still holds.

Proposition E.19. Let γ̂a(G) be constructed like γa(G), but with exactly t of its edges twisted. Then γ̂a(G) is isomorphic
to γa(G) iff t is even, and γ̂a(G) is isomorphic to γ̃a(G) iff t is odd.

Then we come to our primary result.

Theorem E.20. ∀k ≥ 2, l ≥ 0, k, l + 1-WL(TL) cannot distinguish γk(Kk+l+1) and γ̃k(Kk+l+1), while k + 1, l-WL(TL)
can.

We prove it in two steps.

Lemma E.21. ∀k ≥ 2, l ≥ 0, k, l + 1-WL(TL) cannot distinguish γk(Kk+l+1) and γ̃k(Kk+l+1).

Proof. Let G = γk(Kk+l+1) = (V,E,X), H = γ̃k(Kk+l+1) = (V,E′, X). As k, l + 1-WL produce node colors as the
multiset of labeled graphs’ k-WL color. We are going to prove that

∀u ∈ V l+1, ck(G
u) = ck(H

u) (71)

which is equivalent to that ∀u ∈ V l+1, player 2 has an winning strategy in Ck game on Gu, Hu.
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As l+1 < k+ l+1, there exists at least one basic block with no node in u (not labeled). For simplicity, let γ(0) denote the
block. Let {(ai, bi)|i ∈ [k + l]} denote the bit nodes in the block. Let {di|i+ 1 ∈ [2k+l]} denote the nodes corresponding
to binary numbers in γ(0). Let ei denote the set of nodes in the branch connected to di.

No matter where the twist happens, the results graphs are isomorphic, so we can simply assume that the twist happen in
(a1, b1). As the subgraphs induced by V −V (γ(0)) are isomorphic, we can define the following function ϕ : V → V ∪{−1}.

ϕ(v) =



v if v ∈ V − V (γ(0))

b1 if v = a1

a1 if v = b1

bi if v ∈ {bi|i ∈ [k + l], i ̸= 1}
ai if v ∈ {ai|i ∈ [k + l], i ̸= 1}
di∧1 if v ∈ {di|i+ 1 ∈ [2k+1]}
−1 otherwise

(72)

where ∧ means bitwise xor.

Let u ∈ (V ∪ {−1})k denote the configure of the pebbles, ui is the node that xi pebble placed. ui = −1 means xi pebble
is currently not placed in the graph. As Gk, Hk are k-WL indistinguishable, player 2 has a winning strategy of Ck game on
Gk, Hk, which is equivalent to that given F ∈ {Gk, Hk}, A ⊆ V (F ), feasible configuration f in F and configuration f ′

in the other graph, player 2 can answer a nodeset Bk(A,F,f ,f
′). Moreover, when player 1 select a ∈ Bk(A,F,f ,f

′),
player 2 can answer a node bk(A,F,f ,f ′) to keep induced subgraph isomorphism.

Given a configuration u and a node subset U , u ∩ U means the configuration on the induced subgraph, which considers
pebbles put out side ths subgraph as −1. Let µi denote a isomorphism node mapping from branch ei to the origin graph Gk

or Hk and µ−1
i denote the inverse mapping. Given a node set S or a configuration u,µi(S), µ

−1
i (S), µi(u), µ

−1
i (u) means

element-wise transformation (−1 is not transformed). Given a graph F and a node S, let F [S] denote the subgraph of F
induced by S.

Then player 2 can use the same strategy on branches as in Ck games on Gk, Hk.

1. Given a graph F and node set A and configuration f in F and f ′ in the other graph, player 2 answer the following set.

{ϕ(v)|v ∈ A, ϕ(v) ̸= −1}∪ (73)

2k+l−1⋃
i=0

µ−1
i∧1Bk

(
µi(A ∩ ei), F [ei], µi(f ∩ ei), µi∧1(f

′ ∩ ei∧1)
)

(74)

2. If player 1 select a ∈ B. Player 2 can selectϕ−1(a) if a /∈
⋃2k+l−1

i=0 ei

µ−1
i∧1

(
bk
(
µi(A ∩ ei), F [ei], µi(f ∩ ei), µi∧1(f

′ ∩ ei∧1)
))

if a ∈ ei
(75)

Lemma E.22. k + 1, l-WL can distinguish γk(Kk+l+1) and γ̃k(Kk+l+1).

Proof. Let G = γk(Kk+l+1), H = γ̃k(Kk+l+1)

k + 1, l-WL can run k + 1-WL on each branches. Then Gk and Hk branches are distinguished. In other words, given a
graph F ∈ {G,H} branch ei and the corresponding binary number node di. ∀j ∈ [k + 1],u ∈ V k

c(ψj(u, di)) → {{ψj(v, di)|v ∈ eki }} → ck(F [ei]) (76)

Therefore, k + 1, l-WL is more expressive than ignore branches (nodes with initial color cb) while label di with
ck(F [ei]), which is equivalent to running k + 1, l-WL on ω(Kk+l+1), ω̃(Kk+l+1). As 2, k + l − 1-WL can distinguish
ω(Kk+l+1), ω̃(Kk+l+1), and 2, k + l − 1-WL ⪯ k + 1, l-WL, k + 1, l-WL can distinguish these two graphs.
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F. Relationship with other works
In this section, we give a comprehensive discussion on the relationship between our framework and existing works. k, l-WL
framework unifies (local) relational pooling based methods, a considerably wide range of subgraph GNNs and other works
like OSAN (Qian et al., 2022), establishing the connections between these fields.

First, we give a systematical discussion on our k, l-WL framework with GNN extensions, which is ommited in Section 4.3.
(Papp & Wattenhofer, 2022) points out that GNN extensions can be classified into higher order WL, counting substructures,
injecting local information, and marking neighbors. While this classification is flexible (and not necessarily include all
existing works), we can discuss the relationship between our work and these four kinds of GNN extensions and show that
our method is more universal and superior.

• Our model naturally incorporates traditional WL algorithms, including higher order k-WL. Our k, l-WL is a more
comprehensive and universal hierarchy.

• Our model can fully count substructures (whose # nodes is within k + l). Also, statistically, our model does not need
this upper bound number of labels to count substructures in practice (see proposition 4.10 as an example). Therefore,
k, l-WL can naturally encode substructure information into its representations. Since we do not manually design which
substructures to encode (as is done in GSN), it can capture more local information than manual methods. Additionally,
it can also contain structure information beyond substructure counting.

• k, l-WL can naturally encode information up to a certain radius, which can be naturally achieved by performing
message passing on labeled graph, or manually introducing the localized version. Note that in localized k, l-WL, the
subgraph size even does not have to be fixed and can be easily transformed into other forms, including knowledge up to
a flexible radius r. Users can design concrete methods under our framework according to their practical demands.

• Our method is based on and beyond marking. As is stated in (Papp & Wattenhofer, 2022) and some other works,
marking is the most efficient strategy to improve expressivity (at least in node-based subgraph GNNs). Our method
incorporates GNN extensions with node markings (controlled by parameter l) and is the most universal, expressive one.
Moreover, k, l-WL can simulate any other common GNN extensions with appropriate implementation.

In conclusion, our framework can incorporate all four extensions, thus incorporating an extensively wide range of GNN
variations.

Then we again emphasize the conclusions in Section 4.3.

• k, l-WL can incorporate all relational pooling (RP) and local relational pooling methods, since node marking is the
most general and expressive form and can simulate all other extensions (Papp & Wattenhofer, 2022).

• k, l-WL incorporates a wide range of subgraph GNNs. Zhang et al. (2023) shows that all node-based subgraph GNNs
fall in one of 6 equivalent class of Subgraph Weisfeiler-Lehman Tests (SWL). Remarkably, SWL is exactly 1, 1-WL
(and equivalently, 2, 1-WL) in our framework, which reveals the connection between our work and many other subgraph
GNNs unified by Zhang et al. (2023). Moreover, k, l-WL also incorporate some other subgraph GNNs that are without
the scope of SWL (Zhang et al., 2023), such as I2-GNN (Huang et al., 2022). Our 1, 2-WL is a slightly more powerful
version than I2-GNN since we consider all 2-labeled tuples, while I2-GNN only consider those connected 2-labeled
tuples. 1, 2-WL can distinguish some non-isomorphic graph pairs that SWL and 3-WL fail to discriminate, and the
algorithm becomes even more powerful as we increase k or l.

• A number of other works such as OSAN (Qian et al., 2022) are a strict class of our framework. There are still some
works cannot be incorporated directly, though. For example, k, l-WL operates independently on different labeled graphs
and does not include intersection between labeled (sub)graphs as in Zhao et al. (2021). Introducing inter-labeled-graph
message passing will increase expressivity of k, l-WL, but at an intractable computation cost. It will also be complicated
to analyze its theoretical expressivity if we introduce labeled graph interactions, which we leave for future work.

In conclusion, our k, l-WL and k, l-GNN can capture a large number of subgraph GNNs and relational pooling based
method. Here are some examples.

Proposition F.1. By definition, 1, 1-WL (or 1-IDMPNN) incorporates ID-aware GNN, 1, 2-WL incorporates I2-GNN,
1, k-WL incorporates k-OSWL and k-OSAN.
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Proposition F.2. 1, l-WL (or l-IDMPNN) incorporate GSN that counts isomophism within l nodes, when the hash function
is strictly injective and powerful enough.

This is a natural conclusion since l-IDMPNN can count substructure within l nodes. Note that GSN (Bouritsas et al., 2023)
count non-isomorphic substructures in a hand-craft way, while our method can encode more information than counting
substructures within l nodes.

Proposition F.3. 1, l-WL capture K-hop GNN either by message passing with label of root node or by localization (perform
localized k, l-WL within K-hop neighbors).

Since 1, l-WL can distinguish any non-isomorphic subgraph if nodes of subgraph are all labeled, it captures all information
obtained by K-hop GNN, including peripheral edge information.

Proposition F.4. 1, l-WL capture node-based subgraph GNN, including node deletion and node marking.

The proposition holds because node deletion and marking can both simulated by specific label mappings and update
functions. In other words, our labeling method is the strongest form in sense of distinguishing non-isomorphic graphs when
the number of labels is sufficient.

G. An example to illustrate (localized) k, l-WL hierarchy

Figure 5. Two pairs of non-isomorphic graphs. 6-cycle (a1) and two 3-cycle (a2) are regular graphs which 1-WL and 2-WL fails to
distinguish. 4x4 Rook’s graph (b1) and the Shrikhande graph (b2) are strongly regular graphs which 3-WL (2-FWL) fails to distinguish.
Edges are dashed simply for visualization. The figure is modified from Huang et al. (2022).

Here we give an example to show all parameters in k, l-WL hierarchy as well as localization have influence on expressiveness.
In this section, we use k, l-FWL, which is equivalent to k + 1, l-WL. The capacity of different k, l-WL and their localized
variations for distinguishing these two pairs of non-isomorphic graph are summarized in Table 6 and Table 7.

One can easily tell either increasing k or increasing l would lead to stronger expressivity. As for localization, we notice that
if we extract 1-hop subgraph of any root node from (b1) and (b2), we’ll get (a2) and (a1) respectively, except that all 6 nodes
are connected with the root node. We can prove that if we perform k, l-FWL on extracted 1-hop subgraph, the result will
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Table 6. Capability of different k, l-FWL to distinguish 6-cycle (a1) and two 3-cycle (a2)

L=0 L=1 L=2

K=1 % ! !

K=2 ! ! !

Table 7. Capability of different k, l-FWL to distinguish 4x4 Rook’s graph (b1) and the Shrikhande graph (b2)

L=0 L=1 L=2

K=1 % % !

K=2 % ! !

be the same as Table 6. Hence decreasing the subgraph size improves the expressive power of 1, 1-FWL, 2, 0-FWL and
2, 1-FWL in this case.

H. Discussion on explicit labels
Insight of labels Here we empirically analyze the benefit of explicit introducing orders of nodes (i.e. labels or IDs). First,
it expands the feature space considered in the histograms by introducing labels l, which increase the number of isomorphism
classes to better encode non-isomorphic states. Next, the algorithm introduces local asymmetry to the initialization states,
allowing the algorithm to better distinguish local patterns, e.g. peripheral edges. Third, since the labels are unchanged in the
iterations, they can be identified in all k-tuples, which is more powerful than simply counting histograms. In other words,
each k-tuple can better acquire the source of information it obtains from neighbors, as well as the changing routes of node
colors.

Besides its effectiveness in graph isomorphism, our method turn out to be effective on real world tasks as well, which have
less requirement for strictly powerful GI capability. We suggest that IDs enable the model to learn relative relations between
nodes, and better capture structure information. For example, using only 2 labels can we distinguish 6-ring, while benzene
rings play a important role in molecule properties.

Flexible number of labels To align with k-WL hierarchy, we fix our number of labels across different subgraphs once the
parameter l of algorithm is given. However, a flexible number of labels within different subgraphs is a possible and practical
way to improve performance, especially on real world tasks, see Table 14. Corresponding theoretical analysis, however, will
be harder, which we leave for future works.

I. Theoretical analysis about two architectures of k, l-GNN
In this section, we theoretical analyze the expressivity of two architecture of k, l-GNN presented in Figure 3. For the
convenience of discussion, we currently ignore the effect of subgraph hierarchy.

When the base encoder and structure encoder are both k-WL equivalent, the two structures have similar computation cost.
When the base encoder is a higher order k-WL equivalent GNN, the base encoder itself has high complexity. Take PPGN
as example, it has complexity of O(n2). If we use the architecture (a) to learn all O(nl) ordered subgraph features, the
total complexity will be O(nl+k). However, if we adopt structure (b) and use k′-WL (k′ < k) equivalent GNN as structure
encoder (e.g. k′ = 1 for MPNN), the total complexity will be O(nk +nl+k′

) < O(nl+k). In this setting, the architecture (b)
is equivalent to running k, l-WL and k′-WL in parallel, and further aggregate the information. This will make the network
lose part of the expressivity compared with k, l-WL performed in structure Figure 3 (a). The above result suggests that
expressivity of structure encoder will also influence the final GI capability.

Proposition I.1. The expressivity of architecture (b) is bounded by the union of k′, l-WL and k-WL. Architecture (b) can
improve expressivity of base encoders as long as there exist non-isomorphic graphs distinguishable by k′, l-WL but not by
k-WL.
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Proof. This holds since if both two algorithms fail to distinguish, the input of aggregator will be the same, resulting the
model fails to distinguish.

Proposition I.2. k, l-GNN implemented by architecture (a) is upper-bounded by k, l-WL. Suppose k, l-GNN implemented
by architecture (b) uses a k′-WL (k′ ≤ k) equivalent structure encoder, the k, l-GNN (b) is upper-bounded by k, l-WL, and
is less powerful than architecture (a).

Proof. It’s straight forward to verify that k, l-GNN with architecture (a) just perform the k, l-WL procedure. For architecture
(a), the upper-bound can be achieved if and only if the forward function of base encoder and the aggregation function
are injective. We then show that architecture (b) is upper-bounded by architecture (a) if the structure encoder in (b)
is not more powerful than k-WL. By definition, there exists non-isomorphic pairs that is distinguishable by the base
encoder but indistinguishable by structure encoder. The non-isomorphic graphs (b) can distinguish is the union of k′, l-
WL distinguishable graphs G(k′, l) and k-WL distinguishable graphs G(k, 0). Since both of {G(k′, l)} and {G(k, 0)}
are a subset that k, l-WL can distinguish {G(k, l)}, i.e. {G(k′, l)} ⫌ {G(k, l)}, {G(k, 0)} ⫌ {G(k, l)}, according
to the conclusions in Section 5. Therefore, architecture (b) cannot distinguish more non-isomorphic graphs than (a):
({G(k′, l)} ∪ {G(k, 0)}) ⫌ {G(k, ; )}.

However, given that even 1, l-WL is powerful enough in most cases, architecture (b) can still lift up expressivity of base
encoder even if the structure encoder is MPNN. Meanwhile, it enjoys a much lower complexity compared with architecture
(a). The above results theoretical enable us to improve base encoder’s expressivity with only ID and lower complexity
models like MPNN.

J. Implementation details
Explicitly embed IDs As revealed in our paper, explicitly assigning IDs to nodes is a crucial step in improving GI power,
which benefit both the initialization and update procedure of k, l-WL. However, previous work concerning relational pooling
(Chen et al., 2020; Murphy et al., 2019) do not break symmetry by explicitly introducing IDs.

In our implementation, a simple yet effective method to explicitly introduce IDs is using an embedding layer. For real world
tasks, the embeddings are trainable to better adjust for the task. While in graph isomorphism tasks, the concrete values of
network parameters do not matter, thus the embeddings of IDs can be fixed. In both trainable and fixed setting, the network
is permutation invariance as long as we traverse all element in the symmetric group.

ID-MPNN and ID-GINE As illustrated in Figure 3 (b), we use two message-passing based GNN to learn graph features
and ID features respectively. The hyper-parameters for these two encoders can be tuned independently.

Additionally, since there are a large amount of subgraphs, parallel computation efficiency should be considered. We
implement MPNN that aggregates neighboring information by einsum of adjacency matrix and node feature tensors.
Compared with official implementation of GINE, this implementation reveal approximately a 30% of both time and memory
consumption.

In real world experiments, we perform message passing on the whole graph, i.e. set m = n, allowing our model to better
capture global information of the graph. In substructure counting, we set m = l, which means only message passing on the
labeled nodes. For graph isomorphism tasks, m are adjusted according to the expressiveness hierarchy of localized k, l-WL.

K. Experiment setting details
On synthetic datasets, the training configuration is not limited due to strong expressivity of our model. We only report
training details on real-world datasets.

QM9 dataset For QM9, we use 4-IDMPNN. The hidden size is 64. We adopt parallel architecture, and 6-layer MPNN,
4-layer MPNN, 4-layer MPNN as base encoder, structure encoder and aggregator respectively. We use hierarchical and
constrained based subgraph selection policy, with a selection rate of 0.05. The initial learning rate is 0.001 and we use
ReduceLROnPlateau learning rate scheduler with a patience of 7 and a reduction factor of 0.8. The maximum number of
epochs is 200. We use AdamW optimizer and the batchsize is 32.
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Table 8. Comparison for two architecture of l-IDMPNN on ZINC.

ARCHITECTURE TEST MAE

(A) 0.105± 0.004
(B) 0.083± 0.003

Table 9. Comparison for ID-MPNN with different aggregators on ZINC.

AGGREGATOR TEST MAE

ADD 0.125± 0.011
ADD + MPNN 0.083± 0.003

HADAMARD PRODUCT + MPNN 0.084± 0.002
CONCAT + MPNN 0.086± 0.003

ZINC12k dataset For QM9, we use IDMPNN with different l. For the model with best performance, l = 4 with a hidden
size of 64. We adopt parallel architecture. Base encoder, structure encoder and aggregator are 5-layer MPNN, 4-layer
MPNN, 4-layer MPNN, respectively. We use hierarchical and constrained based subgraph selection policy, with a selection
rate of 0.1. We use cosine learning rate with a warmup of 50 epochs, and the total number of epochs is 1000. The initial
learning rate is 0.001. We use AdamW optimizer and the batchsize is 32.

ogbg-molhiv dataset For ogbg-molhiv, we use 4-IDMPNN with a hidden size 96. We adopt parallel architecture. Base
encoder, structure encoder and aggregator are 6-layer MPNN, 4-layer MPNN, 4-layer MPNN, respectively. We use
hierarchical and constrained based subgraph selection policy, with a selection rate of 0.05. We use step scheduler with step
size 20 and decay factor 0.5. The initial learning rate is 0.001 and the maximum number of epochs is 60. We use AdamW
optimizer and the batchsize is 32.

L. Ablation study for ID-MPNN
We conduct ablation study for ID-MPNN on the ZINC12k dataset. The following factors are considered: two architectures
in Figure 3, types of aggregator, number of IDs l, subgraph sampling and permutation sampling. Finally, we make some
attempts on flexible number of IDs and use attention to label as aforementioned.

Comparison of two architectures Though in Appendix I we theoretically proved that architecture (b) is strictly upper-
bounded by architecture (a) in sense of graph isomorphism, experiments show that architecture (b) tend to have better
performance in real world tasks.

Table 8 presents results of 4-IDMPNN’s performance on ZINC12k with architecture (a) and (b) respectively. All other
hyper-parameters and training configurations are set the same. This is because real world tasks like molecular property
regression do not necessarily demand higher order GI capability. In architecture (b), the original input graph feature and the
structure information provided by IDs are learned in a parallel way, enabling the structure encoder to better learn the relative
structure information, independent of the original graph features.

Comparison of different aggregators In this section, we investigate the influence of aggregator in architecture (b). In
graph isomorphism task, as long as the way we combine two features are injective, no downstream models are required to
achieve full performance of k, l-WL. However, this may not be sufficient for real world tasks. To combine features output
by base encoder and structure encoder, we use three methods: add, hadamard product (element-wise product) and concat.
Then the combined feature is either directly passed to output linear layer, or further processed by a network (MPNN/MLP).
Results are listed in Table 9.

The results indicate that although a downstream model in aggregator is not necessary in sense of GI, it’s essential in graph
regression task. A MPNN can better process the combination of features learned by base encoder and structure encoder. The
way to combine these two features, however, is less important. All three methods (add, hadamard product and concat) work
relatively well.

25



From Relational Pooling to Subgraph GNNs

Table 10. Comparison for ID-MPNN with different number of IDs on ZINC.

MODEL TEST MAE

3-IDMPNN 0.085± 0.003
4-IDMPNN 0.083± 0.003
5-IDMPNN 0.089± 0.004
6-IDMPNN 0.094± 0.004

Table 11. Comparison for ID-MPNN with different subgraph sample rate on ZINC.

SUBGRAPH SAMPLE RATE TEST MAE RUNNING TIME (S/EPOCH)

1.0 0.162± 0.002 98
0.5 0.161± 0.003 53

0.25 0.153± 0.004 29
0.1 0.150± 0.004 15

0.05 0.154± 0.004 9

Comparison of l Theoretical analysis in Section 5 has proved that graph isomorphism power of k, l-WL always increase
w.r.t the l, the number of IDs. Now let’s see how parameter l in our k, l-GNN influence performance on real world tasks.

Results are in Table 10, all other hyper-parameters and training configurations are set the same. We can conclude that though
with higer power in GI, a larger number of IDs do not necessarily improve performance on real world tasks. This could be
caused by several reasons, including a limited number of subgraphs selected by hierarchical and contraint-based policy for
large k. The ablation study proves that our method can achieve satisfying performance with a relative small l.

Labeled set selection Now let’s view the problem from relational pooling perspective. An equivalent way to select ordered
subgraphs is to find a set of l nodes and perform permutation on their assigned labels. Therefore, the total complexity of
k, l-WL is O(nk · ns · k!), where ns is the number of unordered subgraphs. Hence, labeled tuples selection in main text can
be further separated into two stages: (1) selecting labeled node set, and (2) reducing number of permutation in the labeled
set. Now we first look at the labeled set selection.

To evaluate influence of labeled set dropping, we conduct ablation study using 4-IDMPNN with a smaller parameter amount.
Results are shown in Table 11. All hyper-pameters except the labeled set sample rate are set the same. We only drop labeled
subgraphs when training, while retain all labeled subgraphs during inference. We use random selection policy in this section.
Results are shown in Table 11.

One can observe that even with a very small subgraph sample rate, our model can still achieve comparable or even better
performance than using all subgraphs. This is partly due to the redundancy between subgraphs. Meanwhile, the time
consumption is basically linear w.r.t subgraph sample rate, enabling us to lift up the training process of our model without
hurting performance.

Permutation selection Now we further consider permutation drop for unordered subgraphs. A random selection of
permutation g ∈ Sl is a possible way due to its unbiasedness and consistency. However, this will break permutation
invariance in practical, resulting in a large variance and poorer performance compared with adopting the full symmetric
group, see Table 12 below.

Another possible direction is to find a possible permutation group other than the symmetric group. (Huang et al., 2022)
proposed a smaller permutation method that is able to capture 2-ary relationship. However, its experimental performance are
limited, and there are still a large space to theoretically explore the permutation design.

In our experiments, 4-IDMPNN with a larger parameter amount is used as test model, and the subgraph sample rate is 0.1.
Results are shown in Table 12. Different from subgraph drop, a low permutation sample rate will catastrophically hurt the
performance. Note that models with fewer permutations tend to be more likely to overfit. Statistically, a permutation drop is
an unbiased estimator, but is permutation sensitive in every single run, resulting a larger variance on the test set. The above
result again emphasizes the importance of permutation invariance for GNNs.
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Table 12. Comparison for ID-MPNN with different permutation sample rate on ZINC.

PERMUTATION SAMPLE RATE TRAIN MAE TEST MAE

1.0 0.008± 0.001 0.083± 0.003
0.9 0.010± 0.003 0.085± 0.004
0.5 0.009± 0.002 0.097± 0.008
0.2 0.007± 0.001 0.141± 0.018

Table 13. Comparison for test MAE and running time of different methods on ZINC

MODEL TEST MAE RUNNING TIME (S/EPOCH)

GRAPHSAGE 0.398± 0.002 16.61
DEEPLRP-7-1 0.223± 0.008 72

PPGN 0.256± 0.054 334.69
PG-GNN 0.282± 0.011 6.92

4-IDMPNN 0.083± 0.003 17
3-IDMPNN 0.085± 0.003 12

Comparison with other models applying local relational pooling For comparison, we select two permutation invariant
GNNs using local relational pooling (and can be incorporated into our k, l-GNN framework): PG-GNN (Huang et al., 2022)
and DeepLRP (Chen et al., 2020), evaluating their test MAE and computation efficiency. GraphSAGE (Hamilton et al.,
2017) and PPGN are also included as baselines. It turns out that our instances have significantly better performance as well
as computational efficient. The result is shown in Table 13.

Table 14. Comparison for data-driven methods on ZINC

METHOD TEST MAE

GIN 0.163± 0.004
OSAN 0.187± 0.004

FLEXIBLE LABEL 0.128± 0.011
ATTENTION-BASED LABEL 0.135± 0.008

Other experiments Based on Implicit-MLE, we propose another method to let our model learn to label. We can measure
”importance” of nodes by calculating self-attention of node features obtained by a base encoder (e.g. a MPNN), and
label according to the importance. This method allow us to label arbitrary number of labels in O(1) complexity, since no
permutation is demand to keep invariance. However, this method is not applicable in GI tasks when graphs reveal strong
symmetry, since the representation are bounded by expressivity of base encoder. See below for more experimental results.

Here we report 2 more methods to label subgraphs in Table 14: using a flexible number of labels across subgraphs, and
the aforementioned labeling nodes according to the self-attention weight of nodes. Concretely, the former one label each
substructure (pre-calculated node cluster) according to the size of cluster. The latter learns the ID in a data-driven manner,
hence do not need any permutations. We choose OSAN with I-MLE as baseline model. Our results show that these methods
slight improve performance of base encoder, but still have a wide design space for future work.
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