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Abstract
Current approaches for training robust models are
typically tailored to scenarios where data vari-
ations are accessible in the training set. While
shown effective in achieving robustness to these
foreseen variations, these approaches are ineffec-
tive in learning unforeseen robustness, i.e., ro-
bustness to data variations without known char-
acterization or training examples reflecting them.
In this work, we learn unforeseen robustness by
harnessing the variations in the abundant out-of-
distribution data. To overcome the main chal-
lenge of using such data, the domain gap, we
use a domain translator to bridge it and bound
the unforeseen robustness on the target distribu-
tion. As implied by our analysis, we propose a
two-step algorithm that first trains an equivariant
domain translator to map out-of-distribution data
to the target distribution while preserving the con-
sidered variation, and then regularizes a model’s
output consistency on the domain-translated data
to improve its robustness. We empirically show
the effectiveness of our approach in improving
unforeseen and foreseen robustness compared to
existing approaches. Additionally, we show that
training the equivariant domain translator serves
as an effective criterion for source data selection.

1. Introduction
A trustworthy machine learning system should provide con-
sistent output despite nuisance transformations in input. For
instance, a self-driving car should consistently recognize
road objects, regardless of viewpoint changes that do not
alter the object’s label. This desirable property of a model
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is measured by robustness — a hallmark feature exhibited
by humans and numerous other creatures (Tacchetti et al.,
2018). Training a model to be robust not only improves
its trustworthiness but may also improve its in-distribution
(Zhou et al., 2022) and out-of-distribution (OOD) general-
ization (Hendrycks et al., 2020), potentially by expanding
the labeled region (Wei et al., 2021).

Recognizing the importance of robustness, previous work
has proposed several methods to train robust models (a.k.a.
robustness interventions), including training on augmented
data (Sohn et al., 2020), consistency regularization (Xie
et al., 2020), adversarial training (Madry et al., 2018), and
architecture modifications (Zhang, 2019). These methods ef-
fectively improve robustness against foreseen data variations
— those that can be characterized by known transformation
functions or observable in pairs of training examples be-
fore and after the transformation, such as noise corruption
(Hendrycks & Dietterich, 2019) and spatial transformations
(Engstrom et al., 2019).

Nevertheless, unforeseen robustness remains challenging to
achieve, with existing methods either unable or struggling
to learn it. This issue is particularly problematic given that
in many datasets, only specific synthetic data variations are
foreseen, while others, including most natural variations,
are not. As a result, models remain vulnerable to these
unforeseen data variations, such as changes in viewpoint
(Koh et al., 2021) or time (Shankar et al., 2021).

This work introduces a method to learn unforeseen robust-
ness. Notably, the data variation unforeseen from a given
training set is often observable as pairs of transformed ex-
amples in the abundant out-of-distribution data, such as
simulations. Leveraging this observation, we propose to
learn unforeseen robustness from out-of-distribution data,
using an equivariant domain translator to bridge the domain
gap while preserving the variation, as illustrated in Figure 1.

Contributions: First, we formulate the problem of learning
unforeseen robustness from out-of-distribution data (§3.1)
and identify the difficulties in extending existing approaches
to solve this problem (Figure 1).

Second, recognizing that the primary challenge of this prob-
lem stems from the domain gap, we analyze the problem
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Figure 1. Illustration of our method and two existing methods extended to our setting. Our goal here is to learn the unforeseen (3D
viewpoint change) robustness on the target dataset (CIFAR-10, depicted in blue). To this end, we find some out-of-distribution source data
that contains example pairs exhibiting this variation (Objectron, a set of video clips showing viewpoint changes, depicted in orange) and
learn robustness from them. MBRDL (model-based robust deep learning, Robey et al. (2020)) learns an auxiliary model to capture the
variation in source data and then applies it to augment the target data. However, the auxiliary model encounters difficulties in generalizing
across large domain gaps and in modeling complex data variations with multi-modal distributions. UDA (unsupervised data augmentation,
Xie et al. (2020)) learns robustness directly on the source data. However, robustness learned from source data does not generalize well to
the target due to the domain gap. In contrast, our method trains an equivariant domain translator to make source data resemble the target
while preserving the variation, and then learns robustness from the translated data (depicted in green). The paired images outlined in
green are generated by our trained domain translator.

with an auxiliary domain translator bridging the gap (§3.2).
By considering a domain translator, i.e., a map from the
input space to itself, we establish an upper bound for the
robustness loss on the target distribution in terms of varia-
tions on the source distribution. In particular, this bound can
be tightened by a domain translator that has two properties:
equivariant, meaning that transforming an example first and
then domain-translating it yields similar output as domain-
translating the example first and then transforming it, and
accurate, meaning that the domain-translated source distri-
bution closely aligns with the target distribution in terms of
the Wasserstein-1 distance.

Third, we propose a two-step algorithm for solving the prob-
lem based on our prior analysis (§4). The first step trains
an equivariant and accurate domain translator. To make
it accurate, we train the translator under the supervision
of a Lipschitz-regularized domain discriminator, following
WGAN (Arjovsky et al., 2017). To make it equivariant, we
offer three optional regularization losses and choose one
depending on our knowledge of the transformation func-
tion and the transformation parameter associated with each
pair of transformed examples. The second step uses consis-
tency regularization on the domain-translated source data to
improve a model’s robustness.

Fourth, we empirically evaluate our method for image classi-
fication tasks on a combination of seven source datasets, two
target datasets, and two types of data variations (§5). We
first verify that our method indeed learns equivariant and ac-
curate domain translators. Then, we show the effectiveness
of our method in learning unforeseen robustness compared

to other baselines, and further support it by ablation studies.
As a by-product, we also show that the training result of the
equivariant domain translator correlates strongly (R=0.91)
with the robustness benefit of a certain source dataset, indi-
cating its usefulness as a source dataset selection criterion.

Fifth, we apply our method to two real-world tasks to demon-
strate its practical significance. First, we learn the 3D view-
point change robustness on CIFAR-10 by harnessing vari-
ations in video clips and show the improvement using sur-
rogate transformations. Second, we show that our method
can leverage out-of-distribution data to further improve the
foreseen robustness on the target, effectively serving as
a generalized and improved unsupervised data augmenta-
tion method. Our method achieves better improvements
in robustness, in-distribution generalization, and out-of-
distribution generalization compared to the previous method
(Xie et al., 2020). We will make our code publicly available
at https://github.com/schzhu/unforeseen-robustness.

2. Related Work
Semi-supervised consistency regularization. A large body
of work uses consistency regularization for semi-supervised
learning (Sohn et al. (2020)), achieving state-of-the-art re-
sults in generalization. The key idea is to do supervised
learning on the labeled data while regularizing the model to
predict consistently on the unlabeled data, which potentially
expands the labeled region and thus improves generaliza-
tion (Wei et al., 2021). Despite the various goals previous
work has, such as improving generalization (Sohn et al.,
2020) or improving adversarial robustness (Zhang et al.,
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2019; Alayrac et al., 2019; Carmon et al., 2019; Deng et al.,
2021), there is no work, to our knowledge, that learns un-
foreseen robustness from out-of-distribution (OOD) data.
Indeed, the OOD data with potentially disjoint label sets in
our setting pose a unique challenge that invalidates many
common techniques such as pseudo-labeling. To harness
OOD data, previous work assumes some overlaps of label
sets (i.e., open-set setting, see Saito et al. (2021)) and then
filters out “irrelevant” data (Xie et al., 2020; Huang et al.,
2022). In contrast, overlapping label sets are not necessary
for learning robustness in our setting, so we can make use
of any OOD data with the desired variation.

Model-based data augmentation. Another line of work
uses generative models to capture class-agnostic data vari-
ations in the dataset and then apply the trained model to
do input-conditioned data augmentation for better robust-
ness and generalization (Antoniou et al., 2017; Robey et al.,
2020; Zhou et al., 2022). Modeling the variation directly
from OOD data and then applying the model to the target
data encounters two major difficulties. First, while the class-
agnostic data variations by assumption generalize across
classes and domains, the generative model capturing them
may not, confining previous work to train and apply the
model on the same or similar dataset. If the domain gap
is large, this method can even hurt the generalization of
downstream classifier. In contrast, our domain translator is
trained on and applies only to the existing OOD examples,
thus avoiding this issue. Second, using a GAN-based gener-
ative model to capture highly multimodal natural variations
faces intrinsic challenges (Tanielian et al., 2020; Salmona
et al., 2022). Indeed, prior work showed its limitation to
capture geometric transformations like rotation (Zhou et al.,
2022). Our method addresses this challenge by relying on
the ground-truth variations from the source data, resulting
in target-like rotated images as shown in the experiment.

Neural style transfer. Our approach to using a domain
translator that maps source images to approximate the tar-
get distribution, is related to neural style transfer (Gatys
et al., 2015; Johnson et al., 2016; Huang et al., 2018; Isola
et al., 2017; Zhu et al., 2017). The similar image-to-image
translation process allows us to take advantage of this rich
literature and adapt various off-the-shelf network architec-
tures to implement our domain translator. However, the
goals differ. Neural style transfer aims at transferring the
style of a source image to a target one while preserving
some content or the underlying label. In contrast, our do-
main translator does not need to preserve the content or
label but requires equivariance to the data variation.

3. Problem Analysis
In this section, we first formulate the problem of learning
unforeseen robustness by harnessing variations on source

data, which has rarely been addressed before. To quantify
the potential robustness achievable through learning from
source data, we then establish an upper bound for the ro-
bustness loss on the target distribution in terms of variations
on the source.

3.1. Problem: Robustness from Variations on Source

In this problem, we are given some target examples {xi}
sampled from the target data distribution P on the input
space X . We consider X to be Rd since we focus on image
data. In addition, we are given some source examples {ui}
sampled from the source data distribution Q on X . We do
learning over a family of models {f : X → Rk} which
map examples in X to k-dimensional output vectors. For
classification tasks, we consider the model’s logit output
(before softmax) as the model output.

Data variation. We consider data variations that can be rep-
resented by some (possibly unknown) data transformation
function ϕ : T × X → X , where T is the set of possible
transformation parameters. Some examples are noise cor-
ruption, group actions with T being a group (e.g. flipping),
and 3D viewpoint changes projected to the 2D pixel space
(given that ϕ models the stochasticity). As we focus on
random data transformation, we also consider some transfor-
mation parameter distribution T on T . We assume that the
data variation is unforeseen, meaning that we neither know
the data transformation function nor have transformed target
example pairs {(xi, ϕti(xi))}. Instead, given the source ex-
amples {ui}, we have finite (e.g., variations extracted from
video clips) or infinite (e.g., simulated data) transformed
versions {ϕtij (ui)}, where tij is sampled from T.

Robustness. We consider model robustness to random data
transformations. To measure the consistency of two model
outputs, we use some loss function ℓ : Rk × Rk → R≥0

that satisfies the triangle inequality ℓ(v,v′′) ≤ ℓ(v,v′) +
ℓ(v′,v′′),∀v ∈ Rk. Examples of such loss functions in-
clude the zero-one loss ℓ0-1(v,v

′) = 1{argmaxi vi ̸=
argmaxi v

′
i}, the ℓp loss ℓp(v,v′) = ∥v − v′∥p for some

p ≥ 1, and certain f-divergences like the square root of
JS-divergence (Endres & Schindelin, 2003). Given such a
loss function, we define the following robustness loss.

Definition 3.1 (Robustness loss). Let ϕ be some transfor-
mation function and T be the distribution of transformation
parameters. Then the robustness loss of a model f on the
data distribution P is defined as

Lϕ(f,P) = E
x∼P,t∼T

[
ℓ
(
f(x), f(ϕt(x))

)]
(3.1)

Note that the robustness loss is label-agnostic, making it
well-defined on domains with different label sets. Simi-
lar notions of robustness also appear in the literature (e.g.,
Hendrycks & Dietterich (2019) and Zhou et al. (2022)).
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Goal. Given the target examples {xi}, and the source exam-
ples {ui} with their transformed versions {ϕtj (ui)}, our
goal is to learn a model f that minimizes the robustness
loss on the target distribution Lϕ(f,P) in addition to some
other primary task loss (e.g., classification loss). We refer to
this problem as learning robustness on the target data from
variations on the source data.

For classification tasks, the significance of minimizing
the robustness loss is that a small robustness loss along
with a small classification loss Ex∼P,t∼T [ℓ0-1(y, f(x))] are
sufficient to guarantee a small robust classification loss
Ex∼P,t∼T [ℓ0-1(y, f(ϕt(x)))], where y is the ground-truth
label of x (Zhang et al., 2019).

3.2. Robustness Guarantee with Domain Translator

Directly minimizing the robustness loss on the target distri-
bution Lϕ(f,P) requires transformed target examples pairs
{xi, ϕti(xi)} to estimate the expectation. However, we lack
these pairs and are unaware of the transformation function
needed to sample them. In this case, the following proposi-
tion shows the feasibility of leveraging the available source
examples with the help of a domain translator.

To simplify notation, we use ℓ̄f : X → R to denote the func-
tion ℓ̄f (x) := Et∼T[ℓ

(
f(x), f(ϕt(x))

)
], which intuitively

measures the robustness loss of the model at a given exam-
ple. Given some (measurable) function ξ : X → X , we use
ξ#Q to denote the push-forward probability distribution1 of
Q on X . We use W1 to denote Wasserstein-1 distance.
Proposition 3.2. We assume that ℓ̄f is Lipschitz uniformly
over all models f , with a (possibly infinite) Lipschitz con-
stant ∥ℓ̄∥L. Then for any (measurable) function ξ : X → X ,
the following holds:

Lϕ(f,P) ≤ I1 + I2 + I3, (3.2)

where I1 = E
u∼Q,t∼T

[
ℓ
(
f(ξ(u)), f(ξ ◦ ϕt(u))

)]
,

I2 = E
u∼Q,t∼T

[
ℓ
(
f(ξ ◦ ϕt(u)), f(ϕt ◦ ξ(u))

)]
,

I3 = ∥ℓ̄∥LW1(P, ξ#Q).

This proposition, proved in Appendix A.1, upper-bounds
the robustness loss on the target distribution by three terms
illustrated in Figure 2. We can intuitively interpret ξ as a
domain translator which translates a given source example
into another example that “looks like” the target examples2.
Below, we remark on two properties of the domain translator.

Equivariant domain translator minimizes I2. Note that
any domain translator ξ satisfying ξ ◦ ϕt(u) = ϕt ◦ ξ(u)

1We state the definition in Appendix A.1.
2Compared to the style transfer work, such translation is un-

paired and does not need to preserve the underlying concept class.

Figure 2. Illustration of our proposition. Here ξ represents the
domain translator. Term I1 measures the model’s consistency loss
on the domain-translated example pairs. Term I2 measures the
model’s consistency loss on a ground-truth transformed example
and its approximated version generated by the domain translator,
which can be minimized if the domain translator is equivariant.
Term I3 measures how well the push-forward distribution matches
the target distribution.

(almost surely with respect to P×T) is sufficient to minimize
the term I2 for any model f (assuming ℓ̄f has bounded
range). Particularly, such ξ satisfying ξ ◦ϕt(u) = ϕt ◦ ξ(u)
is said to be equivariant if t belongs to a group and ϕt be the
group action (Cohen & Welling, 2016). Nevertheless, we
abuse the notion and refer to any ξ approximately satisfying
this property (measured by some loss) as being equivariant.

Accurate domain translator minimizes I3. Note that any
domain translator ξ pushing the source distribution to match
the target distribution accurately such that W1(P, ξ#Q) = 0
is sufficient to minimize the term I2 to zero for any model f
(assuming bounded ∥ℓ̄∥L). We refer to any ξ approximately
satisfying this property as being accurate.

The above two remarks imply that we can learn an equiv-
ariant and accurate domain translator to minimize I2 and
I3 regardless of the model f , which motivates our two-step
algorithm in the next section. We empirically demonstrate
the existence of such domain translators for certain datasets
and leave further existence discussion to Appendix A.2.

4. The Two-Step Algorithm
Based on Proposition 3.2, we propose a two-step algorithm
for learning unforeseen robustness from out-of-distribution
data. We first describe step one, which trains an equivariant
and accurate domain translator. To encourage equivariance,
we offer three optional regularization losses, which can be
chosen based on available knowledge. Then we describe
step two, where we learn the desired robust model using the
trained domain translator. Figure 3 depicts the algorithm.

4.1. Step One: Training Domain Translator

To begin, we provide the training objective for the equivari-
ant domain translator, assuming that we know the transfor-
mation function characterizing the considered data variation.
This scenario corresponds to the unsupervised data augmen-
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tation problem (Xie et al., 2020).

min
ξ

W1(P, ξ#Q) + λ E
u∼Q

E
t∼T

[ℓ
(
ξ ◦ ϕt(u), ϕt ◦ ξ(u)

)
]

(4.1)

where the first term minimizes I3, encouraging accurate
domain translation, and the second term minimizes I2, en-
couraging equivariance. The hyperparameter λ balances the
two objectives.

In our implementation, we adopt the encoder-decoder ar-
chitecture commonly used in style transfer literature as our
domain translator ξ. To optimize the first term, we fol-
low WGAN (Arjovsky et al., 2017) and train the domain
translator ξ under the supervision of an auxiliary domain
discriminator that has regularized Lipschitz constant. To
estimate and optimize the second term, we proceed as fol-
lows: we randomly sample one transformation parameter
for each source example, apply domain translation followed
by transformation to get ϕt ◦ ξ(u), and apply transforma-
tion followed by domain translation to get ξ ◦ ϕt(u). We
encourage the domain translator to generate examples such
that the two terms are similar in terms of the ℓ2 loss.

In addition to WGAN, some recent work suggests that
score-based generative models also implicitly minimize the
Wasserstein distance (Kwon et al., 2022). Nevertheless,
we defer further exploration of alternative implementations,
such as image-to-image diffusion models (Tumanyan et al.,
2022; Bansal et al., 2022), to future work.

4.2. Methods for Encouraging Equivariance

Directly encouraging the equivariance (the second term in
Eq. 4.1) for the domain translator ξ requires knowing the
data transformation function ϕ. However, when learning un-
foreseen robustness, we only have some transformed source
example pairs {(ui, ϕti(ui))} but lack knowledge about the
underlying transformation function. This poses a challenge
to encouraging equivariance since we cannot transform a
domain-translated example ξ(u) to get ϕt ◦ ξ(u) in Eq. 4.1.
To address this issue, we provide three optional methods for
encouraging equivariance based on different assumptions
about the available knowledge.

First, in some special cases where we know the transfor-
mation function, such as when using our algorithm to do
unsupervised data augmentation, we can directly encourage
equivariance by minimizing the equivariance loss in Eq. 4.1.

Second, if we do not know the transformation function but
know the transformation parameters {ti} used to generate
the pairs of transformed examples {(ui, ϕti(ui))}, such
as when learning unforeseen robustness from some simu-
lated data, we can empirically encourage equivariance to
the transformation ϕt by training a predictor that predicts
the transformation parameters {ti} based on the model’s

Figure 3. Overview of our two-step algorithm for learning unfore-
seen robustness from out-of-distribution data. First, we train an
equivariant and accurate domain translator using the equivariance
regularization loss and the WGAN loss. Second, we use the trained
domain translator to translate all out-of-distribution data into target-
like ones while preserving the considered variations. We then train
a robust model using consistency regularization on the domain-
translated data.

output. This method is proposed by some recent work (Qi
et al., 2019; Lee et al., 2021; Dangovski et al., 2022).

Third, in cases where both the transformation function and
transformation parameters are unknown, we propose an
alternative method to encourage equivariance. The main
idea is to encourage a learnable feature extractor to extract
the same encoded information about the transformation pa-
rameter {ti} from both the original source example pairs
{(ui, ϕti(ui))} and the domain translated source example
pairs {(ξ(ui), ξ ◦ ϕti(ui))}. The intuition becomes more
evident when we consider fixing the feature extractor using
some hard-coded or pretrained model, such as an optical
flow estimator. In such cases, we encourage the extraction
of the same encoded transformation parameter from the two
pairs, similar to the second method of predicting the trans-
formation parameter. A more detailed description of this
method appears in Appendix B.1.

4.3. Step Two: Training Robust Model

Our goal in this problem is to improve the robustness of a
model while performing some primary task. To illustrate
this, we consider the classification task with a given classifi-
cation loss Lclassifier. Building upon the prior training of the
domain translator, which minimizes I2 and I3 in Proposi-
tion 3.2, we proceed to train a robust classifier f to minimize
I1 and Lclassifier while freezing the translator.

For notation simplicity, we write I1 as a functional of f and
ξ. We use ξ∗ to denote the trained domain translator, and
use ξid to denote the identity domain translator, which maps
any example to itself (perfectly equivariant but not accurate).
Then, the training objective is

min
f

Lclassifier(f) + λ1I1(f, ξ
∗) + λ2I1(f, ξid), (4.2)

where λ1 and λ2 are weight hyperparameters. We include

5



Learning Unforeseen Robustness from Out-of-distribution Data Using Equivariant Domain Translator 6

the last term in the objective, which is essentially consis-
tency regularization on the source data, since we observe
that this often produces the best result. In fact, the UDA
method (Xie et al., 2020) can be viewed as a special case of
our method, with λ1 = 0 and λ2 = 1.

5. Empirical Evaluation
In this section, we empirically verify the effectiveness of
our two-step algorithm in learning unforeseen robustness.
Different from Section 6, this section only considers syn-
thetic data variations since they enable reliable robustness
evaluation on the target dataset. To begin, we show that our
equivariance-encouraging method effectively trains equiv-
ariant domain translators. Then, we compare the two-step
algorithm with two existing methods extended to our set-
ting and provide an ablation study. Lastly, we show that
the training of the equivariant domain translator, as a by-
product, also serves as a criterion for selecting suitable
source datasets for learning robustness. Our experimental
settings are as follows:

Datasets. We use CIFAR-10 and CIFAR-100 as our target
datasets, while selecting the source dataset from a range
of options including SVHN, STL-10, CIFAR-100, MNIST,
CelebA, and Caltech-256. Note that some source datasets,
such as MNIST or CelebA, are visually distinct from the
target datasets, mirroring real-world scenarios where the
considered data variation is only available from extremely
out-of-distribution data.

Data variations. We use two types of synthetic data vari-
ations: (1) RandAugment (Cubuk et al., 2020), which in-
cludes a diverse range of 14 random transformations, span-
ning from geometric transformations to color space changes,
and their random combinations, The variety of these trans-
formations allows us to evaluate our algorithm’s ability to
preserve such variations; (2) Random rotation, as a supple-
mentary evaluation due to its well-defined nature. Despite
its simplicity, modeling random rotation using model-based
methods has proven to be a challenging task (Zhou et al.,
2022). To simulate the scenario of learning unforeseen
robustness, we refrain from accessing the transformation
function or transformed target example pairs during train-
ing. Instead, we only use the transformation function during
testing to evaluate the learned robustness.

Other settings. To implement the domain translator, we
adopt the encoder-decoder architecture borrowed from Cy-
cleGAN (Zhu et al., 2017), which comprises two down-
sampling convolutional layers, two residual blocks for latent
propagation, and two up-sampling convolutional layers. We
use ResNet18 (He et al., 2016) to implement the classifier.
We use cross-entropy loss for classification, KL-divergence
for consistency regularizing, and mean-squared-error (MSE)

Figure 4. Quantitative and visualization results of domain transla-
tors trained using three different equivariance-encouraging meth-
ods. Each row of images is labeled on its left to indicate its
meaning. Images are column-aligned, with the inputs being the
corresponding source images from the first row. All three domain
translators translate the source data to closely resemble the target,
as indicated by the low FID compared to the original source data.
However, domain translators without equivariance regularization
(Std) fail to preserve variations well, as highlighted by the exam-
ples in the orange box and high MSE loss. Compared to EqGt,
our equivariant regularization method Eq achieves comparable
equivariance loss without accessing the transformation function or
transformation parameters, demonstrating its effectiveness.

loss for measuring the equivariance of the domain translator
(the second term in Eq. 4.1). Unless otherwise stated, we set
λ=1 in Eq. 4.1 and λ1=λ2=0.5 in Eq. 4.2. In this section,
we do not apply data augmentation on the source or target to
avoid entanglement with the considered data variation. We
defer more setup details to Appendix C, and most results on
random rotation and CIFAR-100 to Appendix D.

5.1. Training Equivariant Domain Translator

We first test if the equivariance-encouraging methods pro-
vided in Section 4.2 can train equivariant domain trans-
lators. Specifically, we compare three methods: (1) The
baseline method, denoted as Std (standard), which does
not apply any equivariance regularization by setting λ = 0
in Eq. 4.1; (2) The first optional method, denoted as EqGt
(equivariant-ground-truth), which encourages equivariance
using the ground-truth data transformation function; (3) The
third optional method, denoted as Eq (equivariant), which
does not require access to the transformation function or
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transformation parameters.

We use the Fréchet Inception Distance (FID, Heusel et al.
(2017)) as our evaluation metric, since it provides a reliable
measure of how well the domain translator translates the
source data to resemble the target, given the difficulty in
directly estimating the W1 distance. Figure 4 showcases
some results of training the domain translators with the
three methods, using CIFAR-10 as the target and SVHN as
the source dataset. We present several results below and
defer additional results with different datasets, including
domain translation under real-world illumination changes
with limited data (Murmann et al., 2019), to Appendix D.

Our method trains accurate translators. Despite the
significant difference between SVHN and CIFAR-10, as
indicated by a direct FID calculation of 130.7, all three
domain translators are effective in translating SVHN to
resemble CIFAR-10, achieving FIDs less than 30. This
shows that our method trains accurate domain translators.

Our method trains equivariant translators. Both EqGt

and Eq achieve much lower equivariance loss (0.4 and 0.8,
respectively) than Std (3.3) while maintaining similar FIDs,
demonstrating their capacity to preserve the data variations
while still generate target-like output. The better equivari-
ance is also visually observable from the images highlighted
within the orange boxes. Notably, the images in the first and
seventh columns depict rotation transforms, which are chal-
lenging for model-based methods to capture (Zhou et al.,
2022) but are well preserved by EqGt and Eq. In particular,
Eq preserves the various transformations in RandAugment
almost as effectively as EqGt, yet without knowing ground-
truth transformation functions or transformation parameters,
underscoring its effectiveness and generality.

5.2. Learning Robust Classifiers

With the trained domain translator, we proceed to train
robust classifiers against unforeseen variations. We com-
pare our two-step algorithm with three baseline methods:
MBRDL (Robey et al., 2020), UDA (Xie et al., 2020), and
empirical risk minimization (ERM). ERM trains the classi-
fier without any robustness intervention. We describe the
implementation details of these methods in Appendix C.
Unless otherwise specified, we use the domain translator
trained using the equivariance-encouraging method Eq.

We evaluate the classifiers using three metrics: (1) Robust
accuracy (R), which measures the probability of a model
preserving its prediction under input variations; (2) Robust
Classification accuracy (RC), which measures the proba-
bility of a model predicting the correct label under input
variations; (3) Standard accuracy (S), which measures the
probability of a model predicting the correct label.

Our algorithm learns unforeseen robustness. Despite the

Table 1. Results of classifiers trained using different methods and
source datasets. The target dataset is CIFAR-10 without data
augmentation, and the variation is RandAugment. RC, R, and S
denote robust classification accuracy, robust accuracy, and standard
accuracy, respectively. For reference, we include the oracle method
that applies consistency regularization directly on the target dataset.
Our method achieves the best robustness and accuracy.

Robustness Accuracy

Method Src RC (%) R (%) S (%)

ERM / 79.1 ± 0.2 82.5 ± 0.2 89.0 ± 0.2

MBRDL SVHN 68.7 ± 0.4 77.4 ± 0.3 78.9 ± 0.3

UDA SVHN 82.3 ± 0.2 85.5 ± 0.3 88.2 ± 0.3

Ours SVHN 83.2 ± 0.3 86.7 ± 0.3 89.9 ± 0.2

MBRDL STL10 72.1 ± 0.4 78.8 ± 0.3 82.9 ± 0.3

UDA STL10 85.8 ± 0.3 89.5 ± 0.2 89.9 ± 0.3

Ours STL10 87.8 ± 0.2 91.5 ± 0.3 91.0 ± 0.3

Oracle / 91.7 ± 0.1 94.8 ± 0.2 93.3 ± 0.1

Figure 5. Robust vs. standard accuracy of classifiers trained with
different weights of consistency regularization. The source is
STL10, the target is CIFAR-10, and the data variation is random
rotation. We gradually increase (denoted by the arrow) the weight
from 0 to 5, producing different classifiers whose results are de-
noted by dots. The pair of dots connected by a gray dashed line
have the same weight setting. Our method outperforms UDA in
each weight setting and achieves better Pareto-optimal.

stark dissimilarity between SVHN and CIFAR-10, Table 1
shows that both our algorithm and UDA can harness the
variations on SVHN to improve the robust classification
accuracy on CIFAR-10 by 4.1% and 3.2%, respectively, in-
dicating the feasibility of learning unforeseen robustness
from out-of-distribution data. Moreover, our algorithm im-
proves the standard accuracy whereas UDA sometimes hurts
it. Using SVHN, our algorithm increases the standard accu-
racy by 0.9% over ERM, whereas UDA falls short by 0.8%.
Meanwhile, MBRDL underperforms ERM in all three met-
rics, indicating the importance of the learning methods. Our
analysis of MBRDL in Appendix D.5 suggests that it may
fail due to the domain gap and the difficulty in modeling
complex variations in RandAugment.

Our algorithm consistently outperforms UDA. Since the
consistency regularization in UDA and our algorithm intro-

7
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Table 2. Ablation study of the two-step algorithm, varying whether
to use the source dataset (Src) and the training method of the
domain translator (DT). Using the equivariant domain translator
plays a key role in learning unforeseen robustness.

Src DT SVHN STL-10

RC (%) S (%) RC (%) S (%)

✓ EqGt 83.7 (↑ 0.5) 89.5 88.1 (↑ 0.3) 91.2
✓ Eq 83.2 89.9 87.8 91.0
✓ Std 82.8 (↓ 0.4) 88.5 86.2 (↓ 1.6) 90.6
✓ × 82.3 (↓ 0.9) 88.2 85.8 (↓ 2.0) 89.9
× × 79.1 (↓ 4.1) 89.0 79.1 (↓ 8.7) 89.0

duces an extra weight hyperparameter, we further vary that
weight for a comprehensive comparison and show results in
Figure 5. For both methods, we observe two stages as the
regularization weight increases. In the first stage, increas-
ing the weight improves both robust and standard accuracy.
In the second, however, increasing the weight improves
robust accuracy but hurts standard accuracy, leading to a
robustness-accuracy trade-off. Nevertheless, our method
outperforms UDA across all weight settings and achieves
better Pareto-optimal in the second stage.

Equivariant domain translator is the key. Table 2 shows
the ablation study result for the two-step algorithm. Com-
pared to ERM (last row), harnessing variations from the
source dataset (top four rows) improves the target robustness
significantly. Furthermore, both EqGt and Eq outperform
Std and the one not using the domain translator (fourth
row), indicating the importance of using an equivariant do-
main translator. Among the top two rows, Eq shows com-
parable robust classification and standard accuracy to EqGt,
indicating that our equivariance-encouraging method trains
equivariant domain translators that are equally helpful for
downstream classification.

5.3. Source Dataset Selection

When learning unforeseen robustness, we cannot use cross-
validation to select suitable source datasets to learn from due
to the lack of target data variations. For example, it is hard
to determine whether using SVHN or CelebA would bet-
ter improve the robustness to RandAugment on CIFAR-10.
In this case, we show that the training result of an equiv-
ariant domain translator can serve as a selection criterion.
Specifically, given the target dataset, the variation, and a
source dataset, we evaluate three available selection criteria:
(1) DT-Eq-FID, which trains an Eq domain translator and
then computes the FID between the target dataset and the
domain-translated source dataset. (2) DT-Std-FID, similar
to DT-Eq-FID, but uses an Std-trained domain translator.
(3) Naive-FID, which directly computes the FID between
the target and the source datasets. For all three criteria, we
select source datasets with lower FIDs.

Figure 6. Correlation results for three source dataset selection cri-
teria, with our method (first row) or UDA (second row) training
the classifier on the corresponding source dataset. Each point
represents a source dataset, where the x-coordinate is the score
given by the criterion and the y-coordinate is the actual robust
classification accuracy of the resulting classifier. We measure the
Pearson correlation (R) and the p-value (p). DT-Eq-FID, which
is based on our equivariant domain translator training, shows the
strongest correlation among the three even when for UDA.

Equivariant DT can select suitable source. In Figure 6,
we evaluate the three criteria for selecting source datasets
for our method and UDA. DT-Eq-FID, based on our equivari-
ant domain translator training, shows the strongest correla-
tion among the three (R=-0.91 for our method, R=-0.94 for
UDA) with the resulting classifier’s robustness, indicating
its effectiveness as a general source dataset selection crite-
rion. It favors CelebA over SVHN for learning robustness
to RandAugment on CIFAR-10, which corroborates our
results, whereas the other two criteria do not. DT-Eq-FID
also has two desired properties compared to DT-Std-FID
and Naive-FID. It is sensitive to the considered data varia-
tion, while DT-Std-FID and Naive-FID are not, enabling it
to explain why the same source dataset can have different
benefits for different data variations. It also depends on the
order of the source and target datasets, enabling it to explain
why SVHN as the source and CIFAR-10 as the target gives
a worse result than the other way around.

6. Applications
Now, we apply our algorithm to two real-world tasks to
show its practical significance. First, we train robust CIFAR-
10 classifiers to unforeseen 3D-viewpoint changes. Then,
we harness out-of-distribution data to further improve fore-
seen robustness on the target data, resulting in improved
in-distribution and out-of-distribution generalization.

6.1. Learning Unforeseen Robustness in Real-world

To evaluate the effectiveness of learning unforeseen real-
world robustness, we choose Objectron (Ahmadyan et al.,

8
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Table 3. Robust classification accuracy on CIFAR10 under six ge-
ometric data transformations, which serves as a surrogate for the
3D-viewpoint-change robustness. Our method best learns the un-
foreseen robustness to this natural variation.

Variations ERM (%) UDA (%) Ours (%)

Affine 69.2 ± 0.5 69.7 (↑ 0.5) 70.9 (↑ 1.7)
Rotate 83.3 ± 0.3 83.4 (↑ 0.1) 84.5 (↑ 1.2)
Perspective 61.6 ± 0.6 54.8 (↓ 6.8) 63.2 (↑ 1.6)
Crop 85.5 ± 0.1 85.4 (↓ 0.1) 86.2 (↑ 0.7)
Elastic transform 85.9 ± 0.3 86.4 (↑ 0.5) 87.3 (↑ 1.4)
Fisheye 43.7 ± 1.2 33.9 (↓ 9.8) 43.8 (↑ 0.1)
Plate Spline 81.6 ± 0.3 81.4 (↓ 0.2) 82.8 (↑ 1.2)

Figure 7. For foreseen variations, using our method in addition
to data augmentation (DA) further improves robustness (RC and
R), ID generalization (S), and OOD generalization (S on three
OOD test sets). Compared to UDA, our method not only better
improves robustness and in-distribution generalization, but also
benefits OOD generalization while UDA cannot, demonstrating its
superiority as an unsupervised data augmentation method.

2021) as the source data. Objectron contains video clips
reflecting 3D viewpoint changes in the real world. We con-
struct the transformed pairs by randomly selecting an anchor
frame and its adjacent frames. We set λ1 = 1 and λ2 = 0
for our algorithm. As we cannot directly compute the view-
point change robustness on CIFAR-10 (target), we select
six common geometric transformations as a surrogate. We
compare our algorithm with UDA, which is the most ef-
fective baseline in our evaluation. Results in Table 3 show
that our algorithm achieves comprehensive improvements
in robustness to all the surrogate transformations, outper-
forming UDA in the same tasks. Domain-translated images
are shown in Figure 12. We leave learning unforeseen ro-
bustness from simulated data to future work.

6.2. Improving Unsupervised Data Augmentation

Moreover, we test if our algorithm can improve foreseen
robustness and serve as a generalized and improved unsu-
pervised data augmentation method. Following the setting
used by prior work (Xie et al., 2020), we train CIFAR-
10 classifiers with RandAugment variations and then use
our method to further improve the robustness with STL-10.

To test the out-of-distribution generalization, we use CI-
FAR10.1 (Recht et al., 2019), CIFAR10.2 (Lu et al., 2020),
and CIFAR-10-C (Hendrycks & Dietterich, 2019).

Figure 7 shows our results. We further improve the robust-
ness and in-domain generalization, doubling the improve-
ment brought by UDA in the same setting. In addition, we
improve the accuracy on three out-of-distribution datasets
by 1.5%, 1.2%, and 2.4%, respectively, whereas UDA barely
helps. This result demonstrates our method’s superiority for
unsupervised data augmentation using foreseen variations.

7. Conclusion
This paper introduces a new approach to learning robustness
that broadens the scope of existing robustness interventions.
Unlike previous methods confined to a limited range of data
variations, our approach harnesses the variations observed
in some source data to learn the robustness on the target
data, thus expanding the spectrum of robustness types that
can be effectively learned.

Limitations. The most evident limitation of our approach is
the additional computational burden introduced by training
the domain translator. Appendix B.2 provides an analysis
of the computational cost compared to existing methods.
This is mainly due to the need for training different domain
translators for different source data. Therefore, we hope that
future work can develop a foundation model for image-to-
image translation, allowing our method to achieve almost
cost-free domain translation by simply fine-tuning with the
addition of equivariance regularization.

Another drawback of our approach is the need to find suit-
able source data for training, which is not always readily
available as existing datasets are not constructed with our
specific problem in mind. However, many datasets, par-
ticularly some simulation datasets (e.g., for autonomous
driving), have the capability to exhibit real-world variations.
Hence, we encourage the community to consider incorporat-
ing validation data with various variations when construct-
ing datasets, both for learning and evaluating robustness.
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A. Additional Analysis
A.1. Proof of Proposition 3.2

Before giving the proof, we first state the definition of push-forward distribution, which appears in many textbooks (see, e.g.,
Koralov & Sinai (2007)).

Definition A.1 (Push-forward distribution). Given a probability space (Ω,F ,P), a measurable space (Ω̃, F̃), and a
measurable mapping ξ : Ω → Ω̃, the push-forward distribution of P on the σ-algebra F̃ is defined by

ξ#Q(A) = P(ξ−1(A)) for A ∈ F̃ ,

where ξ−1(A) := {ω ∈ Ω : ξ(ω) ∈ A} denotes the pre-image of a measurable set A.

The proof follows from the assumptions that the loss ℓ satisfies the triangle inequality and ℓ̄f is Lipschitz uniformly over
all models f . Since we are working on (Rd,B(Rd)) with functions implemented by neural networks (with continuous
activation functions) and common losses, we omit the measurability issue.

Proof. First, since ℓ is non-negative, by Tonelli’s theorem, we have

Lϕ(f,P) := E
x∼P,t∼T

[
ℓ
(
f(x), f(ϕt(x))

)]
= E

x∼P

[
ℓ̄f (x)

]
,

where ℓ̄f (x) := Et∼T[ℓ
(
f(x), f(ϕt(x))

)
].
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Then, since ℓ̄f is uniformly Lipschitz with a Lipschitz constant ∥ℓ̄∥L, by Kantorovich-Rubenstein duality theorem (see, e.g.,
(Villani, 2021)), we have

E
x∼P

[
ℓ̄f (x)

]
− E

x∼ξ#Q

[
ℓ̄f (x)

]
≤ ∥ℓ̄∥L W1(P, ξ#Q).

Thirdly, since ξ#Q is the push-forward distribution of Q through the mapping ξ, by change of measure, we have

E
x∼ξ#Q

[
ℓ̄f (x)

]
= E

u∼Q

[
ℓ̄f (ξ(u))

]
.

Lastly, since ℓ satisfies the triangle inequality, we have

E
u∼Q

[
ℓ̄f (ξ(u))

]
= E

u∼Q
E

t∼T

[
f(ξ(u)), f(ϕt ◦ ξ(u))

)]
≤ E

u∼Q
E

t∼T

[
f(ξ(u)), f(ξ ◦ ϕt(u))

)]
+ E

u∼Q
E

t∼T

[
f(ξ ◦ ϕt(u)), f(ϕt ◦ ξ(u))

)]
Rearranging terms completes the proof.

A.2. Discussion about the Existence of Equivariant and Accurate Domain Translators

We discuss some of our conjectures about the existence here and leave the complete characterization to future work. Since
we use continuous maps to instantiate ξ, we conjecture that the equivariant domain translator does not exist if the support of
the source data distribution, after being expanded by the transformation, has a smaller intrinsic dimension (see, e.g., Pope
et al. (2021); Salmona et al. (2022)) than that of the target. Indeed, we empirically observe that for some source and target
datasets such as SVHN to CIFAR-10, training the domain translator yields a trade-off between the equivariance and the
approximate performance, but such trade-off mitigates if we swap the source and target datasets. Interestingly, this existence
issue seems to enable us to use the training result of an equivariant domain translator as the source selection criterion.

B. Algorithm Details
B.1. Detailed Method to Encourage Equivariance for Domain Translator

Figure 8 illustrates our proposed method and discusses the intuition behind it. Compared to previous work, our method only
requires the transformed source example pairs and their domain-translated counterparts. To use it in training the domain
translator, we replace the second term in Eq. 4.1 with the cosine similarity loss shown in the figure. We simultaneously train
the domain translator, projector, and predictor, to minimize the loss. This method applies to any data transformation that can
be represented as ϕt, without needing to modify the architecture or hyperparameters. When we know the transformation’s
type (e.g., motion changes across video frames), we may also hard-code the predictor accordingly (e.g., use an optical-flow
estimator) for better performance.

Figure 8. Illustration of our proposed method for encouraging the equivariance of the domain translator, requiring neither the transformation
function ϕt nor its parameter t. Here, the projector, whose architecture refers to Qi et al. (2019), takes as input the original example u and
its transformed version ϕt(u) and outputs a vector z1. The intuition is that z1 may contain the encoded transformation parameter, which
is exactly the case when the projector is a hard-coded model like an optical flow estimator. If the domain translator is equivariant, then the
domain-translated pair ξ(u) and ξ(ϕt(u)) should also contain the same encoded transformation parameter. Thus, we encourage z1 and
z2 to be similar, which is implemented with a predictor to prevent degeneration (referring to SimSiam (Chen & He, 2021)).
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B.2. Computational Complexity Analysis

We report computational complexity in Table 4 and 5. When training the classifier, our method requires approximately 24%
more time compared to UDA and MBRDL. When only using the trained domain translator, the required time is similar to
that of UDA and MBRDL. We note that our method can potentially be accelerated by pre-translating all source examples
and implementing proper parallelization techniques.

Table 4. Computational complexity of training the auxiliary modules
ComplexityMethod encoder-decoder discriminator projector-predictor

GPU seconds per epoch
(batch size 256)

UDA n/a n/a n/a n/a
MBRDL 4, 2 2,2 n/a 79s
Ours 3, 1 1, 1 2, 1 75s
WGAN (with encoder-decoder) 2, 1 1, 1 n/a 64s

Table 5. Computational complexity of training the classifier
Complexity GPU seconds per epoch

(batch size 256)encoder-decoder classifier

UDA n/a 3, 1 78s
MBDL 1, 0 1+k, 1 (we choose k=1) 80s
Ours (translate source online, λ2 = 0) 1, 0 3, 1 83s
Ours (translate source online, λ2 ̸= 0) 1, 0 5, 1 97s

B.3. Algorithm Pseudocode

We show the pseudocode of training the domain translator and classifier in Algorithm 1 and 2.

C. Detailed Experimental Setup
Datasets. In Section 5, We use CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009) as target datasets and SVHN (Netzer
et al., 2011), STL-10 (Coates et al., 2011), CIFAR-100, MNIST (Deng, 2012), CelebA (Liu et al., 2015), and Caltech-256
(Griffin et al.). When training domain translators, we only use unlabeled images from the source and target. In Section 6,
we use Objectron (Ahmadyan et al., 2021) as the source dataset to learn 3D-viewpoint-change robustness. Objectron is a
collection of short, object-centric video clips. We randomly sample several frames from each clip as the anchor images and
randomly sample frames in a range of 10 frames as the 3D-viewpoint changed images. We use such pairs to do 3D-viewpoint
change consistency regularization. To evaluate the out-of-distribution generalization of classifiers trained on CIFAR-10, we
use CIFAR-10.1 (Recht et al., 2018), CIFAR-10.2 (Lu et al., 2020), and CIFAR-10-C (Hendrycks & Dietterich, 2019) as the
ood datasets. CIFAR-10.1 and CIFAR-10.2 are sampled from TinyImageNet (Le & Yang, 2015) with the same classes of
CIFAR-10. CIFAR-10-C is a collection of a corrupted version of CIFAR-10 under 15 types of corruption.

Data variations. In Section 5, we use RandAugment and random rotation as the variations. RandAugment contains 14
candidate transformation functions: “ShearX”, “ShearY”, “TranslateX”, “TranslateY”, “Rotate”, “Brightness”, “Color”,
“Contrast”, “Sharpness”, “Posterize”, “Solarize”, “AutoContrast”, “Equalize”, and “Identity”. When using RandAugment,
a composition of two randomly selected functions are applied to the images. For random rotation, we use [−30◦, 30◦]
random rotation. Although the rotation is simply defined, it cannot be modeled by existing model-based methods that use
MUNIT-like architectures (Zhou et al., 2022). In Section 6, we consider 3D-viewpoint change as the unforeseen variation.
We randomly select two nearby frames from one video clip as the two 3D-views of one object. Since we could not evaluate
the model robustness to 3D-viewpoint change on the target data (CIFAR-10), we use six proxy transformations to estimate
the 3D-viewpoint robustness. Proxy transformations are geometric transformations that do warping on images, which
include “Random Affine”, “Random Rotate”, “Random Perspective”, “ Random Crop”, “ Random Fisheye”, “Random Thin
Plate Spline”3.

3Implementation follows https://kornia.readthedocs.io/en/latest/augmentation.module.html

15



Learning Unforeseen Robustness from Out-of-distribution Data Using Equivariant Domain Translator 16

Algorithm 1 Training the domain translator (PyTorch-style pseudocode)
Input : domain translator ξ, discriminator disc, projector proj, and predictor pred

target data {xi}Ni=1, source data {(ui, u
′
i)}Mi=1 (consists of transformed pairs),

batch size B, coefficient λ for equivariance regularization
Output : trained domain translator ξ∗

randomly initialize all modules
for epoch in range(max_training_epochs) do

for a target batch XB = {xi}Bi=1 in all target data do
randomly sample a source batch {(ui, u

′
i)}Bi=1

( denote UB = {ui}Bi=1, U ′
B = {u′

i}Bi=1, UU ′
B = {(ui, u

′
i)}Bi=1, ξ(UB) = {ξ(ui)}Bi=1 )

# training discriminator disc
translate the source batch to get ξ(UB)
lossdisc = disc(ξ(UB)).mean()− disc(XB).mean()
update disc according to lossdisc
clip the parameters in disc (following WGAN)

# get accuracy loss for domain translator ξ
translate the source batch to get ξ(UB)
lossacc = −disc(ξ(UB)).mean()

# get equivariance loss for domain translator ξ
translate the source batch to get UU ′

B

p1 = proj(UU ′
B)

p2 = proj(ξ(UU ′
B)

losseq = −cosine_similarity (p1.detach(), pred(p2)) .mean()

# training domain translator ξ
lossξ = lossacc + λ · losseq
update ξ according to losseq

end
end

Evaluation Metrics. We evaluate the trained classifiers with three metrics4: the robust accuracy, denoted as R, measures
the probability of a model preserving its output under input variations, the robust classification accuracy, denoted as RC,
measures the probability of a model predicting the correct label under input variations, the standard accuracy, denoted as
S, measures the probability of a model predicting the correct label. During testing, we randomly sample 20 transformed
versions for each example to estimate the expectation of robust accuracy and robust classification accuracy.

C.1. Our Method

We use Wasserstein GAN (Arjovsky et al., 2017) to train a domain translator where the inputs of the generator (i.e. domain
translator) are source images and the outputs are encouraged to be similar to the target images. We use the encoder-decoder
model architecture for implementing the domain translator (i.e. generator), which consists of two convolutional layers
for down-sampling, two residual blocks for latent propagation, and two other convolutional layers for up-sampling. The
discriminator then distinguishes the real target data from the fake ones translated from the source data. We train generator and
discriminator with adversarial training following WGAN where we use 0.01 as the clip value of the discriminator’s weight.
For training equivariant domain translator, we use the mean-squared-error (MSE) loss for the equivariance regularization
term (the second term in Eq. 4.1). We set λ = 1 in Eq. 4.1.

4Each of them can be viewed as one minus the corresponding loss (instantiated with zero-one loss) defined in Section 3.1.
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Algorithm 2 Training the classifier (PyTorch-style pseudocode)
Input : trained domain translator ξ∗, classifier f

target data {xi}Ni=1, source data {(ui, u
′
i)}Mi=1 (consists of transformed pairs),

batch size B, coefficient λ1 and λ2 for weighing the trained and the identity
domain translator.

Output : trained classifier f∗

randomly initialize all modules
for epoch in range(max_training_epochs) do

for a target batch {(xi, labeli)}Bi=1 in all target data do
randomly sample a source batch {(ui, u

′
i)}Bi=1

( denote XB = {xi}Bi=1, LabelB = {labeli}Bi=1,UB = {ui}Bi=1, U ′
B = {u′

i}Bi=1,
UU ′

B = {(ui, u
′
i)}Bi=1, ξ(UB) = {ξ(ui)}Bi=1 )

# get classification loss
lclassify = cross_entropy(f(XB), LabelB)

# get consistency loss under trained domain translator ξ∗

translate the source batch to get ξ∗(UB) and ξ∗(U ′
B) # online translation

p1 = softmax(f(ξ∗(U ′
B)))

p2 = softmax(f(ξ∗(UB)))
losstrained = kl_divergence(p1, p2.detach())

# get consistency loss under identity map
translate the source batch to get UU ′

B

p1 = softmax(f(U ′
B))

p2 = softmax(f(UB))
lossidentity = kl_divergence(p1, p2.detach())

# training classifier f
loss = lossclassify + λ1 · losstrained + λ2 · lossidentity
update f according to loss

end
end

For the robust classifier, we use ResNet18 as the architecture. Since the zero-one loss is difficult to optimize directly, we
follow the common practice of using the surrogate loss (Bartlett et al., 2006). We use the cross-entropy loss for training the
classifier, including the robustness regularization term I1, similar to Zhang et al. (2019). The MSE loss and the L1 norm loss
are two common training objectives that measure the difference between two images in the pixel space. They are used as the
reconstruction loss in VAE, CycleGAN, Diffusion Model, etc. We also tried the L1 loss for the equivariance regularization
term but did not observe substantial difference. In all our experiments, we use cross-entropy loss as the surrogate loss for
training and regularizing the classifier. We set λ1 = λ2 = 0.5 in Eq. 4.2. Since accurately estimating the W1 distance
for multi-dimensional non-Gaussian distributions is difficult, we use the Fréchet inception distance (FID, see Heusel et al.
(2017)) to evaluate how well the domain translator pushes forward the source data to approximate the target data.

C.2. MBRDL

MBRDL (model-based robust deep learning, (Robey et al., 2020)) learns a model to simulate the natural variation. In their
paper, the variation model is learned and applied to the same domain. Their method can easily extend to scenarios where
variations are unforeseen in the target domain but is available in the source domain. In this paper, we first learn a variation
simulator with the source data where transformed pairs are used for learning variations. We use MUNIT (Huang et al., 2018)
as the variation simulator following settings in (Robey et al., 2020). MUNIT is first designed for style transfer, here (Robey
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et al., 2020) use it for input transformation. Then, we apply the variation simulator directly to the target data to do data
variation and train robust classifiers with a consistency regularization loss addition to the classification loss.

C.3. UDA

UDA (unsupervised data augmentation, (Xie et al., 2020)) improves the model’s robustness against variations with con-
sistency regularization on unlabeled data. Although the unlabeled data is very similar to the target data and has foreseen
variations in their paper, we can directly use their method in our case. We see source data as the unlabeled data and do
consistency regularization on it while training the classifier on the target data. It’s easy to see that, UDA is a simple version
of our method where λ1 = 0 in Eq. 4.2. In our experiments of UDA, we set λ2 = 1.

D. Additional Results
D.1. Visualizing the Results of Equivariant Domain Translator

We show the outputs of our domain translators in Figure 10, 11 and 12. Results demonstrate that our method can effectively
translate the source data to be target-like. The trained domain translator also well-preserve the variations including random
rotation, RandAugment, and 3D-viewpoint change. Therefore, we are able to do consistency regularization with the
target-like images and the transformed version of them, so that to train a robust classifier under unforeseen variations. We
notice that domain translators trained with different source dataset have different performances. As discussed in Section 5.3,
the source dataset’s distance to the target dataset correlates with the performance. Additionally, if the source dataset is much
“simpler” than the target one, such as MNIST and SVHN, it is very difficult for the domain translator to cover the whole
manifold of the target distribution, and to preserve complex variations such as RandAugment (especially the color change)
on MNIST. One interesting future work is to take the intrinsic dimension of the dataset into consideration.

In addition, we evaluate the capability of the equivariant domain translator to preserve more real-world variations using
limited data. To this end, we train the equivariant domain translator to preserve illumination changes from the Multi-
illumination dataset (comprising 1015 images, Murmann et al. (2019)) to the labeled training set of STL-10 (comprising 5k
images). Figure 9 shows some domain-translated images for visual evaluation.

Figure 9. Visualization of some domain-translated images from the Multi-illumination dataset (comprising 1015 images) to the STL10’s
training set (comprising 5k images), demonstrating the preservation of illumination changes using limited data.

D.2. Results on CIFAR-100

Table 6 shows the results on CIFAR-100 where we use SVHN, STL10 and CIFAR-10 as the source data. Data variation is
the RandAugment. We get consistent results where our method excels over other methods in robustness and accuracy.

D.3. Additional Baselines

Incorporating additional baselines, although not originally designed to address our specific problem, can stimulate deeper
insights into the problem setting. In Table 7, we consider contrastive self-supervised learning and additionally evaluate 1)
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(a) SVHN as the source dataset. Random rotation as the variation.

(b) STL10 as the source dataset. Random rotation as the variation.

Figure 10. Results of our method with random rotation as the input variation. We use CIFAR-10 as the target dataset. z denotes the
source data, ϕ denotes the variation, i.e. random rotation, and ξ denotes Eq, the domain translator trained with the heuristic method.
By comparing ξ(z) with CIFAR-10 data, results indicate that our method can effectively translate the source data to be target-like. By
comparing between ξ ◦ ϕ(z) and ϕ ◦ ξ(z), which are expected to be similar, our domain translators well-preserve the variations.

contrastive pretraining on the source, and 2) contrastive learning on the source as regularization which uses the SimCLR
loss on the source as auxiliary regularization for training the classifier since it encourages invariance. We evaluate the two
methods on CIFAR-10 and CIFAR-100. The contrastive pretraining, under our hyperparameter setting (temperature=0.2,
latent dimension=128, two-layer projection head), does not show a significant difference from ERM, so we only report
the result of contrastive learning as regularization here. Table 7 shows the result on CIFAR-10 under RandAugment with
different regularization weights, which corresponds to Table 1 in the paper. The result is averaged over three independent
runs.

Using the optimal regularization weight (0.1), SimCLR improves all three metrics over ERM (and MBRDL). The robustness
benefit, however, is less than that brought by UDA and our method. Interestingly, the SimCLR has better standard accuracy
than UDA (+1.6% on SVHN and +0.3% on STL10), suggesting that while SimCLR cannot provide the same level of
robustness as UDA, the projection head and the InfoNCE loss better benefits the standard accuracy.

D.4. Sensitivities to Source Sample Size

We further investigate whether the number of source datapoints is a significant factor. In Table 8 we show some initial
results. Our empirical findings suggest that 1) when the source sample size is "comparable" with the target sample size
(greater than 25k or 50% of the target training sample size), there is no noticeable change in the final robust classification
accuracy. 2) As the source sample size decreases below 50% of the target sample size, the robust classification accuracy
gradually drops. Nonetheless, our method still offers a small benefit over ERM even when the source sample size is as small
as one batch size (256).

D.5. Problems of MBRDL

Figure 13 and 14 shows the performance of the variation simulator learned by MBRDL. We can see that the MBRDL suffers
from two problems. Firstly, it is hard to learn a good variation simulator. As (Zhou et al., 2022) observed and as shown in
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(a) SVHN as the source dataset. RandAugment as the variation.

(b) STL10 as the source dataset. RandAugment as the variation.

(c) CelebA as the source dataset. RandAugment as the variation.

(d) MNIST as the source dataset. RandAugment as the variation.

Figure 11. Results of our method with RandAugment as the input variation. We use CIFAR-10 as the target dataset. z denotes the source
data, ϕ denotes the variation, i.e. RandAugment, and ξ denotes Eq, the domain translator trained with the heuristic method. By comparing
ξ(z) with CIFAR-10 data, results indicate that our method can effectively translate the source data to be target-like. By comparing
between ξ ◦ ϕ(z) and ϕ ◦ ξ(z), which are expected to be similar, our domain translators well-preserve the variations in most cases.

20
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Figure 12. Results of our method with 3D-viewpoint change. We use CIFAR-10 as the target dataset and Objectron as the source dataset.
Here, z denotes the source data, ϕ denotes the variation, i.e. 3D-viewpoint change, and ξ denotes Eq, the domain translator trained with
the heuristic method. By comparing ξ(z) with CIFAR-10 data, results indicate that our method can effectively translate the source data to
be target-like. ξ ◦ ϕ(z) shows that the domain translator well-preserves the 3D-viewpoint change. For example, in the fourth column, two
cars generated by ξ(z) and ξ ◦ ϕ(z) well-preserve the viewpoint change that exits in two chair images (i.e. z and ϕ(z)).

Table 6. Results of classifiers trained using different methods and source datasets. The target dataset is CIFAR-100 w/o data augmentation
and the data variation is RandAugment. We show here for reference the oracle method that does consistency regularization directly on the
target dataset.

Robustness Accuracy

Method Src RC (%) R (%) S (%)

ERM / 48.8 ± 0.1 57.2 ± 0.2 62.9 ± 0.3

MBRDL SVHN 36.9 ± 0.4 55.3 ± 0.5 52.4 ± 0.3

UDA SVHN 51.7 ± 0.2 61.6 ± 0.2 63.2 ± 0.4

EDT (Ours) SVHN 53.2 ± 0.3 63.4 ± 0.2 64.1 ± 0.3

MBRDL STL10 39.6 ± 0.3 56.1 ± 0.3 56.1 ± 0.2

UDA STL10 55.9 ± 0.3 67.1 ± 0.2 64.1 ± 0.3

EDT (Ours) STL10 58.3 ± 0.3 70.0 ± 0.3 65.1 ± 0.3

MBRDL CIFAR-10 39.6 ± 0.4 58.4 ± 0.3 56.2 ± 0.3

UDA CIFAR-10 56.5 ± 0.2 68.3 ± 0.2 63.8 ± 0.3

EDT (Ours) CIFAR-10 59.0 ± 0.2 71.2 ± 0.3 64.5 ± 0.2

Oracle / 70.9 ± 0.2 82.1 ± 0.2 73.6 ± 0.2

Figure 13, brightness change and color change are easy to learn but geometric transformations such as rotation are hard to
learn. The complex variations such as RandAugment are even harder. Secondly, the learned variation simulator has poor
generalization ability. Figure 14 (a) and (c) show that the variation simulator which is trained on the source data performs
well on the source data. However, (b) and (d) show that the variation simulator performs badly when directly applied to the
target data, resulting in blurred images or content-changed images. We suspect that it is because the variation is very hard to
learn and it is even harder to learn a variation simulator that is disentangled from the source data. The problems get severe
when the target domain and the source domain are far from each other. This explains why MBRDL hurts the robustness and
accuracy in our experiments.
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Table 7. Performance of SimCLR on SVHN and STL10 datasets
Method Source Weight Robust Classification Accuracy Robust Accuracy Standard Accuracy

SimCLR SVHN 0.001 81.2 ± 0.2 84.7 ± 0.2 89.4 ± 0.1
SimCLR SVHN 0.01 81.8 ± 0.1 85.5 ± 0.1 89.6 ± 0.2
SimCLR SVHN 0.1 80.8 ± 0.1 84.6 ± 0.1 89.5 ± 0.3
SimCLR SVHN 1 80.4 ± 0.1 84.4 ± 0.2 89.1 ± 0.0
SimCLR STL10 0.001 79.7 ± 0.2 82.8 ± 0.3 89.4 ± 0.0
SimCLR STL10 0.01 82.1 ± 0.2 85.4 ± 0.3 89.6 ± 0.1
SimCLR STL10 0.1 84.0 ± 0.1 87.8 ± 0.1 90.3 ± 0.4
SimCLR STL10 1 81.6 ± 0.8 85.5 ± 0.9 89.8 ± 0.3

Table 8. Performance on SVHN and STL10 datasets with varying training sizes.
src 0 (ERM) 256 1,024 4,096 16,384 65,536 All

SVHN 79.1 ± 0.2 80.1 ± 0.4 80.2 ± 0.5 80.8 ± 0.3 82.6 ± 0.3 – 83.2 ± 0.3 (73,257)
STL10 79.1 ± 0.2 81.0 ± 0.5 81.7 ± 0.4 82.0 ± 0.3 84.8 ± 0.2 87.9 ± 0.3 87.8 ± 0.2 (100,000)

(a) Apply rotation simulator learned on SVHN to SVHN.

(b) Apply rotation simulator learned on SVHN to CIFAR10.

(c) Apply rotation simulator learned on STL10 to STL10.

(d) Apply rotation simulator learned on STL10 to CIFAR10.

Figure 13. Results of MBRDL with random rotation as the input variation. In every subfigure, the first line shows the original images and
the second line shows the transformed ones using the learned variation simulator.
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(a) Apply RandAugment simulator learned on SVHN to SVHN.

(b) Apply RandAugment simulator learned on SVHN to CIFAR10.

(c) Apply RandAugment simulator learned on STL10 to STL10.

(d) Apply RandAugment simulator learned on STL10 to CIFAR10.

Figure 14. Results of MBRDL with RandAugment as the input variation. In every subfigure, the first line shows the original images and
the second line shows the transformed ones using the learned variation simulator.
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