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Abstract
Adversarial poisoning attacks pose huge threats
to various machine learning applications. Espe-
cially, the recent accumulative poisoning attacks
show that it is possible to achieve irreparable
harm on models via a sequence of impercepti-
ble attacks followed by a trigger batch. Due to
the limited data-level discrepancy in real-time
data streaming, current defensive methods are
indiscriminate in handling the poison and clean
samples. In this paper, we dive into the perspec-
tive of model dynamics and propose a novel in-
formation measure, namely, Memorization Dis-
crepancy, to explore the defense via the model-
level information. By implicitly transferring the
changes in the data manipulation to that in the
model outputs, Memorization Discrepancy can
discover the imperceptible poison samples based
on their distinct dynamics from the clean samples.
We thoroughly explore its properties and propose
Discrepancy-aware Sample Correction (DSC) to
defend against accumulative poisoning attacks.
Extensive experiments comprehensively charac-
terized Memorization Discrepancy and verified
its effectiveness. The code is publicly available
at: https://github.com/tmlr-group/
Memorization-Discrepancy.

1. Introduction
Machine learning models have achieved remarkable perfor-
mance on a wide range of tasks in computer vision (He et al.,
2016) and natural language processing (Devlin et al., 2019).
However, due to the lack of strict supervision in crowd-
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Figure 1. Left: Comparison of the distributions using static infor-
mation (i.e., the output of the current model); Right: Comparison
of the distributions using the discrepancy information (i.e., the out-
put discrepancy of current and historical models). The experiment
simulates the accumulative poisoning attack Pang et al. (2021) in
real-time data streaming using CIFAR-10 dataset. The generated
poison samples can be better distinguished from clean samples by
the discrepancy information, i.e., Memorization Discrepancy. Here
the static information is also about the output of the model but is
defined as the output difference before and after the model opti-
mized on 1 epoch of data. Considering the interval can be nearly
ignored compared with the historical model (before 20 epochs), so
termed "static". The detailed operation is illustrated in Figure 2.

sourcing (Welinder et al., 2010), data from untrusted sources
poses huge threats to machine learning services (Biggio
et al., 2012; Goodfellow et al., 2015). Specifically, some
malicious adversaries (Paudice et al., 2018; Goldblum et al.,
2022) hidden in training data can significantly deteriorate
the model performance (Feng et al., 2019; Huang et al.,
2020; Tao et al., 2021; Fowl et al., 2021), causing con-
cerns (Bommasani et al., 2021) in those safety-critical ap-
plications like autonomous driving or medical intelligence.

Different from previous well-explored attacks under the of-
fline setting (Li et al., 2016; Fowl et al., 2021; Goldblum
et al., 2022), accumulative poisoning attacks (Pang et al.,
2021) are recently proposed and demonstrated to be more
imperceptible in real-time data streaming (Wang & Chaud-
huri, 2018; Zhang et al., 2020b). Employing the newly
introduced accumulative batches for pre-poisoning, it will
not cause significant harm to the model during the first phase
but leverages the trigger batch to induce dramatic degrada-
tion of the model performance instantly. Considering the
imperceptibility and the limited knowledge about accumu-
lative poisoning samples, previous works (Feinman et al.,
2017; Steinhardt et al., 2017; Ma et al., 2018) that depend
on the offline data statistics cannot sufficiently handle this
type of sneaky adversary. It naturally raises a new challenge:
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how can we identify and defend against the imperceptible
accumulative poisoning attacks in real-time data streaming?

Currently, the most possible ways to defend against accu-
mulative poisoning attacks are gradient clipping (Pascanu
et al., 2013) and the variants of adversarial training (Tao
et al., 2021; Geiping et al., 2021), which have both pros
and cons. Specifically, although gradient clipping (Pascanu
et al., 2013) shows promise to mitigate the poisoning effect,
it still can be deceived by samples with small gradient norms
in the accumulative phase and has a side-effect on slowing
down the training convergence (Pang et al., 2021). As for
adversarial training methods (Madry et al., 2018; Zhang
et al., 2019), it has been demonstrated that the natural risk
of training with poison samples can be upper bounded by the
adversarial risk (Tao et al., 2021). Therefore, it is natural to
adopt the reverse adversarial generation to correct the newly
captured samples. Unfortunately, the indiscriminate sample
calibration in adversarial training when applying to clean
samples is detrimental (Zhang et al., 2019) to performance
(e.g., as illustrated in Figure 6) due to the over-correction.

In this paper, we introduce a new measure, termed as Mem-
orization Discrepancy (i.e., Eq. (5) in Section 3), which is
surprisingly aware of the imperceptible accumulative poi-
soning samples by backtracking earlier historical model
(e.g., as illustrated in Figure 1). Diving into the model dy-
namics, we compute the discrepancy by leveraging the his-
torical model’s output on the same sample. It can be found
in Figure 2 that with the increase in the backtracking inter-
vals, poison samples can be more distinguishable from clean
samples. The underlying mechanism is to transfer imper-
ceptible manipulation into significant model-level changes
(as further explained in Figure 3). Then, some observed
properties (i.e., Properties 3.4 and 3.5) like monotonically
increasing and the existence of highly discriminative back-
tracking interval can be used to handle poisoning discovery
for the sneaky adversary, which show promising in identify-
ing poison samples with imperceptible constraint from clean
samples or other natural samples with distribution shift.

Based on the above insights, we accordingly design a new
defense algorithm, namely, Discrepancy-aware Sample Cor-
rection (DSC), which incorporates Memorization Discrep-
ancy to selectively calibrate the potential poison samples
in real-time data streaming. At the high level, we relax the
inner-minimization of reverse adversarial generation (i.e.,
Eq. (6) in Section 3.4) and construct a learning filter capable
of calibrating oriented poison samples (as shown in Fig-
ure 6) to avoid over-calibration. In detail, our DSC employs
the early-stopping in sample correction and utilizes the his-
torical model to be an auxiliary inspector for Memorization
Discrepancy. Our main contributions are summarized as,

• We make the first effort to explore identifying the accu-
mulative poisoning attack for the real-time data stream-

ing from the perspective of model dynamics, i.e., con-
sidering model changes in poison discovery.

• We introduce a novel information measure, i.e., Mem-
orization Discrepancy, to distinguish the imperceptible
poison samples by leveraging model-level information
from backtracking the historical models. (in Section 3)

• We accordingly propose a new learning method, i.e.,
Discrepancy-aware Sample Correction (DSC), which
incorporates the proposed Memorization Discrepancy
to selectively calibrate the potential poison samples
with only a historical auxiliary model. (in Section 3.4)

• We conduct extensive experiments to comprehensively
characterize the Memorization Discrepancy, and verify
the effectiveness of DSC in improving the model ro-
bustness against accumulative poisoning attacks using
a range of benchmarked datasets. (in Sections 4)

2. Backgrounds
In this section, we briefly review the background of delusive
attack and accumulative poisoning attack (Pang et al., 2021),
and discuss some existing defense methods.

2.1. Delusive Attack

Delusive attack (Newsome et al., 2006; Feng et al., 2019) be-
longs to data poisoning attacks (Barreno et al., 2010; Biggio
et al., 2012; Goldblum et al., 2022), which aim to degrade
the model performance via manipulating the training data.
The general malicious objective can be formulated as,

max
P
L(Sval; θ

∗), s.t. θ∗ ∈ argmin
θ
L(P(Strain); θ), (1)

where Strain is the training set consisting of natural ex-
amples, Sval is the validation set, P(·) denotes the trans-
formation that manipulates Strain into a poisoned version
and L(S; θ) denotes the empirical learning objective of a
dataset S = {xi, yi}Ni=1 with the model parameter θ. Specif-
ically, delusive attack targets to deteriorate the overall ac-
curacy of the test data by only manipulating the input fea-
ture of the training data (Newsome et al., 2006; Barreno
et al., 2010; Feng et al., 2019), instead of attacking the
specific class (Koh & Liang, 2017) or triggering the back-
doors (Shafahi et al., 2018). Generally, the delusive at-
tack can be formulated as the optimization problem through
the gradient-based methods (e.g., Project Gradient Decent
(PGD) (Madry et al., 2018)), and limits the manipulation
into a small constraint (e.g., ℓ∞-norm adopted in adversarial
attack (Goodfellow et al., 2015; Kumar et al., 2020)).

2.2. Accumulative Poisoning Attack

Different from previous studies which focus on poisoning
offline datasets (Feng et al., 2019; Fowl et al., 2021; Tao
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et al., 2021), Pang et al. (2021) recently proposed the accu-
mulative poisoning attack for the real-time data stream to
simulate the poisoning on the online settings (Chechik et al.,
2010). The major difference between this attack from the
ordinary delusive attack is that it can interact with the train-
ing process and dynamically manipulate the data according
to the model status. Through this, it spreads the poisoning
effect over multiple learning statuses to further avoid dis-
tinct modifications on clean samples. The certain objective
for accumulative poisoning attack can be formulated as,

min
P,A
∇θL(Sval;A(θT ))⊤∇θL(P(ST );A(θT )), (2)

whereA denotes an accumulative phase to inject secrete poi-
son samples, A(θT ) denotes the model parameter at round
T obtained after the accumulative phase and ∇θ denotes
the gradient. Specifically, the whole process can be divided
into two parts given a pre-trained burn-in model for several
epochs on the data stream. First, the model will be secretly
poisoned by the samples in the accumulative phaseA, while
keeping test accuracy in a heuristically reasonable range of
variation. Then a trigger batch P(ST ) will be fed into the
model. By jointly optimizing the accumulative phase and
the trigger batch P(ST ), the accumulative poisoning attack
can result in a severe drop in the model performance in a
single step (e.g., one batch). More details about the accumu-
lative poisoning attacks can be referred to in Appendix C.1.

2.3. Existing Defenses

To combat data poisoning, there are many strategies
proposed for defending against poisoning attacks, like
detection-based methods (Steinhardt et al., 2017; Collinge
et al., 2019) to find and filter the poison data according to
the feature statistics, robust training methods (Borgnia et al.,
2021; Li et al., 2021) that is designed for targeted or back-
door attacks. Considering the characteristic of the real-time
data streaming and the imperceptibility of delusive attack,
it is computationally expensive and impractical to analyze
the statistics for the incoming data (Pang et al., 2021; Ku-
mar et al., 2020). For the accumulative poisoning attack,
except the gradient clipping discussed in Pang et al. (2021)
that constrains the poisoning effect by small gradients, a
principled defense (Tao et al., 2021; Geiping et al., 2021)
based on adversarial training can also serve as the major
technique to calibrate poison samples. However, both of
them are indiscriminate in handling the poison and clean
samples. Different from the previous methods, we introduce
a novel information measure to discover the imperceptible
poison samples by considering the model dynamics.

3. Memorization Discrepancy
In this section, we present the new information measure
Memorization Discrepancy to explore the poison sample
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Figure 2. Top: illustration of the concrete operation to obtain the
discrepancy information, i.e., Memorization Discrepancy. Bottom:
the mean values of the Memorization Discrepancy on clean and
poisoning batch data w.r.t. the backtracking interval k (epochs).
The θt denotes the current model which is used by the attacker to
generate poison samples, and θt−1 to θt−k are the historical model
we backtracked. The discrepancy is measured by the output of the
data using current and historical models. The difference between
the Memorization Discrepancy on poison samples from that on
clean samples is more distinguishable along with the enlargement
of k. The underlying mechanism is further elaborated in Figure 3.

discovery through the lens of model dynamics during the
training process. We first discuss our motivation, and then
formally introduce the assumption and the definition of
Memorization Discrepancy. Finally, we conduct experi-
ments to empirically explore its corresponding properties.

3.1. Motivation

Different from the offline poisoning adversaries (Li et al.,
2016; Fowl et al., 2021), the accumulative poisoning attack
is allowed to interact with the model status to update its
poison samples dynamically in the training process. Consid-
ering the practical situation, without sufficient knowledge
of the original natural sample captured in the data streaming
and the imperceptible characteristic of delusive attacks, the
static information provided by the model from the single di-
mension seems to be hopeless to differentiate the poisoning
and clean samples (e.g., the left panel of Figure 1). However,
one critical component that is so far overlooked but easily
backtracked (Kumar et al., 2020) in training, is the histori-
cal model information. Since the accumulative poisoning
attack utilize the sequential order property of real-time data
streaming, we raise the following question,

Can we also exploit the information of model dy-
namics to gain some useful clues to identify the
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Figure 3. Top: illustration of model dynamics, which shows differ-
ent effects (e.g., α and α′) of the same poisoning manipulation on
different model statuses (on the same original sample). Bottom:
empirical verification about the above discrepancy by backtracking
the model status. Here the α is the illustration of the discrepancy
between two different optimization directions (or the gradient di-
rection of the model θt) approximated by using the outputs on
clean and poison samples, respectively. And the α

′
is the illus-

tration of discrepancy on the historical model θt−k. Models at
different statuses will have different output changes for the same
data manipulation, the discrepancy can be naturally captured us-
ing the historical model backtracked in the training process. The
bottom figure empirically justifies that α′ < α and β′ > β, which
explains the underlying mechanism of previous trend in Figure 2.

imperceptible accumulative poisoning attacks?

The answer is affirmative. As shown in the right panel of
Figure 1, we can find the distributions of clean and poison
samples are much different compared with the left panel
in Figure 1. Such a significant difference is computed by
taking the backtracked historical model into consideration
(as illustrated at the top of Figure 2). Intuitively, to achieve a
better poisoning effect, the close interaction with the current
model (Pang et al., 2021) better optimizes the malicious
objective (e.g., Eq. (1)) for poisoning than other checkpoints,
but it also ignores the changes in the historical model. This
motivates us to further explore the poison discovery from
the perspective of the dynamic changes in historical models.

3.2. Proposed Definition

As the model is changed along with training on stream-
ing data, it is natural to make the following assumption of
model dynamics, which is about different model outputs
with poison samples generated based on the victim model.

Assumption 3.1 (Model Dynamics). Let θt and θt−k denote
the current model at round t and the historical model at
round t−k, x̂(θt) is the adversarial manipulation from x by
the model θt, D indicate the general distribution discrepancy
measurement1. Then, we have the following inequality,

D(f(x̂(θt); θt),f(x; θt)) ̸=
D(f(x̂(θt); θt−k), f(x; θt−k)).

(3)

The above inequality indicates that the poison sample gener-
ated on the victim model has a different effect on the output
changes of a different model. Since the poison manipulation
added to the clean samples targets the malicious learning
objective that is different from the original one, the left side
of Eq. (3) actually reflects the difference between poison
samples from clean samples. However, considering the prac-
tical situation of real-time data streaming, it is impractical
to know whether the newly captured training samples are
poisoned in advance. This motivates us to introduce another
measure to leverage the information characteristic of his-
torical models. Here we draw further theoretical analyses
behind the Assumption 3.1, which construct the relation-
ship on the difference between the poisoning objective (e.g.
Eq. (1)) and the original objective. We leave complete dis-
cussion and verification in Appendixes A and B.
Theorem 3.2. Let f(x; θt) denote the output about the
sample x at epoch t, k denotes the interval rounds, and
S denotes a clean dataset. Considering the opposite be-
tween objective minL(S, θ∗) and the poisoning objective
maxL(S, θ∗) where θ∗ is the well-trained model respec-
tively, there exists a learning period where we have,

D(f(x̂(θt); θt), f(x̂(θt−k); θt−k))−
D(f(x; θt), f(x; θt−k)) ∝ L(S; θt−k)− L(S; θt).

(4)

The above positive relationship constructs the discrepancy
relationship of different samples (e.g., natural sample x
and poisoned sample x̂) with the model learning dynamics.
Due to the different poisoning effect results of sample x̂ on
different model stages, the previous discrepancy in Assump-
tion 3.1 is constructed on the different sample (x and x̂)
with the same model (either current model at round t or the
historical model at round t−k). The underlying intuition of
Eq. (4) reflects the differences between the natural learning
objective and the poisoning objective, where we evaluate
their differences in model outputs. Hence, the sample-wise
discrepancy can be transferred to the differences of each
sample on different models. Since we can not know whether
the newly captured samples are poisoned or not in advance,
the latter formulation for the information measure on the
same sample is more practical for utilization and help us to
provide the final definition of Memorization Discrepancy.

1Note that, in the most experiments of this paper, we adopt
Kullback–Leibler divergence (Joyce, 2011) in computation.
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(a) Under different poisoning capacities (k=1)
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(b) Under different backtracking intervals (ϵ=0.1)

Figure 4. Empirical exploration about poisoning discovery using
Memorization Discrepancy. (a) The distribution discrepancy of
clean and poison data can be constrained by controlling the poison-
ing capacity, e.g., the perturbation radius ϵ; (b) The poison samples
can be more distinguishable from clean samples by enlarging the
backtracking interval in Memorization Discrepancy to find a highly
discriminative status, which involves model-level information.

Below we formally introduce the new information measure,

Definition 3.3 (Memorization Discrepancy). Consider
f : Rd → ∆C that maps the input feature to the C-
dimensional simplex, x̂(θt) is disturbed from x on the model
f(·; θt), and θt−k means the parameters of the k-interval
historical model compared to the current t. Then, we define
Memorization Discrepancy on x̂(θt) based on the current
parameter θt and the historical parameter θt−k as,

D(f(x̂(θt); θt−k), f(x̂(θt); θt)), (5)

which measures the discrepancy of the different model’s
outputs on the same x̂ generated on θt.

The underlying mechanism of Memorization Discrepancy
is to capture the model dynamic on the same sample during
the training process, which explicitly reflects the impercep-
tible poisoning manipulation in the training samples via the
difference in model outputs. In Figure 1, we can find that
the discrepancy value of both clean and poison samples is
enlarged when we backtrack the historical models. Espe-
cially, the value of poison samples increases more than that
of clean samples. According to this phenomenon, we have
two following conjectures on Memorization Discrepancy.

Property 3.4 (Monotonically Increasing Interval). There
exists an interval k from t to t − k where the value of
D(f(x∗; θt−k), f(x∗; θt)) is monotonically increasing from
0 to k, where x∗ can indicate either the original clean sample
x or the poison sample x̂.

Property 3.5 (Highly Discriminative Status). There ex-
ists an model status θt−k where the mean value of poi-

(a) Visualization of clean, poison, and out-of-distribution data

0 2 4 6 8
 Memorization Discrepancy (k=1)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 D
en

si
ty

 

clean
poison
OOD

2 0 2 4 6 8 10 12 14
 Memorization Discrepancy (k=20)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 D
en

si
ty

 

clean
poison
OOD

Clean Poison OOD0.0

0.2

0.4

0.6

0.8

1.0

1.2

 M
ea

n 
of

 D
is

cr
ep

an
cy

 k=20
k=1

(b) Comparisons of the above three type of data

Figure 5. Comparisons about optimized and statical distribution
shift distinguished using Memorization Discrepancy. (a) Three
types of data from left to right: clean data (CIFRA-10), poison
data (ϵ=0.064), and out-of-distribution (OOD) data (SVHN); (b)
Compared with the statical distribution shift (OOD), the poison
samples which are optimized for the targeted model are more
sensitive to the backtracking interval in Memorization Discrepancy.

son samples D(f(x̂(θt); θt−k), f(x̂(θt); θt)) is much larger
than that of clean samples D(f(x; θt−k), f(x; θt)).

3.3. Empirical Study on the Properties

Here we study the Memorization Discrepancy through the
simulated experiments on CIFAR-10 dataset following Pang
et al. (2021), and the detailed setups can be found in Sec-
tion 4.1. The below empirical results respectively justify the
previous Assumption 3.1, Properties 3.4 and 3.5. More ex-
ploration of the discrepancy is provided in Appendix C.11.

In Figure 2, we illustrate the pipeline to obtain the Memo-
rization Discrepancy. Specifically, by comparing the auxil-
iary historical model’s output and the current model’s out-
put, the Memorization Discrepancy can be easily calculated.
From the figure, we can find that the mean values are al-
most monotonically increasing from 0 to 25 epochs with the
increasing k, which empirically verifies its general trend.

In Figure 3, we give the underlying explanation behind the
dynamics of Memorization Discrepancy and empirically
justify Assumption 3.1 via the approximation results for α
and α′ in the top panel. According to the top of the figure,
the Memorization Discrepancy of clean and poison samples
can be denoted by β and β′, and their relationship can be
reflected by the change on models θt and θt−k, i.e., α and
α′. In practice, as the defense party does not know whether
the data is poisoning, Memorization Discrepancy is a good
choice while Eq. (3) assumes the poisoning fact by default.

In Figure 4, we present that Memorization Discrepancy can
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distinguish the poison sample with limited poisoning capac-
ities (e.g., the perturbation constraint ϵ is small to guarantee
imperceptible data-level manipulation) by backtracking the
historical models as an auxiliary inspector, which enlarges
the distribution discrepancy as shown in Figure 4(b). In Fig-
ure 5, we also consider another kind of natural data that is
out-of-distribution (OOD) and may be confusedly reflected
with higher Memorization Discrepancy. Fortunately, under
the comparison, the poison sample optimized on the victim
model shows being more sensitive to the dynamic changes
in historical models than static OOD samples. On the other
hand, those OOD samples with noticeable visual differences
can be easier to clean up than the imperceptible poison ones.

3.4. Discrepancy-aware Sample Correction

Inspired by the previous properties of Memorization Dis-
crepancy, we propose the Discrepancy-aware Sample Cor-
rection (DSC) to utilize the model dynamics which can
capture the differences between the potential poison sam-
ples from the clean ones by an auxiliary historical model.

The high-level intuition is to employ the Memorization Dis-
crepancy to the previous principled reverse adversarial gen-
eration (Tao et al., 2021) as guidance for the sample correc-
tion. Concretely, we summarize the detailed procedure of
DSC in Algorithm 1. In each mini-batch training, we will
leverage the Memorization Discrepancy to validate whether
the sample is a potential poison sample. The multi-step re-
verse adversarial generation will then be conducted through
the following objective,

x̃ = arg min
x̃∈B[x,ϵ]

ℓ(f(x), y),

s.t.,D(f(x̃; θ), f(x̃; θ∗)) > P,
(6)

where x̃ is the calibrated sample, B[x, ϵ] = {x̃ |
d∞(x, x̃) ≤ ϵ} be the closed ball of radius ϵ > 0 centered at
the training sample x, P is the estimated discrepancy thresh-
old, and θ∗ is the historical auxiliary model. In addition, we
also record the Memorization Discrepancy using a certain
measurement (e.g., KL divergence). According to Prop-
erty 3.5 and previous empirical results, the poison data has a
larger discrepancy value than the clean data. Thus, we adopt
an early-stopping here to relax the minimization objective
for sample correction. The multi-step correction will stop
if Memorization Discrepancy is smaller than an adjustable
threshold during the pre-defined correction steps. This op-
eration can avoid over-calibration for those clean samples,
and we empirically justify its effectiveness in Figure 6.

4. Experiments
In this section, we present a comprehensive analysis of the
Memorization Discrepancy and verify the effectiveness of
our proposed DSC with the previous baseline methods for

1 2 3 4 5 6 7 8
Batch

0.0

0.2

0.4

0.6

0.8

1.0

 M
em

or
iz

at
io

n 
D

is
cr

ep
an

cy
 

Oracle
threshold of DSC

DSC
AT

0 1 2 3 4 5 6 7 8
Batch

81

82

83

84

85

86

87

 A
cc

ur
ac

y 
(\%

) 

DSC
AT

Figure 6. Left panel: the Memorization Discrepancy correspond-
ing to the training samples in real-time data streaming. Right panel:
the test accuracy of the AT-based method and our DSC. The reverse
adversarial perturbations over-calibrate the clean samples and re-
sult in lower accuracy while our DSC can filter the clean sample
with an estimated threshold by Memorization Discrepancy.

defending against accumulative poisoning attacks. More
details and supplementary can be referred to in Appendix C.

4.1. Experiment Setups

Training simulation. Following Pang et al. (2021), we
simulate the real-time data streaming using the SVHN (Net-
zer et al., 2011), CIFAR-10 and CIFAR-100 (Krizhevsky,
2009) datasets. The overall learning process consists of two
specific phases with different training data (i.e., clean sam-
ples and poison samples). The first phase is named burn-in
phase, like model pre-training, the model will be trained on
natural data before taking the training examples from other
untrusted sources (Biggio & Roli, 2018). The second phase
is termed as victim phase, in which the adversaries begin to
inject the poison samples to attack the current model. Same
as (Pang et al., 2021), we train ResNet-18 (He et al., 2016)
using the SGD optimizer with the learning rate 0.1, mo-
mentum 0.9, and weight decay 0.0001. During the whole
process, we keep the batchsize of data streaming at 100.

Poisoning attack. After the burn-in phase in which the
model is pre-trained for 40 epochs, we begin to inject the
accumulative poison samples (Pang et al., 2021). Specif-
ically, the crafted sample is generated by PGD under the
ℓ∞-norm constraint. Different from those regular poisoning
generations, this poisoning attacker is allowed to intervene
during training and tune the poisoning strategies dynami-
cally with the model states. Since its poisoning target is the
single-step drop of model accuracy, the poisoning effects of
the secretly injected data will be accumulated and triggered
in the final batch (termed as trigger batch). To simulate the
monitor process in real-time data streaming, this final batch
will be triggered when the model training loss is amplified
by a monitored threshold of previous poison samples, and
we adopted the same threshold values in Pang et al. (2021).

Defense target. To defend the attacks in real-time data
streaming, there are three aspects that need to be considered.
The first is the single-step drop in model accuracy. The sec-
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Table 1. Test accuracy (%) of the simulated experiments on real-time data streaming (Mean±Std).

CIFAR-10 Defense Accuracy: Start Batch Accuracy: +Poison Accuracy: + Trigger ∆

Clean Oracle
ST

86.3

- 84.4 84.4 -
GC - 86.2 86.2 -
AT - 77.2 77.2 -

DSC - 84.7 84.7 -

Accu. Poison
ST 1 75.7±3.33 50.4±5.03 -25.3±4.13
GC 3 79.7±0.25 75.1±0.05 -4.6±0.26
AT 3 80.1±0.10 75.3±0.26 -4.7±0.20

DSC 3 81.2±0.35 77.3±0.58 -3.8±0.31

SVHN Defense Accuracy: Start Batch Accuracy: +Poison Accuracy: + Trigger ∆

Clean Oracle
ST

94.6

- 93.4 93.4 -
GC - 94.5 94.5 -
AT - 89.9 89.9 -

DSC - 94.7 94.7 -

Accu. Poison
ST 3 85.4±3.54 70.4±9.16 -15.4±6.2
GC 7 89.7±0.06 88.3±0.26 -1.4±0.30
AT 7 89.6±0.21 88.7±0.20 -0.9±0.06

DSC 9 89.9±0.01 88.8±0.26 -1.1±0.26

CIFAR-100 Defense Accuracy: Start Batch Accuracy: +Poison Accuracy: + Trigger ∆

Clean Oracle
ST

59.0

- 55.8 55.8 -
GC - 60.2 60.2 -
AT - 49.5 49.5 -

DSC - 55.0 55.0 -

Accu. Poison
ST 3 42.9±2.74 32.6±2.84 -10.3±0.29
GC 4 49.8±0.12 43.8±0.29 -6.1±0.25
AT 5 47.7±0.25 44.4±0.21 -3.2±0.42

DSC 5 48.6±0.91 45.4±1.39 -3.2±0.65

ond is the final accuracy, which reflects the overall defense
effectiveness for the accumulative poisoning attacks. The
third is the test accuracy of learning with clean samples,
since we assume that the defender does not know when the
poison sample is injected. For the threshold schedule, we set
µ = 0.5, τ = 0.02 for both CIFAR-10 and SVHN datasets,
and µ = 1.7, τ = 0.1 for CIFAR-100 dataset.

Threshold adjustment. The certain threshold for Mem-
orization Discrepancy can be estimated based on the value
of the controllable clean samples used in the burn-in phase.
Similar to the tuning strategies in gradient clipping (Pas-
canu et al., 2013; Goodfellow et al., 2016), we can set a
lower threshold to conduct more correction steps for a con-
servative optimization for the online model. Based on the
illustration in Figure 3 and the Property 3.4, the value of
Memorization Discrepancy will increase as the model train-
ing. Thus, we adopt a fixed auxiliary model θ∗ as the θt−k

in discrepancy calculation. The threshold value will increase
when training with the real-time data streaming from the
untrusted sources (Biggio & Roli, 2018) and it requires a
dynamical threshold for filtering the clean samples with
poison samples. To this end, we introduce the schedule as
P = µ+ τ ∗m, where P is our threshold, the initial value

µ, the dynamical growing interval τ is estimated by our
controllable clean examples, and m is the batch number. We
provide further discussion on it in Appendix C.9.

4.2. Baseline Performance

In this part, we compare our DSC with previous base-
line methods (i.e., Standard Training (ST), Gradient Clip-
ping (Pascanu et al., 2013) (GC) and Adversarial Training
as Poisoning Defense (Tao et al., 2021) (AT)) on several
benchmarked datasets to verify its effectiveness. In Table 1,
we present the results of Clean Oracle to show the unaf-
fected capacity of learning with clean samples and Accu.
Poison to show the defense effectiveness against the secret
poisoning attack. Specifically, we report four metrics ac-
cording to different statuses: 1) Accuracy: +Poison, the
accuracy after training with the secret poisoning batches;
2) Accuracy: +Trigger, the accuracy after training with the
final trigger batch; 3) Batch, the number of batches before
training loss is amplified to the monitored threshold; 4) ∆,
the accuracy drop of after the trigger batch. Since there are
all clean samples in Clean Oracle, other accuracy values are
equal to the final accuracy after training with 100 batches.

According to Table 1, we can find all the defensive meth-
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Figure 7. Ablation study. Left panel: Memorization Discrepancy between model θt in Eq. (5) and the model at Epoch 1; Left-middle
panel: test accuracy with the threshold of different levels; Middle panel: Memorization Discrepancy under different poisoning capacities
(imperceptibility); Right-middle and Right panel: Memorization Discrepancy corresponding to different discrepancy measurements.

Table 2. Test accuracy (%) of adopting different adversarial opti-
mization losses in our defense testing on the CIFAR-10 dataset.

Defense/Attack PGD KL (TRADES) CW∞

DSC

Start 86.3

Acc. +Poison 81.4 80.3 81.8
Acc. +Trigger 78.7 77.3 79.3

∆ -2.69 -3.04 -2.54

ods can resist more batches than ST before triggering the
pre-defined threshold. As for Accu. Poison, our DSC can
achieve better accuracy consistently after going through
the poisoning batches and the final trigger batches. Com-
pared with GC, DSC and AT result in a smaller accuracy
drop for the final single batch, it is much more important
to those real-world applications since the model recovery
with worse performance is a large cost (Kairouz et al., 2019).
As for Clean Oracle, GC can achieve comparable or even
higher accuracy than the pre-trained model since the clipped
gradient also slow down the training process with a small
gradient (Pang et al., 2021). Due to the indiscriminate cor-
rection, AT over-optimizes the clean samples and leads to
much lower accuracy than the pre-trained model. In con-
trast, our DSC can still achieve comparable performance
with ST through the selective correction of Memorization
Discrepancy. Overall, the experiments running multiple
times verified the general effectiveness of our DSC.

4.3. Ablation Study and Further Discussion

In this part, we conduct various experiments on CIFAR-
10 to provide a thorough understanding of our presented
Memorization Discrepancy and DSC. More ablations from
different perspectives can be referred to in Appendix C.

Training status θt. In the left panel of Figure 7, we inves-
tigate the training status θt in Memorization Discrepancy.
Specifically, we generate the accumulative poisoning at-
tack based on the θt and calculate the discrepancy with the
model checkpoint in Epoch 1. As can be seen, the mean
values of Memorization Discrepancy on poison samples are

Table 3. Test accuracy (%) of considering adaptive attacks being
aware of Memorization Discrepancy on the CIFAR-10 dataset.

Constraint β 0 0.05 0.1 0.2

ST

Start 86.3

Acc. +Poison 81.4 80.9 80.9 80.3
Acc. +Trigger 51.3 59.9 69.8 74.9

∆ -30.04 -20.97 -11.12 -5.43

consistently distinguishable from that on clean ones. This
phenomenon provides us a chance to set just one auxiliary
model for checking the dynamics instead of several histori-
cal models used in Figure 2 to fix the interval k.

Interval k. In our previous illustration of Figure 2, we
visualize the discrepancy with the fixed interval k (e.g.,
k ∈ [4, 36]). The Memorization Discrepancy of both poison
samples and clean samples increases and becomes more dis-
tinguishable with the increasing of the interval k. However,
it is hard to use general criteria to choose the best interval or
the previously analyzed training status. In the left panel of
Figure 7, we adopt a dynamical interval k which increases
with the training status with a fixed auxiliary model (i.e.,
θt−k) at Epoch 1. A similar trend with the distinguishable
values can also be captured during the training process.

Threshold P . In the left-middle panel of Figure 7, we vali-
date our proposed DSC with different levels of the threshold
P . The intuition behind the threshold is to better utilize
the distinguishable Memorization Discrepancies of poison
samples and clean samples to filter out the specific samples.
With a high threshold P , the test accuracy would not drop
significantly when training with clean samples, since the
sample correction can early-stop to avoid over-calibration.
In contrast, using low threshold results in a severe accuracy
drop since we conduct the indiscriminate correction. To
further investigate the characteristics of the threshold P ,
we conduct additional experiments about Eq. (6) with the
threshold P in Appendix C. To sum up, on the one hand,
the results on natural data confirm that its discrepancy value
shares a similar trend (e.g., increasing along the training
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Table 4. Comparison of Memorization Discrepancy along the backtracking interval across different backbones.

Dataset Model/Interval k Discrepancy on 4 8 12 16 20 24 28 32 36

CIFAR-10

ResNet Clean 0.43444 0.40864 0.46287 0.39770 0.47189 0.52683 0.72566 1.31921 2.45922
Poison 0.73276 0.68203 1.09318 1.03971 1.58336 1.43465 4.01915 2.64194 4.09608

VGG-11 Clean 0.52409 0.41497 0.51741 0.82906 0.94531 1.32099 1.97665 2.82950 5.69943
Poison 0.33073 0.44917 0.41988 0.80057 0.89317 1.25389 3.65167 6.73917 14.53571

SmallCNN Clean 0.42651 0.67719 0.48234 0.53239 0.46322 0.64273 1.05432 0.65214 1.89398
Poison 1.04400 1.49517 1.08457 0.94815 1.91275 1.88436 3.73850 3.34128 5.79640

process as indicated in Table 4) across different datasets,
while the specific threshold P needs different setups accord-
ing to different training data. On the other hand, we can find
that the performance of DSC can be stable during a specific
range of the threshold value for identifying the poison data.

Poisoning capacity. In the middle panel of Figure 7, we
check the effect of the poisoning capacity, i.e., the imper-
ceptibility, on the value of Memorization Discrepancy. The
imperceptibility is controlled by a parameter ϵ which cor-
responds to the manipulations. As the same in adversarial
attacks (Goodfellow et al., 2015), the larger ϵ indicates more
perturbations and lower imperceptibility. The results show
that the discrepancies between the two values of poison and
clean samples also increase along with the enlargement of ϵ.

Different backbones. To verify the generality of Memo-
rization Discrepancy, we conduct experiments using differ-
ent model structures (e.g., ResNet (He et al., 2016), VGG-
11 (Simonyan & Zisserman, 2015), SmallCNN (Zhang et al.,
2019)) on both clean and poison samples to check the dis-
crepancy value in Table 4. The results confirm the phe-
nomenon generally exists across different backbones in our
experiments on the CIFAR-10 dataset, e.g., the difference
between the Memorization Discrepancy on poison samples
from that on clean samples is generally more distinguishable
along with the enlargement of backtracking interval k.

Discrepancy measurement. In the rest two panels of Fig-
ure 7, we also investigate another discrepancy measurement
to check the relationship between poison and clean sam-
ples. Here we adopt the Jensen–Shannon divergence (Da-
gan et al., 1997) (JS) to calculate it and compare the results
with that calculated on KL divergence. Both discrepancy
measurements can capture a similar trend for their Mem-
orization Discrepancy. Due to the different definitions for
the measurement, there exists a difference on the scale of
specific discrepancy values. The overall results show that
the distinguishable relationship between two Memorization
Discrepancies is not a consequence of a certain measure-
ment but all of them, and the general intuition behind the
discrepancy can also be captured by other measurements.

Discussion on the adaptive attacker. In Tables 2 and 3,
we consider different adversarial methods for generating
imperceptible poison samples. The results demonstrate the
robust effectiveness of DSC on different attacks. Further-
more, we also discuss a potential adaptive attacker (Tramer
et al., 2020) which is aware of Memorization Discrepancy,
and try to incorporate it into its generation constraint to
escape from identifying. However, the constraint can di-
rectly mitigate the poisoning effect that is reflected by the
∆ in Table 3, where the poison sample is generated under a
constraint controlled by β with the historical model.

In addition, we also provide more explorations of Memoriza-
tion Discrepancy and the DSC from different perspectives
in Appendix C, including extra experiments of DSC in dif-
ferent learning and identification settings, the effects of
different components, and corresponding discussions.

5. Conclusion
In this work, we investigated the accumulative poisoning at-
tacks in real-time data streaming through the views of model
dynamics. Through the exploration of the dynamic changes,
we present a novel measure, i.e., Memorization Discrepancy,
which is aware of the imperceptible manipulation added to
the clean samples. Based on the novel measure, we propose
the Discrepancy-aware Sample Correction method, which
can selectively calibrate the poison samples. We present a
comprehensive understanding of the discrepancy, and also
various experiments to show the effectiveness of the DSC.
We believe the underlying spirit of our Memorization Dis-
crepancy, i.e., the dynamic changes in different models, can
also motivate other defensive methods or applications.
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Appendix

Reproducibility Statement
We provide the repository of our source codes to ensure the reproducibility of main experimental results: https:
//github.com/tmlr-group/Memorization-Discrepancy. All experiments are conducted with multiple runs
on NVIDIA GeForce RTX 3090 GPUs.

A. Property Insights of Memorization Discrepancy
In this part, we provide the formal analysis of the property insights (e.g. Theorem 3.2 introduced in the main text) of our
Memorization Discrepancy. To reveal the underlying mechanism of the proposed information measure, we start by revisiting
the different targets of poisoning adversaries from the original training objective. Without specifying any detailed strategy
for generating poison samples, the malicious objective generally targets to deteriorate the model performance on clean
inputs, e.g., maxL(S; θ∗), where θ∗ is assumed to be well-trained in the given samples.

However, considering a model that is updated with clean training data, it gradually approaches to different side (e.g.,
minL(S; θ∗)) of the previous target. Based on that, we can naturally make the following assumption about the sample-wise
discrepancy with the difference between the current and target loss value,
Assumption A.1. Let f(x; θt) denote the model dynamics about the sample x and at round t, k denotes the interval rounds
for backtracking. Considering the ordinary objective minL(S; θ∗) and the poisoning objective maxL(S; θ∗) with the clean
inputs set S and a poisoned set P , we have,

D(f(x̂(θt); θt), f(x; θt)) ∝ maxL(S; θ∗)− L(S; θt), s.t. θ∗ ∈ argmin
θ
L(P ; θ) (7)

Intuitively, it indicates that the model output of the poison sample will be much more different from that of the clean sample
when the model is well-trained on the clean training data (i.e., has a small loss value on clean set S). In other words, the
poisoning adversary needs a larger effort to achieve the malicious target, since the model has already performed well on the
clean set.

Here we present the Theorem 3.2 again (i.e., the same as the following Theorem A.2) to start the analysis and the further
discussion on the critical property of the defined Memorization Discrepancy.
Theorem A.2. Let f(x; θt) denote the output about the sample x at epoch t, k denotes the interval rounds, and S denotes a
clean dataset. Considering the opposite between objective minL(S, θ∗) and the poisoning objective maxL(S, θ∗) where
θ∗ is the well-trained model respectively, there exists a learning period where we have,

D(f(x̂(θt); θt), f(x̂(θt−k); θt−k))− D(f(x; θt), f(x; θt−k)) ∝ L(S; θt−k)− L(S; θt), (8)

proof of Theorem A.2. The correlation of the two parts in Eq. (8) can be formulated in the following.

Given the two approximate optimization targets as,

θt − β∇θtL(f(x; θt), y)→ minL(S; θt+1)

θt − β∇θtL(f(x̂(θt); θt), y)→ maxL(S; θt+1),
(9)

we can obtain the correlation about these two opposite target parts as,

D(∇θL(f(x), y, θt),∇θL(f(x̂(θt)), y, θt)) ∝ maxL(S; θ∗)− L(S; θt), (10)

where θ∗ ∈ argminθ L(P ; θ) is the model parameter well-trained on the poison samples. Similarly, we can also get the
following equation via backtracking,

D(∇θL(f(x), y, θt−k),∇θL(f(x̂(θt−k)), y, θt−k)) ∝ maxL(S; θ∗)− L(S; θt−k), (11)

Since the two gradient parts share the same anchor of model parameter and the labels, we can get the consistent relationship
that similar to Assumption A.1 as,

D(L(f(x), y, θt),L(f(x̂(θt)), y, θt)) ∝ maxL(S; θ∗)− L(S; θt),
D(L(f(x), y, θt−k),L(f(x̂(θt−k)), y, θt−k)) ∝ maxL(S; θ∗)− L(S; θt−k),

(12)
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By accumulate the approximate discrepancy correlation with historical models, we can introduce the discrepancy considering
the samples of same type,

D(f(x; θt−k), f(x; θt)),

D(f(x̂(θt−k); θt−k), f(x̂(θt); θt)),
(13)

Using the above discrepancy on model outputs, we can explicitly obtain the formulation by constructing discrepancy for
each side of Eq. (12),

D(f(x̂(θt); θt), f(x̂(θt−k); θt−k))− D(f(x; θt), f(x; θt−k)) ∝ L(S; θt−k)− L(S; θt). (14)

This gives the property insights on the dynamics of the Memorization Discrepancy.

In summary, the above correlation of the Memorization Discrepancy and the loss discrepancy between two different model
stages is built on the high-level target discrepancy. The Eq. (8) indicates that we can enlarge the discrepancy of the two
information values on clean and poison samples via construct the proper loss discrepancy. Backtracking the historical model
can serve this goal since it naturally reflects the dynamical behavior of learning with the ordinary objective.

As enlarging the backtracking interval k, the loss discrepancy is further enlarged. The corresponding poison and clean
samples become more distinguishable on the basis of our proposed information value. It is consistent with previous empirical
results in Figures 1 and 2. This property exactly meets our requirement described in Section 3.1, i.e., to gain useful
information about imperceptible poison samples via model dynamics. To be specific, as presented in Figure 1, the two
distributional statics become more distinguishable when we construct the discrepancy by involving the historical models.
Similar in Figure 6, the Memorization Discrepancy of poison samples is larger than that of clean samples. It is general and
has no specific assumption about the poisoning generation.

From the new perspective, the proposed Memorization Discrepancy can accumulate the target-level discrepancy in model
dynamics for better distinguishing poison samples from clean samples, which is appropriate to figure out the accumulative
poisoning attacks since the adversary try to spread the perceived risk over a single round of optimization.

B. Further discussion about the Demonstration in Figure 3
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Figure 8. Empirical verification about the property insights on the Memorization Discrepancy.

In this part, we provide the empirical verification of the previous property insights draw from the discrepancy of model
dynamics. On the same simulation experiments on CIFAR-10, we check the Memorization Discrepancy and the correspond-
ing loss discrepancy between the current and historical model in Figure 8. It can be found that during the stable training
phase (e.g. back from Epoch 40 to Epoch 5) the correlation between the discrepancy in model output and loss values are
proportional. In the early stage, we can find some inconsistent relationships exist, we attribute the possible reason to the
unstable optimization which can not accurately reflect the relative distance between the malicious target (training with
poison samples) and the ordinary target (training with clean samples).

C. Additional details and explorations
In this section, we provide completed information about the accumulative poisoning attacks with extra details of algorithm
implementation, as well as extra experimental results.
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(a) Illustration of Clean and Poison Samples (ϵ = 0.064)
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(b) Empirical Unawareness of Accumulation

Figure 9. Visualization of the empirical imperceptibility on accumulative poisoning attack using CIFAR-10 dataset. Except for the
visual-level imperceptibility, the accumulative poison samples will not induce a significant accuracy drop which may be caught by a
simple monitor.

C.1. Details about Accumulative Poisoning Attack

In this part, we describe the details of the Accumulative Poisoning Attack. Let Strain be the clean training set and Sval be
the separate validation set, an attacker will poison the Strain into a poisoned P(Strain). Except for the original malicious
objective as,

max
P
L(Sval; θ

∗), s.t. θ∗ ∈ argmin
θ
L(P(Strain); θ), (15)

the accumulative poisoning attack utilizes the characteristics of online learning to inject the poison samples. Hence, the
real-time malicious objective is formulated as follows at the training round T ,

max
P
L(Sval; θ

T+1), s.t. θT+1 = θT − β∇θL(P(Strain); θ
T ), (16)

where β is the learning rate of gradient descent.

By expanding the previous malicious objective, it can be rewritten as,

min
P
∇θL(Sval; θ

T )⊤∇θL(P(ST ); θ
T ), (17)

Based on Eq. (17), Pang et al. (2021) introduce the accumulative phase A to make the model parameter at round T obtained
after the accumulative phase be more sensitive and fragile to the poisoning. So the overall objective can be formulated as,

min
P,A
∇θL(Sval;A(θT ))⊤∇θL(P(ST );A(θT )), (18)

and the perturbed data batch A(St) can be crafted by solving a first-order expansion of the real-time learning update,

max
P,At

∇θL(At(St); θ
t)⊤

[
∇θL(St; θ

t) + λ · ∇θ(∇θL(Sval;A(θT ))⊤∇θL(P(ST );A(θT )))
]
, (19)

which equals to,

max
P,At

∇θL(At(St); θ
t)⊤

∇θL(St; θ
t)︸ ︷︷ ︸

keep accuracy

+λ · ∇θ(∇θL(Sval; θ
T )⊤∇θL(P(ST ); θ

T ))︸ ︷︷ ︸
accumulating poisoning effects for the trigger batch

 , (20)

Following Pang et al. (2021), we adopt the burn-in phase that pretrains the model for 40 epochs. Then we begin to inject the
accumulative poison samples (Pang et al., 2021). Specifically, the crafted sample is generated by PGD (Madry et al., 2018)
under the ℓ∞-norm constraint. Since its poisoning target is the single-step drop of model accuracy, the poisoning effects
of the secretly injected data will be accumulated and triggered in the final batch (termed as trigger batch). To simulate
the monitor process in real-time data streaming, this final batch will be triggered when the training loss is amplified by a
threshold of previous poison samples (the same as threshold in Pang et al. (2021)).
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Algorithm 1 Discrepancy-aware Sample Correction (DSC)
Input: data streaming S = {(xi, yi)}ni=1, learning rate η, number of epochs T , batch size m, number of batches M , data
x ∈ X , label y ∈ Y , victim model θ, loss function ℓ, PGD step K, perturbation bound ϵ, step size δ, projection opt. Π,
Memorization Discrepancy threshold P , auxiliary historical model θ∗.
Output: model θT ;

1: for epoch = 1, . . . , T do
2: for mini-batch = 1, . . . , M do
3: Sample a mini-batch {(xi, yi)}mi=1 from S
4: for i = 1, . . . , m (in parallel) do
5: Obtain the corrected sample x̃i of xi:
6: x̃i ← xi, n = 1
7: while D(f(x̃i; θ), f(x̃i; θ

∗)) > P and n < K do
8: x̃i ← ΠB[xi,ϵ]

(
x̃i − δ · sign(∇x̃i

ℓ(f(x̃i), y))
)

9: n = n+ 1
10: end while
11: end for
12: θ ← θ − η∇θℓ(fθ(x̃i), yi)
13: end for
14: end for

C.2. Algorithm Realization of DSC

Here we provide the detailed realization of our proposed Discrepancy-aware Sample Correction in Algorithm 1.

C.3. Comparison of Training Time

In this part, we check the training time of different defenses with the accumulative poisoning attacks. For our proposed DSC
which incorporates Memorization Discrepancy in identifying the incoming samples on the data streaming, the cost of the
backtracked historical model mainly lies in the storage to save the historical model checkpoints. However, considering that
in practice it is common to save the checkpoints regularly during training, such cost of our method is acceptable. Here we
report the training time of each method in Table 5 to give a more intuitive comparison. The experiment setups keep the same
as Table 1. According to the results, we can see that DSC requires slightly more time than other methods.

Table 5. Comparison of per mini-batch training and the accuracy (%) after the poisoning attack across different datasets.

Dataset Method Training Time (seconds) Acc. +Tigger

CIFAR-10

ST 0.0206 50.4
GC 0.0253 75.1
AT 0.3735 75.3

DSC 0.3241 77.3

CIFAR-100

ST 0.0189 32.6
GC 0.0314 43.8
AT 0.3732 44.4

DSC 0.2948 45.4

SVHN

ST 0.0198 70.4
GC 0.0250 88.3
AT 0.3630 88.7

DSC 0.0689 88.8
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C.4. Extra Validation of the Threshold P

We conduct more experiments to present Eq. (6) of our DSC. First, we check the trend of discrepancy across different
datasets in Table 6, and the results on natural data confirm that it shares a similar trend (increasing along the training process)
across different datasets, while the specific threshold P needs different setups due to different datasets. Second, we conduct
experiments about hyperparameter tuning in the proper thresholds P and compare the performance on clean oracle and
poisoned training data, respectively. Note that, in Table 7, there are no further results when the test accuracy drops to a
certain level (indicated by "-"). The results show that the performance is stable during the specific range of the threshold P
value. To be more specific. Similar to the hyperparameters of gradient clipping and adversarial training, the threshold P can
not be too high to lose control on correcting the poisoned data and also needs to be not too low to induce over-calibration on
the clean sample. It is consistent with the results presented in the left-middle panel of Figure 7.

Table 6. The discrepancy trend of batch data across different datasets.

Dataset Discrepancy on/Batch 1 2 3 4 5 6 7 8 9 10 11

CIFAR-10 Clean 0.2941 0.2996 0.4271 0.4487 0.4489 0.6101 0.6083 0.5755 0.6505 0.8110 0.7807
CIFAR-100 Clean 1.7981 1.9814 2.0760 2.2362 2.4590 2.9175 3.1986 3.3778 2.9070 3.3067 3.6144

SVHN Clean 0.0784 0.0793 0.1007 0.1221 0.0922 0.1433 0.1249 0.1588 0.1468 0.1531 0.2175

Table 7. Test accuracy during the training process w.r.t. hyperparameter tuning on the proper thresholds.

Dataset Data Threshold P /Batch m 1 2 3 4 5 6 7 8

CIFAR-10

Clean 0.8+0.02m 0.863 0.867 0.871 0.872 0.873 0.873 0.874 0.873
Clean 0.5+0.02m 0.863 0.867 0.871 0.872 0.873 0.873 0.874 0.871
Clean 0.4+0.02m 0.863 0.867 0.873 0.873 0.874 0.871 0.869 0.868
Clean 0.3+0.02m 0.863 0.867 0.871 0.872 0.87 0.87 0.867 0.867
Clean 0.1+0.02m 0.863 0.865 0.865 0.862 0.861 0.859 0.858 0.857

CIFAR-10

Poison 0.8+0.02m 0.863 0.841 0.76 0.665 - - - -
Poison 0.5+0.02m 0.863 0.859 0.842 0.812 0.771 - - -
Poison 0.4+0.02m 0.863 0.859 0.842 0.812 0.771 - - -
Poison 0.3+0.02m 0.863 0.859 0.842 0.81 0.77 - - -
Poison 0.1+0.02m 0.863 0.859 0.842 0.81 0.77 - - -

C.5. Ablations about Attack Success

We have conducted extra ablation study on evaluating the attack success (keep the same setups with the left middle panel
of Figure 7), and summarize the results in Table 8. The attack success rate here is defined as the percentage of received
examples that can circumvent the defense method with specific threshold. The results show there is a trade-off between
the model accuracy and the attack success rate. To be specific, it is due to the critical characteristic of our Memorization
Discrepancy on clean samples and poison samples. The lower threshold tend to cover the correction ability of AT that
indiscriminately treat all examples as poison sample, while the higher threshold tend to behave as the ST. As for the defense
for controlling the attack success rate, it can be further designed referring to other specific techniques to utilize the critical
nature of our Memorization Discrepancy.

Table 8. Evaluations (%) about attack success w.r.t. the threshold P in CIFAR-10.

Threshold of Different Level Accuracy Attack Success Rate

High P 87.1 87.5
Medium P 83.7 37.5

Low P 80.8 12.5
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C.6. Ablations about Different Auxiliary Models

As for the phenomenon of Memorization Discrepancy (as shown in the left panel of Fig 5), it can be found in other settings
that using the model checkpoint in epoch E (E ∈ [1, present]) as the auxiliary model. The overall results show a similar
trend as the left panel of Figure 7. In our main experiments in Table 1, we use the checkpoint at Epoch 20 for CIFAR-10/100
as our auxiliary model. We also conduct the experiments on CIFAR-10 using the different auxiliary model with the same
threshold to see how it affect our DSC and summarize the results in Table 9. The results show that the threshold may need
adjustment when we choose the different auxiliary models to compute the Memorization Discrepancy. It can be found
if we backtrack the earlier checkpoint (i.e., Epoch 10), the threshold estimated using checkpoint at Epoch 20 maybe still
compatible. However, it is not appropriate when we use the later checkpoint (i.e., Epoch 30). Using the different auxiliary
models needs further estimate the threshold by a small batch of clean data used in the previous training stage.

Table 9. Performance of DSC using the different auxiliary models with the same/different threshold setup.

Auxiliary Epoch Acc. Start Batch Acc. +Poison Acc. + Trigger ∆

10 86.3% 3 80.9±0.09% 77.1±0.16% -3.9±0.12%
10 [adjust P] 86.3% 3 81.4±0.05% 77.5±0.23% -3.8±0.21%

20 86.3% 3 81.2±0.35% 77.3±0.58% -3.8±0.31%
20 [adjust P] 86.3% 3 81.0±0.09% 77.8±0.22% -3.6±0.05%

30 86.3% 3 77.3±1.25% 63.6±3.39% -13.6±4.64%
30 [adjust P] 86.3% 3 80.2±0.12% 76.8±0.27% -4.0±0.32%

C.7. Comparisons about Other AT Variants

As for our proposed DSC, the critical part is to selectively correct the potential poison samples using the Memorization
Discrepancy. We can extend those AT variants (Zhang et al., 2019; Wang et al., 2020; Ding et al., 2020; Zhang et al., 2020a)
to be sample corrections in our problem setting. We conduct the comparison on CIFAR-10 dataset and summarize the
results in Table 10. Since all those variants are designed for further improving adversarial robustness or other issues in
adversarial training, its objective all introduce other optimization parts which sacrifice the natural performance, the results
also demonstrate that the accuracy drop using these AT-variants-based methods for accumulative poisoning defense is more
severe than the original AT.

Table 10. Comparison with variants of AT methods for the sample correction.

Method Acc. Start Batch Acc. +Poison Acc. + Trigger ∆

ST 86.3% 1 75.7±3.33% 50.4±5.03% -25.3±4.13%
AT 86.3% 3 80.1±0.10% 75.3±0.26% -4.7±0.20%

TRADES 86.3% 3 78.2±0.28% 72.5±0.45% -5.8±0.32%
MART 86.3% 3 77.5±0.32% 68.4±0.66% -9.1±1.20%
MMD 86.3% 3 77.2±0.81% 71.4±0.77% -5.8±0.89%
FAT 86.3% 3 80.4±0.27% 76.2±0.23% -4.2±0.45%
DSC 86.3% 3 81.2±0.35% 77.3±0.58% -3.8±0.31%

C.8. Ablations about Black-box Setting

Empirically, we also verify the effect of our proposed method on the extended black-box setting for accumulative poisoning
attack, and summarize the results compared with White-box setting in Table 11. In this setting, we use other surrogate
models (e.g., the historical model earlier than the current model stage) to generate the adversarial examples and feed them
into the vaccine model. The results show that our DSC has a comparable defense effect to that of the white-box setting.
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Table 11. Comparison with variants of AT methods for the sample correction.

Setting White/Black Acc. Start Batch Acc. +Poison Acc. + Trigger ∆

CIFAR-10 (Clean Oracle) - 86.3% - 84.7% 84.7% -
Accu. Poison (DSC) White-box 86.3% 3 81.2±0.35% 77.3±0.58% -3.8±0.31%
Accu. Poison (DSC) Black-box [30] 86.3% 3 81.7±0.23% 78.2±0.14% -3.5±0.12%
Accu. Poison (DSC) Black-box [20] 86.3% 3 82.0±0.11% 78.9±0.23% -3.1±0.08%
Accu. Poison (DSC) Black-box [10] 86.3% 3 82.5±0.02% 79.7±0.03% -2.8±0.05%

C.9. Empirical Evaluation of the Correction Condition

As for the hyper-parameters µ and τ , in the burn-in phase that follows the (Pang et al., 2021), we can estimate them by using
a small batch sample of clean data. According to the previous properties of the Memorization Discrepancy we observed, we
can approximate the µ and τ by the value computed on the clean data in some period of the burn-in phase. And we did not
change the defense parameters between these two kinds of experiments for fair evaluation. To provide more informative
results, we check the experiments for running the clean oracle with 50 batches of samples and summarize how often the
threshold condition is satisfied during training in Table 12. The results show that part of the clean samples is also affected by
our DSC and their value satisfies the condition in Algorithm 1. For the experiments with clean oracle, we use the same
threshold as the experiments on defending against the accumulative poisoning attack. It shows the selective mechanism
based on the condition.

Table 12. How often the threshold condition is satisfied during training?

Dataset Acc. Start Acc. Oracle Frequency (Satisfy the Correction Condition)

CIFAR-10 86.3% 84.7% 28%
CIFAR-100 59.0% 55.0% 24%

C.10. Preliminary Exploration on Federated Setting

Different from real-time data streaming, for the accumulative poisoning attacks in a federated setting, we need to adapt our
method to the federated learning framework where we can not directly conduct the sample-wise correction. Specifically, we
incorporate the proposed Memorization Discrepancy into the selective defense (e.g., Discrepancy-aware Gradient Clipping
(DGC)) against accumulative poisoning attacks and conduct the experiments in the following table. We can see that the
extended method can also perform comparable or better based on selectively adjusting the training.

Table 13. Classification accuracy (%) on CIFAR-10 during the accumulative phase for 500 steps. Our new information measure on
learning dynamics with the historical model can serve as an auxiliary for gradient clipping operations.

CIFAR-10 Method 10 100 200 300 400 500

Clean Oracle
ST 85.35 83.87 83.9 83.88 83.81 83.86
GC 84.34 85.27 85.5 85.48 85.46 85.43

DGC 84.34 85.31 85.49 85.5 85.45 85.43

Accu. Poisoned
ST 84.65 69.96 68.74 69.36 69.31 69.23
GC 84.88 84.27 83.14 81.78 80.15 78.95

DGC 84.87 84.31 83.3 82.13 80.66 79.84
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C.11. More Dynamics of the Memorization Discrepancy

In this part, we present more exploration about the dynamics of the proposed Memorization Discrepancy. For the poisoning
generation, we follow the same malicious objective in Eq. (1) and adopt Fowl et al. (2021) to generate the poison
samples for presenting the discrepancy trend, i.e., generating the adversarial poison samples via the adversarial generation
procedure (Madry et al., 2018). In Figure 10, we change the backtracking interval k during the historical 40 epochs. The
differences between the Memorization Discrepancy of clean and poison samples approximately become more separable
when we increase K. In Figure 11, we fix the auxiliary model at Epoch 1 and investigate the value of Memorization
Discrepancy using different intervals. The overall results show a similar trend with the previous analysis, that we can
better utilize the model dynamics via enlarging the backtracking interval in computing the Memorization Discrepancy. In
Figure 12, we change the different auxiliary models from Epoch 1 to Epoch 28. Although there exists the same trend as
the previous two explorations, the value of Memorization Discrepancy varies among the different auxiliary models. It can
draw the same conclusion as the experiment in Appendix C.6 that we may need further estimate the appropriate threshold
for distinguishing the clean and poison samples. The overall results demonstrate that model dynamics are aware of the
imperceptible poison samples.

C.12. Detailed Discussion about Attackers Being Aware of Memorization Discrepancy

Considering the concern about adaptive attackers in conventional adversarial literatures (Tramer et al., 2020), we also present
a further discussion about a stronger attacker being aware of our Memorization Discrepancy and trying to incorporate it into
the poison sample generation (Pang et al., 2021) with the auxiliary model that used in our experiments.

Before that, we also try different adversarial attacking objectives (e.g., PGD (Madry et al., 2018), KL-based method in
TRADES (Zhang et al., 2019), and C&W (Carlini & Wagner, 2017)) in generating the poison samples. Our empirical results
in Table 2 show that different adversarial generation methods in conventional adversarial literature have limited differences
from each other. Then, we delve into the stronger attacker that is also optimized for Memorization Discrepancy.

However, unlike the previous adaptive adversarial attacks (Carlini & Wagner, 2017; Tramer et al., 2020) utilizing the
extra search space to find a stronger adversarial example to satisfy the misclassification requirement, and meanwhile keep
the imperceptibility. Our empirical results in Table 3 show that keeping the constraint of Memorization Discrepancy can
directly affect the poisoning effect induced by the generated poison samples, indicating the underlying difference between
generating adversarial examples (Goodfellow et al., 2015) for misleading the model inference and generating adversarial
poison samples for misleading the model training. In other words, the constraint on Memorization Discrepancy in poison
generation will directly mitigate the poison effect on the target model.

To be specific, following the detailed optimization procedure of accumulative poisoning attack, we incorporate the constraint
of Memorization Discrepancy into the original generation equation used in (Pang et al., 2021). Similar to the first constraint
in Eq. (20) used for keeping the accuracy (which is targeted for escaping from a simple monitor based on accuracy statics),
we add the second term in Eq. (21) for Memorization Discrepancy, where LMD = D(f(x̂(θt); θ∗), f(x̂(θt); θt)) and the
auxiliary historical model θ∗ are kept same as DSC. The whole generation objective is extended as follows,

max
P,At

∇θL(At(St); θ
t)⊤

∇θL(St; θ
t)︸ ︷︷ ︸

keep accuracy

+ β · ∇θLMD︸ ︷︷ ︸
keep imperceptibility

+λ · ∇θ(∇θL(Sval; θ
T )⊤∇θL(P(ST ); θ

T ))︸ ︷︷ ︸
accumulating poisoning effects for the trigger batch

 , (21)

Intuitively, it is reasonable that the search space about generating a perturbation for adversarial examples may be easier
to utilize for keeping the imperceptibility than constructing the adversarial poison samples in accumulative poisoning
attacks or other delusive attacks. The above exploration verifies Memorization Discrepancy has significance in identifying
accumulative poisoning attacks and also in increasing the difficulty of generating poison samples with satisfactory poisoning
effects and better statistical unawareness.

D. Further Discussion
As for the underlying mechanism of Memorization Discrepancy, it has no special assumption on the types of poisoning
generation but reflects the target-level discrepancy (i.e., the differences between poisoning target maxL(S, θ) and the
original target minL(S, θ)) by exploring model dynamics. Memorization Discrepancy is a characteristic of poisoned
behavior that can be considered in different defensive methods or detection strategies. We primarily focus on this problem
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Figure 10. Dynamics of backtracking interval on Memorization Difference in CIFAR-10.

set in our study since the delusive attack and its corresponding defense are important and of great interest in the related
literature (Newsome et al., 2006; Fowl et al., 2021; Pang et al., 2021). One possible strategy to extend our work to different
types of poisoning is to explore indications in the nature of the specific poisoning objective using model dynamics. However,
since the poisons have distinct targets (Fowl et al., 2021; Geiping et al., 2021; Pang et al., 2021) and various different
objectives, we would leave expanding our approaches to be one major work in future.

Here we also discuss the potential limitations of our work, there are two points that need to be improved in the future. First,
as our work mainly focuses on defending against the accumulative poison attack on real-time data streaming, currently, there
is a certain gap in generalizing our method to an offline setting (e.g., training with the poisoned samples from scratch). To
be specific, utilizing the Memorization Discrepancy in other settings may require more improvement or adjustment. Second,
regarding the proposed DSC, the current method still requires carefully checking the model dynamics to set the threshold P.
The predefined threshold may increase the extra analytical workload for adopting the method in practice.
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Figure 11. Dynamics of same auxiliary epoch on Memorization Difference in CIFAR-10.

Regarding the future directions, there are two directions corresponding to previously discussed limitations. First, the
learning dynamics revealed by the Memorization Discrepancy capture the relationship between the natural objective and the
poisoning objective, which can be extended to or explored in other settings like the offline poisoning defense. Second, it
can be found that all the current methods still suffer from performance degradation induced by the accumulative poisoning
attack. Considering the practical and special scenarios, how to enhance the defense or detection method is also a worthwhile
topic to explore further.
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Figure 12. Dynamics of different auxiliary model on Memorization Difference in CIFAR-10.
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