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Abstract

Mixup, a simple data augmentation method that
randomly mixes two data points via linear inter-
polation, has been extensively applied in various
deep learning applications to gain better general-
ization. However, the theoretical underpinnings of
its efficacy are not yet fully understood. In this pa-
per, we aim to seek a fundamental understanding
of the benefits of Mixup. We first show that Mixup
using different linear interpolation parameters for
features and labels can still achieve similar per-
formance to the standard Mixup. This indicates
that the intuitive linearity explanation in Zhang
et al. (2018) may not fully explain the success of
Mixup. Then we perform a theoretical study of
Mixup from the feature learning perspective. We
consider a feature-noise data model and show that
Mixup training can effectively learn the rare fea-
tures (appearing in a small fraction of data) from
its mixture with the common features (appearing
in a large fraction of data). In contrast, standard
training can only learn the common features but
fails to learn the rare features, thus suffering from
bad generalization performance. Moreover, our
theoretical analysis also shows that the benefits
of Mixup for feature learning are mostly gained
in the early training phase, based on which we
propose to apply early stopping in Mixup. Exper-
imental results verify our theoretical findings and
demonstrate the effectiveness of the early-stopped
Mixup training.
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1 Introduction

The Mixup method (Zhang et al., 2018) is a popular data
augmentation technique in deep learning, known to yield no-
table improvements in generalization and robustness across
multiple domains, such as image recognition (Berthelot
et al., 2019), natural language processing (Guo et al., 2019b;
Chen et al., 2020a), and graph learning (Han et al., 2022a).
Unlike traditional data augmentation approaches that require
domain knowledge of the dataset (e.g., random rotation and
cropping for image data, and randomly modifying edges for
graph data), Mixup relies on convex combinations of both
features and labels from a pair of randomly selected training
data points. As a result, this technique does not require any
specialized knowledge or expertise to be performed.

Despite the remarkable empirical success of Mixup, there
is a considerable gap in the theoretical understanding of
this technique. In the original work of Mixup (Zhang et al.,
2018), it has been argued that the efficacy of Mixup can
be attributed to its inductive bias, which encourages the
trained model to behave linearly, leading to (relatively) sim-
ple decision boundaries. This inductive bias has been fur-
ther supported by a series of works (Guo et al., 2019a;
Zhang et al., 2020; 2022; Chidambaram et al., 2021), which
prove that the Mixup behaves similarly to standard train-
ing for linear models. In particular, Mixup applies the
same linear interpolation on the features and labels of a
pair of training data points (x1, y1) and (x2, y2): denoted
by λx1 + (1 − λ)x2 and labels λy1 + (1 − λ)y2, where
λ ∈ [0.5, 1] is randomly chosen. Then, the trained neural
network (NN) model F is naturally encouraged to conduct
the mapping F (λx1 +(1−λ)x2)→ λy1 +(1−λ)y2 for all
λ ∈ [0.5, 1], (x1, y1) and (x2, y2), implying that F tends to
behave linearly at least within the line segments between all
training data pairs.

Although linearity is a nice inductive bias that tends to
learn the models with low complexities, we are not clear
about whether such an intuition from the algorithm design
(i.e., performing the same linear interpolation for features
and labels) can indeed explain the improvement in gener-
alization. To examine this, we conduct a proof-of-concept
experiment on CIFAR-10 dataset. Instead of using the same
linear interpolation in the feature and label space, we im-
plement the interpolations using different λ’s for features
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(a) ResNet18
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(b) VGG16

Figure 1. Test accuracy achieved by Mixup training with different
configurations of λ and g(λ). The results are evaluated by train-
ing ResNet18 and VGG16 on CIFAR-10 dataset without random
crop & flip data augmentation and weight decay regularization.
We consider 5 different configurations: (1) λ = g(λ) = 1, i.e.,
standard training; (2) λ = g(λ) ∼ U [0.5, 1], i.e., standard Mixup;
(3) λ ∼ U [0.5, 1] and g(λ) = 1.5 − λ; (4) λ ∼ U [0.5, 1] and
g(λ) ∼ U [0.5, 1]; (5) λ = 0.7 and g(λ) = 0.8. It is clear that the
performance gain of Mixup does not require setting g(λ) = λ.

and labels, i.e., we implement the Mixup data augmenta-
tion on the features and labels as: λx1 + (1 − λ)x2 and
g(λ)y1 + [1− g(λ)]y2 for some nonlinear or even random
function g(·) : R[0.5,1] → R[0.5,1]. Our results, shown in
Figure 1, demonstrate that the substantial performance gain
of Mixup training over standard training does not require
g(λ) = λ. Other choices, such as fixed or independently
random λ and g(λ), can lead to comparable or even better
performance.

Therefore, it demands seeking a more fundamental under-
standing of Mixup that is beyond the linearization illustra-
tion. To address this issue, we draw inspiration from a re-
cent work (Shen et al., 2022), which regards standard image
data augmentation as a form of feature manipulation. This
perspective offers a general framework to investigate the
behavior of various data augmentation techniques, including
Mixup in deep learning. In particular, they consider a multi-
view data model that consists of multiple feature vectors
and noise vectors with different strengths and frequencies.
More specifically, the feature vectors are categorized as the
common ones (i.e., “easy to learn” features) and the rare
ones (i.e., “hard to learn” features): the former refers to
the feature appearing in a large fraction of data (thus con-
tribute a lot to the gradient updates), and the latter refers
to the features occurring in a small fraction of data (thus
have limited contribution to the gradient). They further
assume that the common features are the ones with rare
orientations compared to the rare features and they can be
balanced by applying data augmentations. For example, the
common feature of a cow could be the left-facing cow, while
the rare feature could be the right-facing cow, which can
be generated by applying a horizontal flip to the common
feature.

However, in many cases, the common and rare features may
not be easily balanced by standard data augmentations. Let’s

still take the cow image as an example, the common and rare
features could be brown cows and black cows, or front-view
cows and side-view cows. Then the standard rotation or flip
operations clearly cannot convert the common features to
rare ones. We conjecture that Mixup may exhibit certain
benefits in tackling this type of feature, as it has been shown
to improve test accuracy when combined with standard data
augmentations (Zhang et al., 2018). This motivates the
problem setup considered in this study.

Particularly, we perform the theoretical study of the learn-
ing dynamics of Mixup based on a similar multi-view data
model (see Definition 3.1 for more details): each data point
will either contain a common feature vector with a rela-
tively high probability 1− ρ, or a rare feature vector with
a relatively low probability ρ. The remaining components
will be filled with random noise or feature noise. We then
consider a two-layer convolutional neural network (CNN)
model and study the learning behaviors of both standard
training and Mixup training using gradient descent. The
main contributions of this paper are highlighted as follows:

• We identify that the linearity illustration may not be able
to fully elucidate the exceptional performance of Mixup.
In particular, we show that using the same linear interpo-
lations for both features and labels is not necessary, while
some other choices, e.g., independently random linear
interpolations, can also lead to substantial performance
gains compared to standard training.

• We prove a negative result (Theorem 4.1) for standard
training, demonstrating its inability to learn the rare fea-
tures of the multi-view distribution. This failure leads to
the domination of the rare feature data by its noise compo-
nents during the test period, resulting in a Θ(ρ) test error.
The reason for this lies in the tendency of the standard
training algorithm to memorize the noise component of
rare feature data to attain zero training error, while the rare
feature itself, which appears in only a small fraction of the
data, is not prominent enough to be effectively discovered
by the algorithm.

• More importantly, we establish a positive result (Theo-
rem 4.2) for Mixup training by showcasing its ability to
attain near-zero test errors on the multi-view distribution.
Specifically, we demonstrate that Mixup can successfully
mix the common and rare features so that the gradients
along these two features are correlated. As a result, the
rare feature learning can be boosted by the fast learning
of common features, and ultimately reaches a sufficiently
high level to overshadow the effects of noise on test data.

• Our theory also suggests that the feature learning (espe-
cially the rare feature) benefits of Mixup are mostly gained
in the early training phase. Then we develop the early-
stopped Mixup, i.e., turning off the Mixup data augmen-
tation after a certain number of iterations. Experimental
results show that the test error achieved by early-stopped
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Mixup is comparable to or even better than that achieved
by standard Mixup (i.e., using Mixup throughout the en-
tire training), which is consistent with the recent findings
that over-training with Mixup may hurt the generalization
(Liu et al., 2023). This not only corroborates our theoret-
ical findings but also justifies the necessity to study the
entire feature learning dynamics of Mixup rather than only
the solution to the (equivalent) empirical risk of Mixup.

Notations. We use poly(n) and polylog(n) to denote a
polynomial function, with a sufficiently large (constant) de-
gree, of n or log(n) respectively. We use o(1/polylog(n))
(and ω(polylog(n))) to denote some quantities that decrease
(or grow) faster than 1/ logc(n) (or logc(n)) for any con-
stant c. We use Õ, Ω̃, and Θ̃ to hide some log factors in the
standard Big-O, Big-Omega, and Big-Theta notations.

2 Related Work
Theoretical Analysis of Mixup. We would like to com-
ment on some recent works that attempt to explain the ben-
efits of Mixup from different angles. To name a few, Thu-
lasidasan et al. (2019) showed that the models trained by
Mixup are substantially better calibrated, i.e., the softmax
logits are closer to the actual likelihood than that obtained
by standard training. Carratino et al. (2020) studied the
regularization effect of Mixup training and connected it
to multiple known data-dependent regularization schemes
such as label smoothing. Following the same direction,
Park et al. (2022) further developed a unified analysis for
a class of Mixup methods, including the original one and
CutMix (Yun et al., 2019), and proposed a hybrid version of
Mixup that achieves better test performance. Chidambaram
et al. (2021) studied the Mixup-optimal classifier and char-
acterized its performance on original training data points.
However, these works mostly focus on the solution to cer-
tain Mixup-version regularized empirical risk, while our
experiments on early-stopped Mixup suggest that the entire
learning dynamics could be more important.

Very recently, Chidambaram et al. (2022) conducted fea-
ture learning-based analyses for Mixup and demonstrated
its benefits. However, we would like to clarify some dif-
ferences in our theoretical analysis. Firstly, in terms of the
Mixup method, they considered only the mid-point Mixup,
where λ = g(λ) = 0.5, while we allow a more general
choice of λ ∈ (0.5, 1). Secondly, for the data model, we
followed Shen et al. (2022) by considering a data model
with two features of different frequencies (common and
rare), feature noise, and random noise, while the random
noise component, which plays an important role in memo-
rizing all training data points (Allen-Zhu & Li, 2020b; Shen
et al., 2022), was ignored in Chidambaram et al. (2022).
Finally, in terms of theoretical analysis, Chidambaram et al.
(2021) and our paper also differ due to our distinct data
models. Specifically, their study focuses on the competence

between learning two symmetric features, whereas our fo-
cus is on the competition between rare feature learning and
noise memorization. In conclusion, while Chidambaram
et al. (2022) and our work share a similar high-level spirit
for understanding the benefits of Mixup, we approach this
problem from different angles.

Data Augmentation. There are also many works studying
the effect of standard data augmentation methods (i.e., per-
formed within the data points) from different perspectives,
such as regularization effect (Bishop, 1995; Dao et al., 2019;
Wu et al., 2020), algorithm bias (Hanin & Sun, 2021), mar-
gins (Rajput et al., 2019), model invariance (Chen et al.,
2020b), and feature learning (Shen et al., 2022). We view
these works as orthogonal to our work as they mostly con-
cern the data augmentation within the data points (e.g., ran-
dom perturbation, random rotation, etc), which is different
from the cross-data Mixup data augmentation.

Feature Learning in Deep Learning Theory. In the field
of deep learning theory, there has emerged a series of works
studying feature learning behavior during NN training. They
focus on characterizing how different training approaches
affect feature learning, such as ensembling & knowledge
distillation (Allen-Zhu & Li, 2020b), using adaptive gradi-
ents (Zou et al., 2021), mixture of expert (Chen et al., 2022),
and contrastive learning (Wen & Li, 2021). We point out
that feature learning in Mixup is more complicated as the
learning dynamics for different features are heavily coupled.

3 Problem Setting.
As mentioned in the introduction section, we theoretically
investigate the behaviors of standard training and Mixup
training on a multi-view data model. In this section, we will
first deliver a detailed set up of the multi-view data model
and then introduce the two-layer CNN model as well as the
gradient descent algorithms of standard training and Mixup
training.

3.1 Data Model

In this work, we consider a binary classification problem on
the data (x, y) ∈ RdP ×{1, 2}, where x = (x(1), . . . ,x(P ))
has P patches and y ∈ {1, 2} denotes the data label. For
ease of presentation, we define the data of label y = 1 as the
positive data and the data of label y = 2 as the negative data.
Moreover, the data will be randomly generated according to
the following detailed process.

Definition 3.1. Let D denote the data distribution, from
which a data point (x, y) ∈ RdP × {1, 2} is randomly
generated as follows:

1. Generate y ∈ {1, 2} uniformly.
2. Generate x as a vector with P patches x =

(x(1), . . . ,x(2)) ∈ (Rd)P , where
• Feature Patch. One patch, among all P patches, will
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be randomly selected as the feature patch: with proba-
bility 1−ρ for some ρ ∈ (0, 1), this patch will contain
a common feature (v for positive data, u for negative
data); otherwise, this patch will contain a rare feature
(v′ for positive data, u′ for negative data).

• Feature Noise. For all data, a feature vector from
α · {u,v} is randomly sampled and assigned to up to
b patches.

• Noise patch. The remaining patches (those haven’t
been assigned with a feature or feature noise) are ran-
dom Gaussian noise ∼ N(0, σ2

p · H), where H =

I− uu>

‖u‖22
− vv>

‖v‖22
− v′v′>

‖v′‖22
− u′u′>

‖u′‖22
.

We assume all feature vectors are orthonormal, i.e., ‖a‖2 =
1 and 〈a, b〉 = 0 for all a, b ∈ {v,u,v′,u′} and a 6= b.
Moreover, we set d = ω(n6), P, b = polylog(n), ρ =
Θ(n−3/4), σp = Θ(d−1/2n1/4), and α = Θ(1/n)1.

Our data model includes three types of critical vectors: com-
mon features, rare features, and noise vectors (the feature
noise vectors can be categorized into common features since
they are only different in terms of strength). All of them can
be leveraged to fit the training data points and thus achieve a
small training accuracy/loss. However, in order to achieve a
nearly perfect test accuracy, one has to learn both common
features and rare features as overfitting the random noise
vectors of training data points will make no contribution or
even be detrimental to the test performance, then the predic-
tion will be heavily affected by the feature noise. Given our
data model in Definition 3.1, we aim to show that Mixup is
able to learn all informative features while standard training
may only learn a part of them.

The feature-noise data model has been widely adopted to
study many algorithmic aspects of deep learning, including
adversarial training (Allen-Zhu & Li, 2020a), momentum
(Jelassi & Li, 2022), ensemble and knowledge distillation
(Allen-Zhu & Li, 2020b), benign overfitting (Cao et al.,
2022), and data augmentation (Shen et al., 2022). Our data
model mostly follows from the one considered in Shen et al.
(2022), which also includes the design of common features
and rare features for studying the learning behaviors of data
augmentation (that is performed within one single data point,
e.g., random flip/rotation). However, instead of assuming
that the rare features (v′ and u′) can be re-generated by
applying data augmentation on the common features (v and
u), we make nearly no assumption on their relationships.
Therefore, learning the rare features in our model can be
regarded as a harder problem, and our theoretical analyses
for Mixup are orthogonal to those in Shen et al. (2022).

1The choice of these parameters is not unique, here we only
pick a feasible one for the ease of presentation.

3.2 Neural Network Function

Two-layer CNN model. We consider a two-layer CNN
model F using quadratic activation function σ(z) = z2.
Note that we consider binary classification problem with y ∈
{1, 2}, then given the input feature x = (x(1), . . . ,x(p)),
the k-th output of the network (k ∈ {1, 2}) is formulated as

Fk(W;x) =

P∑
p=1

m∑
r=1

(〈wk,r,x
(p)〉)2.

where wk,r ∈ Rd denotes the neuron weight corresponding
to the k-th output, W denotes the collection of all model
weights, and m denotes the NN width, which is set as m =
polylog(n) throughout this paper2. Moreover, given the
input x, we denote Logitk(W;x) by the logit of the k-
th output of the NN model, which can be calculated via
performing a softmax function on the NN outputs:

Logitk(W;x) = eFk(W;xi)/
∑
s∈{1,2} e

Fs(W,xi).

Using a polynomial activation function (or ReLU with poly-
nomial smoothing) is not new in deep learning theory. The
purpose is to better illustrate/distinguish the feature and
noise learning dynamics during the neural network training
(Frei et al., 2022; Cao et al., 2022; Shen et al., 2022; Glas-
gow et al., 2022). Our analysis can also be extended to other
polynomial functions σ(x) = xq for some q > 1.

3.3 Training Algorithms

Initialization. We assume that the initial weights of the
neural network model are generated i.i.d. from the Gaussian
initialization: w(0)

k,r ∼ N(0, σ2
0I), where σ0 = o(d−1/2).

Standard training. Given the training data points S :=
{(xi, yi)}i=1,...,n, we train the neural network model via
applying standard full-batch gradient descent to optimize
the following empirical risk function:

LS(W) =
1

n

n∑
i=1

`(W;xi, yi),

where `(W;xi, yi) = − log
eFyi (W,xi)∑

k∈{1,2} e
Fk(W;xi)

.

Starting from the initialization W(0), the gradient descent
of the standard training takes the following update step

W(t+1) = W(t) − η

n

n∑
i=1

∇W`(W(t);xi, yi), (3.1)

2This choice of network width is to guarantee some nice proper-
ties hold with probability at least 1−1/poly(n) at the initialization.
We can also resort to setting m as some large constant at the price
of deriving a constant probability guarantee, e.g., > 0.9.
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where η is the learning rate. Then, the detailed calculation
of the partial derivative ∇wk,r`(W;xi, yi) is given by

∇wk,r`(W;xi, yi) = −2`k,i ·
P∑
p=1

〈wk,r,x
(p)
i 〉 · x

(p)
i .

where `k,i = 1k=yi −Logitk(W(t);xi).

Mixup Training. Given two training data points (x1, y1)
and (x2, y2), Mixup trains a neural network based on the
convex combinations of them: (λx1 +(1−λ)x2, λy1 +(1−
λ)y2) and ((1− λ)x1 + λx2, (1− λ)y1 + λy2), where we
slightly abuse the notation by viewing the labels y1 and y2

as their one-hot encoding. Besides, Figure 1 suggested that
λ does not need to be randomly sampled to achieve better
performance than standard training, we will focus on a fixed
constant λ ∈ (0.5, 1)34 in our theoretical analysis. Finally,
if considering all possible combinations of the training data
pairs with a fixed λ, the (equivalent) training dataset of
Mixup training is SMixup := {xi,j , yi,j}i,j∈[n], where we
denote xi,j and yi,j by λxi + (1 − λ)xj and λyi + (1 −
λ)yj respectively. Motivated by this, we can claim that the
Mixup training actually aims to learn the model parameter
by optimizing the following loss function:

LMixup
S (W) =

1

n2

∑
i,j∈[n]

`(W;xi,j , yi,j), (3.2)

where

`(W;xi,j , yi,j) = λ`(W;xi,j , yi) + (1− λ)`(W;xi,j , yj).

In this paper, in order to better illustrate the key aspect of
Mixup training as well as simplify the theoretical analysis,
we resort to the gradient descent on the loss function (3.2),
which takes the following update step:

W(t+1) = W(t) − η

n2

n∑
i=1

n∑
j=1

∇W`(W(t);xi,j , yi,j).

Then, the detailed calculations of all partial derivatives are
given as follows: for any Mixup data (xi,j , yi,j), we have

∇wk,r`(W;xi,j) = 2`k,(i,j) ·
P∑
p=1

〈wk,r,x
(p)
i,j 〉 · x

(p)
i,j ,

where `k,i is the loss derivative with respect to the network
output Fk(W;xi,j , yi,j):

`k,(i,j) = λ1k=yi +(1− λ)1k=yj −Logitk(W;xi,j).

3If considering random λ, we will need to further take an ex-
pectation of LMixup

S (W) defined in (3.2). As a result, our analysis,
particularly Proposition 5.4 also needs to consider the additional
expectation over λ in the definitions of coefficients γ(t)

k (b,a).
4Besides, we can also allow using different λ’s for inputs and

outputs, given our theoretical analysis in Section 5.2.

4 Main Theory
In this section, we will theoretically characterize the gen-
eralization errors achieved by standard training and Mixup
training on the multi-view model. In particular, the follow-
ing Theorem states the negative result of standard training.

Theorem 4.1. Suppose that the training data are gener-
ated according to Definition 3.1, let η = 1/poly(n),
T = polylog(n)/η, and {W(t)

standard}t=0,...,T be the
iterates of standard training, then with probability at
least 1 − 1/poly(n), it holds that for all t ∈ [0, T ],
P(x,y)∼D

[
argmaxk Fk(W

(t)
standard;x) 6= y

]
≥ ρ

2.01 .

Theorem 4.1 basically states that the two-layer CNN model
obtained via standard training will lead to at least Θ(ρ) test
error on the data model defined in Definition 3.1. In fact,
as we will clarify in Section 5.1, this is due to the fact that
the rare feature data will be fitted via their random noise
components, while the rare features v′ and u′ will not be
learned. Consequently, nearly a half of test rare feature data
will be misled by the feature noise components, resulting in
a Θ(ρ) test error.

In comparison, Mixup training can help learn the rare fea-
tures and thus achieve a smaller generalization error. We
formally state this result in the following theorem.

Theorem 4.2. Suppose the training data are generated ac-
cording to Definition 3.1, let η = 1

poly(n) , T = polylog(n)
η ,

and {W(t)
Mixup}t=0,...,T be the iterates of Mixup training,

then with probability at least 1 − 1
poly(n) , it holds that for

some t ∈ [0, T ], P(x,y)∼D
[

argmaxk Fk(W
(t)
Mixup;x) 6=

y
]

= o
(

1
poly(n)

)
.

Theorem 4.2 shows that the two-layer CNN model ob-
tained via Mixup training can achieve nearly zero test er-
ror, which is much better than that of standard training as
ρ = Θ(n−3/4) � o(1/poly(n)) (see Definition 3.1). In
particular, as we will show in Section 5.2, at the core of
Mixup training is that it mixes common features and rare
features together, thus the learning of these two types of
features will be coupled. Consequently, the learning of rare
features will be “boosted” by the learning of common fea-
tures, reaching a sufficiently large level that dominates the
effect of feature noise.

5 Overview of the Analysis
According to the data model in Definition 3.1, the critical
step of the generalization analysis for standard training and
Mixup training is to sharply characterize the magnitude of
the feature learning, including both common features (v and
u) and rare features (v′, u′), as well as the noise learning,
including all noise vectors ξ(p)

i ’s (denoted by {ξ}). Then,
the key step to show the generalization gap between standard

5



The Benefits of Mixup for Feature Learning

training and Mixup training is to identify their difference in
terms of feature and noise learning.

5.1 Feature and Noise Learning of Standard Training

According to Definition 3.1, we define S+
0 and S−0 as the

set of training data that have strong positive and negative
features respectively and S+

1 and S−1 as the set of data that
have weak positive and negative features respectively. In
the following, the learning patterns of these vectors will
be characterized by studying the inner products 〈w(t)

k,r,a〉,
where a ∈ {v,u,v′,u′} ∪ {ξ}. Intuitively, a larger in-
ner product implies that the neural network has a stronger
learning ability of a. Given the multi-view data model in
Definition 3.1 and the update rule (3.1), we have for any
a ∈ {v,u,v′,u′} ∪ {ξ},

〈w(t+1)
k,r ,a〉 = 〈w(t)

k,r,a〉

+
2η

n
·
∑
i∈[n]

`
(t)
k,i

P∑
p=1

〈w(t)
k,r,x

(p)
i 〉 · 〈x

(p)
i ,a〉.

(5.1)

Then by the data model in Definition 3.1, we can see that
for common feature vector a ∈ {v,u}, there will be Θ(n)
training data points contributing to the learning of a; while
for rare feature vector a ∈ {v′,u′}, only Θ(ρn) data points
contributing to the learning. Besides, since each noise vector
a ∈ {ξ} in the training data point is randomly generated, its
learning will largely rely on one single data, i.e., the data
consisting of that noise vector. This difference clearly shows
that the common features will be preferably discovered and
learned during the standard training.

In the following analysis, we will decompose the entire
standard training process into three phases, according to
the learning of common features and noises. In particular,
the Phase 1 referred to the initial training iterations such
that the neural network output, with respect to all input
training data, is in the order of O(1). In this phase, the
loss derivatives `(t)i will remain in the constant order and
all critical vectors will be learned at a fast rate. Then The
Phase 2 is defined as the training period starting from the
end of Phase 1 to the iteration that the neural network output
has reached Θ̃(1) for all training inputs. Finally, we refer
to Phase 3 as the training period starting from the end of
Phase 2 to convergence, i.e., the gradient converges to zero.

Standard Training, Phase 1. The following lemma char-
acterizes the learning of all features and noise in Phase 1.

Lemma 5.1. There exists a iteration number T0 = Θ̃(1/η)
such that for any t ≤ T0, it holds that

〈w(t+1)
1,r ,v〉 = 〈w(t)

1,r,v〉 ·
(
1 + Θ(η)

)
, (5.2)

〈w(t+1)
2,r ,u〉 = 〈w(t)

2,r,u〉 ·
(
1 + Θ(η)

)
. (5.3)

Besides, for all remaining inner products, it holds that

max
r
|〈w(t+1)

k,r ,a〉|

≤ max
r
|〈w(t)

k,r,a〉| ·
[
1 + o(η/polylog(n))

]
where t ≤ T0, r ∈ [m], k ∈ [2], q ∈ [P ], a ∈
{u,v,u′,v′} ∪ {ξ} are arbitrarily chosen as long as the
inner products are different from those in (5.2).

Lemma 5.1 shows the competence results of learning com-
mon features, rare features, and noise vectors in Phase 1. In
particular, it can be observed that the learning of common
features (v, u) enjoys a much faster rate, while other critical
vectors, including rare features and noise vectors, will be
staying at their initialization levels.

Standard Training, Phase 2. During this phase, the loss
derivative will remain in the constant order for the rare
feature data, since either the rare feature learning (e.g,
〈w(t)

1,r,v
′〉) or the noise learning (e.g., 〈w(t)

1,r, ξ
(p)
i 〉) are still

quite small. Recall that the common features have already
been fitted during Phase 1, we will then focus on the com-
petence between learning rare features and learning noise
vectors in Phase 2. The following lemma characterizes the
dynamics of standard training in Phase 2.
Lemma 5.2. There exists a iteration number T1 =
Õ
(

n
dσ2η

)
such that for any t ∈ [T0, T1], it holds that

〈w(t+1)
1,r ,v′〉 = 〈w(t)

1,r,v
′〉 ·
[
1 + Θ(ρη)

]
,

〈w(t+1)
2,r ,u′〉 = 〈w(t)

2,r,u
′〉 ·
[
1 + Θ(ρη)

]
.

Besides, for any i ∈ S+
1 ∪ S

−
1 , any q ∈ [P ] and k = ys,

max
r
|〈w(t+1)

k,r , ξ(q)
s 〉|

= max
r
|〈w(t)

k,r, ξ
(q)
s 〉| ·

[
1 + Θ̃

(ηdσ2
p

n

)]
Lemma 5.2 shows that for rare feature data points, stan-
dard training admits a faster noise learning speed com-
pared to rare feature learning (note that dσ2

p � ρ, ac-
cording to Definition 3.1). This consequently leads to
adequate learning of noise (|〈w(T1)

yi,r , ξ
(p)
i 〉| = Θ̃(1) for

some p ∈ [P ]) and nearly no learning of rare features
(|〈w(T1)

k,r ,v
′〉|, |〈w(T1)

k,r ,u
′〉| = Õ

(
σ0

)
).

Standard Training, Final Phase. The final phase is de-
fined as the training period after the end of Phase 2 until
convergence. In the following lemma, we will show that (1)
the convergence can be guaranteed; and (2) the learning of
features and noise vectors at Phase 2 will be maintained.
Lemma 5.3. Let T1 be the iteration number defined in
Lemma 5.2, then for any t = poly(n) > T1 and k ∈ {1, 2},

1

n

t∑
τ=T1

n∑
i=1

|`(τ)
k,i | = Õ(1/η).
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Moreover, we have
∑m
r=1(〈w(t)

1,r,v〉)2,
∑m
r=1(〈w(t)

2,r,u〉)2 =

Θ̃(1) and |〈w(t)
k,r,v

′〉|, |〈w(t)
k,r,u

′〉| = Õ(σ0).

It can be clearly seen that the gradient descent can con-
verge to the point with a small gradient (the averaged loss
derivative will be roughly in the order of Õ(1/(tη)), which
approaches zero when t is large). More importantly, the
common feature data and rare feature data will be correctly
classified by fitting different components: common feature
data will be fitted by learning v and u, while the rare feature
data will be fitted by noise memorization (as standard train-
ing nearly makes no progress in learning. Consequently,
when it comes to a fresh test rare feature data, the model pre-
diction will be heavily affected by the feature noise compo-
nent, thus leading to an incorrect prediction with a constant
probability (the formal proof is deferred to Section B.3).

5.2 Feature and Noise Learning of Mixup Training

As mentioned in Section 3.3, any data pair sampled from
training dataset will be considered, which gives in total
n2 Mixup data. Note that we have two types of data in
the origin training dataset: common feature data and rare
feature data with two labels, denoted by S+

0 , S−0 , S+
1 , and

S−1 (see Section 5.1), we can also categorize the Mixup
data points into multiple sets accordingly. Particularly, let
S†,††∗,∗∗ be the set of mixed data xi,j = λxi + (1− λ)xj with
xi ∈ S†∗ and xj ∈ S††∗∗, we can accordingly categorize all
Mixup data with the following 4 classes:

• Mix between two common feature data points, including
S+,+

0,0 , S−,−0,0 , S+,−
0,0 , S−,+0,0 , each of them is of size Θ(n2).

• Mix between common feature and rare feature data points
with the same label, including S+,+

0,1 , S−,−0,1 , S+,+
1,0 , and

S−,−1,0 , each of them is of size Θ(ρn2).
• Mix between common feature and rare feature data points

with different labels, including S+,−
0,1 , S−,+0,1 , S+,−

1,0 , and
S−,+1,0 , each of them is of size Θ(ρn2).

• Mix between two rare feature data points, including
S+,+

1,1 ,S−,−1,1 , S+,−
1,1 and S−,+1,1 , each of them is of size

Θ(ρ2n2).

In contrast to standard training that nearly admits separate
learning dynamics for common and rare features, the second
and third classes of Mixup training data points, actively mix
the common and rare features together. For instance, some
data points in S+,+

0,1 will contain a data patch of form λv +
(1− λ)v′. Then the learning of v will benefit the learning
of v′, since their gradient updates are positively correlated.
In the following, we will provide a precise characterization
on the learning dynamics of feature and noise vectors.

In particular, noting that we consider the full-batch gradient
descent on the entire Mixup training dataset (see Section
3.3), the update formula of all critical vectors are provided

as follows: for any a ∈ {u,v,u′,v′} ∪ {ξ}, we have

〈w(t+1)
k,r ,a〉 = 〈w(t)

k,r,a〉 − η · 〈∇wk,rL(W(t)),a〉. (5.4)

where we denote L(W(t)) as the short-hand notation of
LMixup
S (defined in (3.2)) for simplifying the notation. More

specifically, we summarize the update of all critical vectors
(e.g., common features, rare features, and data noise vectors)
in the following Proposition.

Proposition 5.4. For any critical vector a ∈
{v,u,v′,u′} ∪ {ξ}, we have

−〈∇wk,rL(W(t)),a〉 =
∑

b∈{v,u,v′,u′}∪{ξ}

γ
(t)
k (b,a)〈w(t)

k,r, b〉

where γ(t)
k (b,a) is a scalar output function that depends on

b,a ∈ {v,u,v′,u′} ∪ {ξ}. More specifically, let

x
(p)
i,j = θ

(p)
i,j (v) · v + θ

(p)
i,j (u) · u + θ

(p)
i,j (v′) · v′

+ θ
(p)
i,j (u′) · u′ +

n∑
s=1

∑
q∈[P ]

θ
(p)
i,j (ξ(q)

s ) · ξ(q)
s

be a linear expansion of x
(p)
i,j on the space spanned by

{v,u,v′,u′} ∪ {ξ}, we have

γ
(t)
k (b,a) =

1

n2

∑
i,j∈[n]

`
(t)
k,(i,j)

∑
p∈[P ]

θ
(p)
i,j (b) · 〈x(p)

i,j ,a〉.

From Proposition 5.4, it can be seen that the learning of
common features, rare features, and noise vectors are heav-
ily coupled. Mathematically, the coefficient γ(t)

k (a, b) pre-
cisely describes how the learning of a affects the learn-
ing of b, where a, b ∈ {v,u,v′,u′} ∪ {ξ}. This effect
can be either positive or negative, depending on the sign
of γ(t)

k (a, b). Then, the next step is to sharply charac-
terize the coefficients γ(t)

k (b,a). We will focus on early
phase of Mixup training, where the loss derivatives can
be regarded as the constant (i.e., approximately 0.5, −0.5,
λ− 0.5, or 0.5− λ). Particularly, we will consider the train-
ing stage such that maxk∈[2],i,j∈[n] |Fk(W(t);xi,j)| ≤ ζ,
where ζ = o

(
1

polylog(n)

)
is a user-defined parameter. Then

based on ζ, we summarize the results of some critical co-
efficients in the following lemma, while the results for all
coefficients are presented in Lemma C.3-C.11.

Lemma 5.5. Assume maxk∈[2],i,j∈[n] |Fk(W(t);xi,j)| ≤
ζ for some ζ ∈ [ω(dσ2

p/(Pn)), o(d−1/2σ−1
p )], then,

γ
(t)
1 (v,v), γ

(t)
2 (u,u) = Θ(1), γ(t)

yi (ξ
(p)
i , ξ

(p)
i ) = Θ

(
dσ2

p/n
)
,

γ
(t)
1 (v,v′), γ

(t)
2 (u,u′) = Θ(ρ/P ),

|γ(t)
2 (u,v′)|, |γ(t)

1 (v,u′)| = O(ζρ/P ).
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The coefficients presented in Lemma 5.5 reveal some key
differences between learning common features, rare fea-
tures, and noise. Let’s consider v without loss of generality.
First, similar to the standard training, the learning of com-
mon features is much faster than the learning of noises,
since the leading terms of common feature learning (i.e.,
γ

(t)
1 (v,v)) and noise learning (i.e., (γ

(t)
yi (ξ

(p)
i , ξ

(p)
i )) sat-

isfy: γ(t)
1 (v,v)� γ

(t)
yi (ξ

(p)
i , ξ

(p)
i ). Second, different from

standard training where the rare features are nearly unex-
plored, Mixup training has the ability to boost the learning
of rare features via common feature learning, which is char-
acterized by γ(t)

1 (v,v′) · 〈w(t)
1,r,v〉 or γ(t)

2 (u,v′) · 〈w(t)
2,r,u〉.

Finally, we also show that such a boosting effect is pos-
itive: the boosting of v′ to the correct neurons (i.e.,
{w(t)

1,r}r∈[m]) is stronger than that to the incorrect neurons

(i.e., {w(t)
2,r}r∈[m]), since γ(t)

1 (v,v′)� |γ(t)
2 (u,v′)| (recall

we pick ζ = o
(

1
polylog(n)

)
). This implies that the rare fea-

tures will be effectively discovered by Mixup training, and
finally, the neural network will have non-negligible compo-
nents along the directions of v′ and u′. We formally stated
this in the following lemma.

Lemma 5.6. Let ζ be the same as that in Lemma
5.5 and T be the smallest iteration number such that
maxk∈[2],i,j∈[n] |Fk(W(T );xi,j)| ≥ ζ/2, then T =

Õ(1/η) and with probability at least 1− 1/poly(n),

max
r
|〈w(T )

1,r ,v〉|,max
r
|〈w(T )

2,r ,u〉| = Ω̃(ζ1/2),

max
r
|〈w(T )

1,r ,v
′〉|,max

r
|〈w(T )

2,r ,u
′〉| = Ω(ρζ1/2)

max
r
|〈w(T )

2,r ,v〉|,max
r
|〈w(T )

1,r ,u〉| = Õ(ζ3/2),

max
r
|〈w(T )

2,r ,v
′〉|,max

r
|〈w(T )

1,r ,u
′〉| = Õ(ζ3/2).

We can then make a comparison between Lemma 5.3 and
Lemma 5.6 to illustrate the similarities and differences be-
tween standard training and Mixup training in feature learn-
ing. In particular, it is clear that both standard and Mixup
training can successfully learn the common features, i.e.,
the inner products 〈w(T )

1,r ,v〉 and 〈w(T )
2,r ,u〉 are the domi-

nating ones among all critical inner products. While more
importantly, the Mixup training can lead to much better
rare feature learning compared to standard training: the
standard training gives |〈w(t)

1,r,v〉|, |〈w
(t)
2,r,u〉| = Õ(σ0)

for all iterations; in contrast, the Mixup training gives
|〈w(T )

1,r ,v
′〉|, |〈w(T )

2,r ,u
′〉| = Ω(ρζ1/2), which are much

larger. Consequently, the strength of rare feature learning
in Mixup training will dominate the effect of feature noise,
thus achieving a nearly zero test error (the formal proof is
deferred to Section C.5).
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(a) Common Feature Learning
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(b) Rare Feature Learning

Figure 2. Common feature learning and rare feature learning on
synthetic data, all experiments are conducted using full-batch gra-
dient descent. Here we consider three training methods: standard
training, Mixup training, and Mixup training with early stopping
(at the 10000-th iteration).

5.3 Implications to the Early Stopping of Mixup

In addition to demonstrating the ability of Mixup in learn-
ing rare features, Lemma 5.6 also reveals that the bene-
fits of Mixup training mostly come from its early train-
ing phase. Therefore, this motivates us to study the early-
stopped Mixup training, i.e., the Mixup data augmentation
will be turned off after a number of iterations. Then clearly,
after turning off the Mixup data augmentation, the learned
features will never be forgotten since the gradient update in
this period will be always positively correlated (by (5.1)).
This immediately leads to the following fact.

Fact 5.7. Let T be the same as that in Lemma 5.6,
then if early stopping Mixup training at the itera-
tion T , we have for any t > T , it holds that
maxr |〈w(t)

1,r,v
′〉|,maxr |〈w(t)

2,r,u
′〉| = Ω(ρζ1/2).

This further implies that applying proper early stopping
in Mixup training will not affect the rare feature learning.
Besides, turning off Mixup will enhance the learning of
common features (since its learning speed will no longer be
affected by the mix with rare features and noises), which
could potentially lead to even better generalization perfor-
mance. In the next section, we will empirically justify the
effectiveness of applying early stopping in Mixup training.

6 Experiments
Synthetic Data. We first perform numerical experiments
on synthetic data to verify our theoretical results. In particu-
lar, the synthetic data is generated according to Definition
3.1. In particular, we set dimension d = 2000, training
sample size n = 300, the ratio of rare feature data ρ = 0.1,
noise strength σp = 0.15, feature noise strength α = 0.05,
number of total patches P = 5, and number feature noise
patches b = 2. For the two-layer CNN model and the train-
ing algorithm, we set network width m = 10, and conduct
full-batch gradient descent with learning rate η = 0.05 and
total iteration number T = 20000. We characterize the
learning of common features and rare features via calcu-
lating

∑m
r=1(〈w1,r,v〉)2 and

∑m
r=1(〈w1,r,v

′〉)2 (we only
consider v and v′ as the dynamics for u and u′ are similar).
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(a) Training Loss
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Figure 3. Training loss (the cross-entropy loss on the mixup
data/clean data) and test accuracy achieved by Mixup with dif-
ferent early stopping iterations: 0 (standard), 50, 125, 150, 200
(Mixup), numbers in the legend denote the average accuracy of the
last 10 iterates. The results are evaluated by training ResNet18 on
CIFAR-10 dataset without random crop & flip data augmentation
and weight decay regularization.

The results are reported in Figure 2. It is clear that both
standard training, Mixup training, and Mixup with early
stopping can exhibit sufficiently common feature learning,
while the rare feature learning of standard training is much
lower than those of Mixup and Mixup with early stopping.
This verifies Lemmas 5.3 and 5.6. Besides, we can also see
that turning off Mixup after a number of iterations will lead
to no decrease in rare feature learning and an increase in
common feature learning. This verifies Fact 5.7 and demon-
strates the benefits of early stopping.
CIFAR-10 Data. We further perform the Mixup training

on CIFAR-10 dataset to evaluate the performance of early
stopping, where we use SGD with momentum 0.9 and learn-
ing rate 0.1, followed by ×0.1 decaying at the 100-th and
150-th iterations. We first train the ResNet18 model (He
et al., 2015) via Mixup without other data augmentations
and regularizations. We consider applying early stopping
at the 0-th (standard training), 50-th, 125-th, 150-th, and
200-th (Mixup training) iterations and report the training
loss and test accuracy in Figure 3. First, it can be observed
that the cross-entropy loss on the training data quickly drops
to nearly zero after the stopping of Mixup, showing that the
neural network has correctly predicted the labels of training
data points with high confidence. Besides, the test accuracy
results show that such a high-confidence fitting on training
data will not affect the test performance, while proper early
stopping can even gain further improvements, e.g., Mixup
with early stopping at the 125-th iteration achieves substan-
tially higher test accuracy than that of Mixup training. This
demonstrates the effectiveness of early-stopped Mixup and
backs up our theoretical finding that the benefits of Mixup
mainly stem from the early training phase.

7 Conclusion and Future Work
In this work, we attempted to develop a comprehensive
understanding of the benefits of Mixup training. We first
identified that the benefits cannot be fully explained by the
linearity inductive bias of Mixup. Then we theoretically

studied the dynamics of Mixup training from a feature learn-
ing. We showed that Mixup is more beneficial in learning
rare features compared to standard training. Moreover, our
analysis revealed that the benefits of Mixup in feature learn-
ing mostly stem from early training stages, based on which
we developed the early-stopped Mixup. Our experimen-
tal results demonstrated that the early-stopped Mixup can
achieve a comparable or even better performance than the
standard one, which supports our theoretical findings.

One future direction is to theoretically investigate the benefit
of a broader class of Mixup methods in various tasks. For
instance, Han et al. (2022b); Yao et al. (2022a) proposed
different Mixup methods to address the issue of distribution
shift; Yao et al. (2022b) proposed C-Mixup methods for
regression problems. It is also interesting to explore the
theoretical understanding of Mixup for other types of data
such as language data and graph data. We believe the the-
oretical framework developed in this work can be adapted,
while a more precise and practical data model needs to be
considered.
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(c) ResNet18
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Figure 4. Test errors achieved by Mixup training with different early stopping iterations: 0 (standard), 50, 125, 150, 200 (Mixup), numbers
in the legend denote the average accuracy of the last 10 iterates. The results are evaluated by training LeNet, VGG16, ResNet18, and
ResNet34 on CIFAR-10 dataset with random crop & flip data augmentation and weight decay regularization. Experimental results suggest
that applying proper early stopping in Mixup will not downgrade the test performance but can even lead to higher test accuracy, especially
for simpler models such as LeNet and VGG16.

A Additional Experiments
We further perform Mixup training for different neural network models and add the random crop/flip data augmentation and
weight decay regularization (set as 10−4). In particular, we consider two (relatively) high-capacity models: ResNet18 and
ResNet34; and two low-capacity models: LeNet and VGG16. For ResNet18 and ResNet34, we set the learning rate as 0.1;
for LeNet and VGG16, we set the learning rate as 0.02 and 0.1 respectively. Then we can clearly see that applying proper
early stopping in Mixup will not downgrade the test performance but can even lead to higher test accuracy. In particular,
Mixup with early stopping at the 50-th, 125-th, and 150-th iterations can still achieve a substantial performance improvement
compared to standard training for LeNet, VGG16, and ResNet18. Moreover, we can also observe that Mixup with early
stopping at the 150-th iteration performs better than the standard Mixup for all 4 models, especially for LeNet and VGG16,
two relatively simpler models. This justifies our theoretical findings and demonstrates the benefit of early stopping in Mixup.

B Detailed Proof for Standard Training

B.1 Critical Quantities at the Initialization

Before moving on to the detailed characterization of the dynamics of standard training and Mixup training, we first
characterize a set of critical quantities at the initialization. Recall (1) the data model in Definition 3.1 that the feature vectors
have unit norm and the noise vectors are randomly generated from N(0, σ2

pI); and (2) the initial model parameter w(0)
k,r is

randomly generated from N(0, σ2
0I), we first give the following lemma that characterizes some critical quantities that will

be repeatedly used in the later analysis.

Lemma B.1. With probability at least 1− 1/poly(n), it holds that for all i ∈ [n], k ∈ [2], r ∈ [m], a ∈ {v,u,v′,u′},

|〈w(0)
k,r,a〉| = Õ(σ0),

∑
r∈[m]

(
〈w(0)

k,r,a〉
)2

= Θ̃(σ2
0).

Additionally, for any noise patch ξ ∈ {ξ},

|〈w(0)
k,r, ξ〉| = Õ(d1/2σpσ0),

∑
r∈[m]

(
〈w(0)

k,r, ξ〉
)2

= Θ̃(dσ2
pσ

2
0).

Proof. Note that w(0)
k,r is randomly generated from N(0, σ2

0I). Then using the fact that m = polylog(n), ‖a‖22 = 1, and
‖ξ‖22 = Θ(dσ2

p) with probability at least 1− 1/poly(n), applying standard concentration arguments can lead to the desired
results.
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B.2 Feature and Noise Learning of Standard Training

We first restate the feature and noise learning of standard training as follows: for features, we have

〈w(t+1)
k,r ,v〉 = 〈w(t)

k,r,u〉+
2η

n
·
∑
i∈[n]

`
(t)
k,i

∑
p∈Pi(v)

〈w(t)
k,r,v〉 · α

2
i,p‖v‖22

〈w(t+1)
k,r ,u〉 = 〈w(t)

k,r,u〉+
2η

n
·
∑
i∈[n]

`
(t)
k,i

∑
p∈Pi(u)

〈w(t)
k,r,u〉 · α

2
i,p‖u‖22,

〈w(t+1)
k,r ,v′〉 = 〈w(t)

k,r,v〉+
2η

n
·
∑
i∈S+

1

`
(t)
k,i

∑
p∈Pi(v′)

〈w(t)
k,r,v

′〉 · ‖v′‖22,

〈w(t+1)
k,r ,u′〉 = 〈w(t)

k,r,u
′〉+

2η

n
·
∑
i∈S−1

`
(t)
k,i

∑
p∈Pi(u′)

〈w(t)
k,r,u

′〉 · ‖u′‖22, (B.1)

where Pi(a) denotes the set of patches in xi containing the feature a and α2
i,p = 1 if x(p)

i is a feature patch and α2
i,p = α2 if

x
(p)
i is the feature noise. Additionally, note that the update of rare features only depends on the data in S+

1 and S−1 since
the data (xi, yi) in S+

0 and S−0 satisfies Pi(v′) = ∅ and Pi(u′) = ∅. Similarly, we can also obtain the following result
regarding noise learning

〈w(t+1)
k,r , ξ(q)

s 〉 = 〈w(t)
k,r, ξ

(q)
s 〉+

2η

n
·
n∑
i=1

`
(t)
k,i

P∑
p=1

〈w(t)
k,r,x

(p)
i 〉 · 〈x

(p)
i , ξ(q)

s 〉.

Moreover, note that if x(p)
i 6= ξ

(q)
s (i.e., i 6= s or p 6= q), then |〈x(p)

i , ξ
(p)
s 〉| is in the order of Õ(d1/2σ2

p). Therefore, we
further have

〈w(t+1)
k,r , ξ(q)

s 〉 = 〈w(t)
k,r, ξ

(q)
s 〉 ·

[
1 +

2η

n
· `(t)k,s · ‖ξ

(q)
s ‖22

]
± 2η

n
·
∑

i6=s||p 6=q

|`(t)k,i| · |〈w
(t)
k,r, ξ

(q)
i 〉| · Õ

(
d1/2σ2

p

)
. (B.2)

Phase 1, Fitting Common Feature Data. The following lemma characterizes the learning of all feature and noise vectors
in Phase 1.

Lemma B.2 (Phase 1, Standard Training). Let T0 be the iteration number such that the neural network output satisfies
|Fk(W(t);xi)| ≤ O(1) for all t ≤ T0 and i ∈ [n], then for any t ≤ T0, it holds that

〈w(t+1)
1,r ,v〉 = 〈w(t)

1,r,v〉 ·
(
1 + Θ(η)

)
, 〈w(t+1)

2,r ,u〉 = 〈w(t)
2,r,u〉 ·

(
1 + Θ(η)

)
.

Besides, we also have for any t ≤ T0, r ∈ [m], k ∈ [2], q ∈ [P ], and s ∈ [n],

|〈w(t)
2,r,v〉| = Õ(σ0), |〈w(t)

1,r,u〉| = Õ(σ0),

|〈w(t)
k,r,v

′〉| = Õ(σ0), |〈w(t)
k,r,u

′〉| = Õ(σ0), |〈w(t)
k,r, ξ

(q)
s 〉| = Õ

(
d1/2σpσ0

)
.

Proof. First, note that in the first stage, the neural network outputs are in the order of O(1), implying that the loss derivatives
satisfy |`(t)k,i| = Θ(1). More specifically, we can get that `(t)k,i = Θ(1) if k = yi and `(t)k,i = −Θ(1) otherwise. Then by (B.1),
we have

〈w(t+1)
1,r ,v〉 = 〈w(t)

1,r,v〉 ·
[
1 +

2η

n
·
∑
i∈S+

0

`
(t)
1,i

∑
p∈Pi(v)

α2
i,p‖v‖22 +

2η

n
·
∑

i∈[n]\S+
0

`
(t)
1,i

∑
p∈Pi(v)

α2
i,p‖v‖22

]
.

Note that by Definition 3.1, for any data i ∈ [n] let P ′i(v) and P ′i(u) be the set of patches corresponding to the feature noise
vectors v and u respectively, we have |P ′i(v)| ≤ b and

∑
p∈P′i(v) α

2
i,p ≤ bα2 = o

(
1/polylog(n)

)
. Additionally, note that

`
(t)
1,i = Θ(1) for i ∈ S+

0 and Pi(v) = P ′i(v) for all i ∈ [n]\S+
0 , we have

〈w(t+1)
1,r ,v〉 = 〈w(t)

1,r,v〉 ·
[
1 +

2η

n
· |S+

0 | · C(t)
v ± o

(
η/polylog(n)

)]
= 〈w(t)

1,r,v〉 ·
[
1 + Θ(η)

]
, (B.3)
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where C(t)
v = |S+

0 |−1 ·
∑
i∈S+

0
`
(t)
1,i remains in the constant level for all t ≤ T0. Similarly, we can also get that

〈w(t+1)
2,r ,u〉 = 〈w(t)

2,r,u〉 ·
[
1 +

2η

n
· |S−0 | · C(t)

u ± o
(
η/polylog(n)

)]
= 〈w(t)

2,r,u〉 ·
[
1 + Θ(η)

]
, (B.4)

where C(t)
u = |S−0 |−1 ·

∑
i∈S−0

`
(t)
2,i remains in the constant level for all t ≤ T0. Moreover, in terms of the learning of wrong

features, we have

〈w(t+1)
2,r ,v〉 = 〈w(t)

2,r,v〉 ·
[
1 +

2η

n
·
∑
i∈S+

0

`
(t)
2,i

∑
p∈Pi(v)

α2
i,p‖v‖22 +

2η

n
·
∑

i∈[n]\S+
0

`
(t)
2,i

∑
p∈Pi(v)

α2
i,p‖v‖22

]

= 〈w(t)
2,r,v〉 ·

[
1− 2η

n
· |S+

0 | ·Θ(1)± o(η)

]
= 〈w(t)

2,r,v〉 ·
[
1−Θ(η)

]
. (B.5)

Then by Lemma B.1, this further implies that for all t in the first stage, we have

|〈w(t)
2,r,v〉| ≤ |〈w

(t−1)
2,r ,v〉| ≤ · · · ≤ |〈w(0)

2,r,v〉| = Õ(σ0). (B.6)

Now we can move on to the learning of rare features and noise vectors. Particularly, for rare features, we have

〈w(t+1)
1,r ,v′〉 = 〈w(t)

1,r,v
′〉 ·
[
1 +

2η

n
·
∑
i∈S+

1

`
(t)
k,i ·

∑
p∈Pi(v′)

‖v′‖22
]

= 〈w(t)
1,r,v

′〉 ·
[
1 + Θ

(
η|S+

1 |
n

)]
= 〈w(t)

1,r,v
′〉 ·
[
1 + Θ(ρη)

]
,

where the second equality is due to |Pi(v′)| = Θ(1) and the last equality is due to |S+
1 | = Θ(ρn) with probability at least

1− 1/poly(n). Therefore, by Lemma B.1, we can then obtain

|〈w(t)
1,r,v

′〉| ≤
[
1 + Θ(ρη)

]t · |〈w(t)
1,r,v

′〉| ≤ Õ(σ0) · eΘ(T0η) = Õ(σ0),

where we use the fact that T0 = Õ(1/η). Similarly, it also follows that

〈w(t+1)
1,r ,u′〉 = 〈w(t)

1,r,u
′〉 · [1 + Θ(ρη)] = Õ(σ0).

Moreover, using the fact that `(t)2,i = −Θ(1) for i ∈ S+
1 and `(t)1,i = −Θ(1) for i ∈ S+

2 , we can follow the same proof in
(B.5) and (B.6) and get

|〈w(t)
2,r,v

′〉| ≤ |〈w(0)
2,r,v

′〉| = Õ(σ0), |〈w(t)
1,r,u

′〉| ≤ |〈w(0)
1,r,u

′〉| = Õ(σ0).

where the results for |〈w(t)
1,r,v

′〉| and |〈w(t)
1,r,u

′〉| are by Lemma B.1.

Finally, regarding the learning of the noise vector ξ(q)
s , if j = ys, we have the following by (B.2),

max
s,r
|〈w(t+1)

k,r , ξ(q)
s 〉| ≤ max

s,r
|〈w(t)

k,r, ξ
(q)
s 〉| ·

[
1 +

η

n
· Θ̃(dσ2

p) +
η

n
· Õ
(
nPd1/2σ2

p

)]
.

Note that we have nP = o(d1/2), then the above equation further leads to

max
s,r
|〈w(t+1)

k,r , ξ(q)
s 〉| = max

s,r
|〈w(t)

k,r, ξ
(q)
s 〉| ·

[
1 +

η

n
· Θ̃(dσ2

p)

]
.
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Besides, we can also get if k 6= ys,

max
s,r
|〈w(t+1)

k,r , ξ(q)
s 〉| ≤ max

s,r
|〈w(t)

k,r, ξ
(q)
s 〉| ·

[
1− η

n
· Θ̃(dσ2

p)

]
.

Then for any t ≤ T0 = Õ(1/η) and any k, we have

max
s,r
|〈w(t)

k,r, ξ
(q)
s | ≤ max

s,r
|〈w(0)

k,r, ξ
(q)
s 〉| ·

[
1 +

η

n
· Θ̃(dσ2

p)

]t
≤ max

s,r
|〈w(0)

k,r, ξ
(q)
s 〉| ·

[
1 +

η

n
· Θ̃(dσ2

p)

]T0

≤ max
s,r
|〈w(0)

k,r, ξ
(q)
s 〉| · exp

{
Θ̃(ηT0dσ

2
p/n)

}
≤ max

s,r
|〈w(0)

k,r, ξ
(q)
s 〉| ·Θ(1)

= Θ̃(d1/2σ0σp).

This completes the proof.

Lemma B.3. At the end of Phase 1 with maximum iteration number T0 = Õ(1/η), we have

m∑
r=1

(〈w(T0)
1,r ,v〉)2 = Θ̃(1),

m∑
r=1

(〈w(T0)
2,r ,u〉)2 = Θ̃(1);

besides, it holds that

|〈w(T0)
2,r ,v〉|, |〈w

(T0)
1,r ,u〉|, |〈w

(T0)
k,r ,u

′〉|, |〈w(T0)
k,r ,v

′〉| = Õ(σ0); |〈w(T0)
k,r , ξ〉| = Õ(d1/2σpσ0)

for all k ∈ [2], r ∈ [m] and ξ ∈ {ξ}.

Proof. We first characterize the difference between C(t)
v and C(t)

u in (B.3) and (B.4). Particularly, we consider the iterations
that maxi∈[n],k∈[2] |Fk(W(t);xi)| ≤ ζ for some ζ = Θ

(
1/ log(1/σ0)

)
= Θ(1/polylog(n)), then we can immediately get

that it holds that |`(t)1,i − 0.5| ≤ O(ζ) for all i ∈ S+
0 and |`(t)2,i − 0.5| ≤ O(ζ) for all i ∈ S−0 . Therefore, we can further get

C(t)
v =

1

|S+
0 |
·
∑
i∈S+

0

`
(t)
1,i = 0.5±O(ζ), C(t)

u =
1

|S−0 |
·
∑
i∈S−0

`
(t)
2,i = 0.5±O(ζ).

Further note that the positive and negative data are independently generated from the data distribution, which implies that
with probability at least 1− 1/poly(n), it holds that ||S+

0 | − (1− ρ)n/2| ≤ Õ(n1/2) and ||S−0 | − (1− ρ)n/2| ≤ Õ(n1/2).
Therefore, applying the fact that ζ = Θ(1/polylog(n)), we can obtain the following by (B.3) and (B.4)

m∑
r=1

(〈w(t+1)
1,r ,v〉)2 =

m∑
r=1

(〈w(t)
1,r,v〉)2 ·

[
1 + (1− ρ)η ±O(ζη))

]
m∑
r=1

(〈w(t+1)
2,r ,u〉)2 =

m∑
r=1

(〈w(t)
2,r,u〉)2 ·

[
1 + (1− ρ)η ±O(ζη))

]
. (B.7)

Then let T ′0 be the largest iteration number such that maxk,i |Fk(W(t);xi)| ≤ ζ, which clearly satisfies T ′0 < T0 (T0 is
defined in Lemma B.2), applying Lemma B.2 and considering the data i with largest neural network output (w.o.l.g assuming
it’s positive data),

m∑
r=1

(〈w(T ′0+1)
1,r ,v〉)2 ≥ c · F1(W(T ′0+1);xi) ≥ c · ζ
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for some absolute constant c. By (B.7), we can immediately obtain that T ′0 = Θ(log(ζ/(mσ2
0))/η), where we apply the

initialization results in Lemma B.1. Besides, we can also obtain that∑m
r=1(〈w(t+1)

2,r ,u〉)2∑m
r=1(〈w(t+1)

1,r ,v〉)2
≥
∑m
r=1(〈w(0)

2,r,u〉)2∑m
r=1(〈w(0)

1,r,v〉)2
·
(

1 + (1− ρ)η −O(ζη))

1 + (1− ρ)η +O(ζη)

)T ′0
= Θ̃(1) ·

(
1−O(ηζT0)

)
.

Then note that ζ = Θ
(
1/ log(1/σ0)

)
, we can get ζT0η = Θ

(
ζ log(ζ) + ζ log(1/(mσ2

0))
)

= o(1), which implies that∑m
r=1(〈w(T ′0+1)

2,r ,u〉)2 ≥ Θ(ζ). Finally, by Lemma B.2, we know that
∑m
r=1(〈w(t)

1,r,v〉)2 and
∑m
r=1(〈w(t+1)

2,r ,u〉)2 will
keep increasing for all t ≤ T0. Then based on the definition of T0 and the fact that ζ = Θ̃(1), we can conclude that

m∑
r=1

(〈w(T0)
1,r ,v〉)2 = Θ̃(1),

m∑
r=1

(〈w(T0)
2,r ,u〉)2 = Θ̃(1).

The remaining arguments in this lemma directly follow from Lemma B.2, thus we omit their proof here.

Phase 2. Fitting Rare Feature Data. After Phase 1, the neural network output will become larger so that the loss
derivatives (i.e, `(t)k,i) or the output logits may no longer be viewed as a quantity in the constant order. Particularly, as shown

in Lemma B.3, when t > T0, the feature learning, i.e., 〈w(t)
1,r,v〉 and 〈w(t)

2,r,u〉 will reach the constant order, implying that

|`(t)k,i| will be closer to 1 or 0 for all common feature data. Additionally, the loss derivative will remain in the constant order

for the rare feature data, since either the rare feature learning (e.g, 〈w(t)
1,r,v

′〉) or the noise learning (e.g., 〈w(t)
1,r, ξ

(p)
i 〉) will be

in the order of o
(
1/polylog(n)

)
, so that the corresponding neural network outputs are also in the order of o

(
1/polylog(n)

)
.

Therefore, we define Phase 2 by the period that (1) is after Phase 1 and (2) the neural network outputs for the rare feature
data are still in the order of O

(
1/polylog(n)

)
(or equivalently, the loss derivatives of rare feature data are in the constant

order.)

Then, similar to the analysis in Phase 1, we will also characterize the learning of feature and noise separately. Regarding the
learning of common feature, by (B.1), we have

〈w(t+1)
k,r ,v〉 = 〈w(t)

k,r,v〉+
2η

n
·
∑
i∈[n]

`
(t)
k,i

∑
p∈Pi(v)

〈w(t)
k,r,v〉 · α

2
i,p

= 〈w(t)
k,r,v〉 ·

[
1 +

2η

n
·
( ∑
i∈S+

0

`
(t)
k,i

∑
p∈Pi(v)

α2
i,p +

∑
i∈S−0

`
(t)
k,i

∑
p∈Pi(v)

α2
i,p +

∑
S+
1 ∪S

−
1

`
(t)
k,i

∑
p∈Pi(v)

α2
i,p

)]
.

(B.8)

Similarly, we can also get that

〈w(t+1)
k,r ,u〉 = 〈w(t)

k,r,u〉 ·
[
1 +

2η

n
·
( ∑
i∈S+

0

`
(t)
k,i

∑
p∈Pi(u)

α2
i,p +

∑
i∈S−0

`
(t)
k,i

∑
p∈Pi(u)

α2
i,p +

∑
S+
1 ∪S

−
1

`
(t)
k,i

∑
p∈Pi(u)

α2
i,p

)]
.

(B.9)

Moreover, according to the data distribution in Definition 3.1, we have

• For any i ∈ S+
0 , it holds that

∑
p∈Pi(v) α

2
i,p = Θ(1) and

∑
p∈Pi(u) α

2
i,p = bα2 = o

(
1/polylog(n)

)
.

• For any i ∈ S−0 , it holds that
∑
p∈Pi(u) α

2
i,p = Θ(1) and

∑
p∈Pi(v) α

2
i,p = bα2 = o

(
1/polylog(n)

)
.

• For any i ∈ S+
1 ∪ S

−
1 , it holds that

∑
p∈Pi(u) α

2
i,p = bα2 = o

(
1/polylog(n)

)
and

∑
p∈Pi(v) α

2
i,p = bα2 =

o
(
1/polylog(n)

)
Therefore, we have the following results regarding the relation between 〈w(t)

k,r,v〉 and 〈w(t)
k,r,u〉.
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Lemma B.4. Let T ′1 = O
(
1/(ηρbα2)

)
be a quantity that is greater than T0, then for any t ∈ [T0, T1], there exists an

absolute constant C such that

|〈w(t)
1,r,v〉|

|〈w(t)
1,r,u〉|

≥ C ·
|〈w(T0)

1,r ,v〉|

|〈w(T0)
1,r ,u〉|

= Ω̃

(
1

σ0

)
, and

|〈w(t)
2,r,u〉|

|〈w(t)
2,r,v〉|

≥ C ·
|〈w(T0)

2,r ,u〉|

|〈w(T0)
2,r ,v〉|

= Ω̃

(
1

σ0

)
.

Proof. Based on the update rules in (B.8) and (B.9), we have

〈w(t+1)
1,r ,v〉 = 〈w(t)

1,r,v〉 ·
[
1 +

η

n
·
(

Θ(1) ·
∑
i∈S+

0

`
(t)
1,i + o

(
1/polylog(n)

)
·
∑
i∈S−0

`
(t)
1,i ±O(ρnbα2)

)]
;

〈w(t+1)
1,r ,u〉 = 〈w(t)

1,r,u〉 ·
[
1 +

η

n
·
(

Θ(1) ·
∑
i∈S−0

`
(t)
1,i + o

(
1/polylog(n)

)
·
∑
i∈S+

0

`
(t)
1,i ±O(ρnbα2)

)]
.

where we use the fact that |`(t)k,i| ≤ 1. This further implies that

|〈w(t+1)
1,r ,v〉|

|〈w(t+1)
1,r ,u〉|

=
|〈w(t)

1,r,v〉|

|〈w(t)
1,r,u〉|

·
1 + η

n ·
(

Θ(1) ·
∑
i∈S+

0
`
(t)
1,i + o

(
1/polylog(n)

)
·
∑
i∈S−0

`
(t)
1,i ±O(ρnbα2)

)
1 + η

n ·
(

Θ(1) ·
∑
i∈S−0

`
(t)
1,i + o

(
1/polylog(n)

)
·
∑
i∈S+

0
`
(t)
1,i ±O(ρnbα2)

)
︸ ︷︷ ︸

?

.

Note that we have `(t)1,i > 0 for i ∈ S+
0 and `(t)1,i > 0 for i ∈ S−0 . Then it can be readily verified that

Θ(1) ·
∑
i∈S+

0

`
(t)
1,i + o

(
1/polylog(n)

)
·
∑
i∈S−0

`
(t)
1,i ≥ Θ(1) ·

∑
i∈S−0

`
(t)
1,i + o

(
1/polylog(n)

)
·
∑
i∈S+

0

`
(t)
1,i.

Then we can get that

(?) ≥ 1− O(ρηbα2)

1 + η
n ·
(

Θ(1) ·
∑
i∈S−0

`
(t)
1,i + o

(
1/polylog(n)

)
·
∑
i∈S+

0
`
(t)
1,i ±O(ρnbα2)

) ≥ 1−O(ρηbα2).

Therefore we have for all t ∈ [T0, T
′
1],

|〈w(t)
1,r,v〉|

|〈w(t)
1,r,u〉|

≥
|〈w(T0)

1,r ,v〉|

|〈w(T0)
1,r ,u〉|

·
[
1−O(ρηbα2)

]T ′1−T0 ≥
|〈w(T0)

1,r ,v〉|

|〈w(T0)
1,r ,u〉|

·
[
1−O(ρηbα2)

]O( 1
ρηbα2

)
.

Then applying the fact that
[
1−O(ρηbα2)

]O( 1
ρηbα2

)
≥ C holds for some absolute constant C, we are able to complete the

proof for bounding
|〈w(t)

2,r,u〉|
|〈w(t)

2,r,v〉|
. The results on

|〈w(t)
2,r,u〉|

|〈w(t)
2,r,v〉|

can be obtained similarly.

In the next step, we will show that the learning of common features v and u will not be too large, i.e., exceeding the
polylog(n) order.

Lemma B.5. Let T ′1 be the same quantity defined in Lemma B.4, we have for all t ∈ [T0, T
′
1], it holds that

|〈w(t+1)
1,r ,v〉|, |〈w(t+1)

2,r ,u〉| ≤ O
(
polylog(n)

)
.

Proof of Lemma B.5. Based on the update rules in (B.8) and (B.9), we have

〈w(t+1)
1,r ,v〉 = 〈w(t)

1,r,v〉 ·
[
1 +

η

n
·
(

Θ(1) ·
∑
i∈S+

0

`
(t)
1,i + o

(
1/polylog(n)

)
·
∑
i∈S−0

`
(t)
1,i ±O(ρnbα2)

)]
.
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Using the fact that `(t)1,i < 0 for all i ∈ S−0 , we further have

(〈w(t+1)
1,r ,v〉)2 ≤ (〈w(t)

1,r,v〉)2 ·
[
1 +

η

n
·
(

Θ(1) ·
∑
i∈S+

0

`
(t)
1,i +O(ρnbα2)

)]2

= (〈w(t)
1,r,v〉)2 ·

[
1 +

η

n
·
(

Θ(1) ·
∑
i∈S+

0

`
(t)
1,i +O(ρnbα2)

)]
,

where the second equality holds since (1 + o(1))2 = 1 + o(1). Further take a summation over r ∈ [m] leads to

m∑
r=1

(〈w(t+1)
1,r ,v〉)2 ≤

[ m∑
r=1

(〈w(t)
1,r,v〉)2

]
·
[
1 +

η

n
·
(

Θ(1) ·
∑
i∈S+

0

`
(t)
1,i +O(ρnbα2)

)]
. (B.10)

Similarly, we can also get that

m∑
r=1

(〈w(t+1)
2,r ,u〉)2 ≤

[ m∑
r=1

(〈w(t)
1,r,u〉)2

]
·
[
1 +

η

n
·
(

Θ(1) ·
∑
i∈S−0

`
(t)
1,i +O(ρnbα2)

)]
. (B.11)

Regarding the loss derivative `(t)1,i, we can get that for any i ∈ S+
0 ,

`
(t)
1,i = 1− Logit1(W(t);xi) =

exp
[
F2(W(t);xi)− F1(W(t);xi)

]
1 + exp

[
F2(W(t);xi)− F1(W(t);xi)

] ≤ exp
[
F2(W(t);xi)− F1(W(t);xi)

]
(B.12)

Before moving to the analysis on the feature, we first show that the model weight corresponding to the wrong label will
not learn the noise of the data, i.e., |〈w(t)

2,r, ξ
(q)
s 〉| will be very small for all q ∈ [P ] and s ∈ S+

0 . Particularly, we have the
following by (B.2)

max
r,s
|〈w(t+1)

2,r , ξ(q)
s 〉| ≤ max

r,s
|〈w(t)

2,r, ξ
(q)
s 〉| ·

[
1 +

η

n
· `(t)2,s · Θ̃(dσ2

p) +
η

n
·
∑

i 6=s||p 6=q

|`(t)2,s| · Õ
(
d1/2σ2

p

)]

≤ max
r,s
|〈w(t)

2,r, ξ
(q)
s 〉| ·

[
1 +

η

n
· Õ
(
nPd1/2σ2

p

)]
,

where the second inequality is due to |`(t)k,i| ≤ 1 and `(t)2,s < 0 for s ∈ S+
0 . Therefore, we can get that for all t ∈

[
T0, T

′
1

]
,

where T ′1 ≤ Õ
(
1/(ηPd1/2σ2

p)
)
, that

max
r,s
|〈w(t)

2,r, ξ
(q)
s 〉| ≤ max

r,s
|〈w(T0)

2,r , ξ
(q)
s 〉| ·

[
1 + Õ

(
ηPd1/2σ2

p

)]Õ( 1

ηPd1/2σ2p

)
≤ C ·max

r,s
|〈w(T0)

2,r , ξ
(q)
s 〉| = Õ(d1/2σpσ0), (B.13)

where the last equality is by Lemma B.2. Therefore, we can get the following bound on F2(W(t);xi)− F1(W(t);xi) for
any i ∈ S+

0 ,

F2(W(t);xi)− F1(W(t);xi) =

m∑
r=1

P∑
p=1

(〈w(t)
2,r,x

(p)
i 〉)

2 −
m∑
r=1

P∑
p=1

(〈w(t)
1,r,x

(p)
i 〉)

2

≤
m∑
r=1

∑
p∈Pi(v)

(〈w(t)
2,r,v〉)2 + α2

m∑
r=1

∑
p∈Pi(u)

(〈w(t)
2,r,u〉)2

+

m∑
r=1

∑
p∈Pi(ξ)

(〈w(t)
2,r, ξ

(p)
i 〉)

2 −
m∑
r=1

(〈w(t)
1,r,v〉)2.
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Then by Lemma B.4 and (B.13), we can further get that

F2(W(t);xi)− F1(W(t);xi) ≤ O(bα2) ·
m∑
r=1

(〈w(t)
2,r,u〉)2 −

m∑
r=1

(〈w(t)
1,r,v〉) + Õ

(
mPdσ2

pσ
2
0

)
,

where we use the fact that |Pi(u)| ≤ b and (〈w(t)
2,r,v〉/〈w

(t)
2,r,u〉)2 = o(α2) by Lemma B.4. This further implies the

following according to (B.12): for all i ∈ S+
0 ,

`
(t)
1,i ≤ exp

[
F2(W(t);xi)− F1(W(t);xi)

]
≤ 2 exp

[
O(bα2) ·

m∑
r=1

(〈w(t)
2,r,u〉)2 −

m∑
r=1

(〈w(t)
1,r,v〉)

]
,

where we use the fact that mPdσ2
pσ

2
0 = o(1). Similarly, we can also get that for all i ∈ S−0 ,

`
(t)
2,i ≤ 2 exp

[
O(bα2) ·

m∑
r=1

(〈w(t)
1,r,v〉)2 −

m∑
r=1

(〈w(t)
2,r,u〉)

]
.

Consequently, let at :=
∑m
r=1(〈w(t+1)

1,r ,v〉)2 and bt :=
∑m
r=1(〈w(t+1)

2,r ,u〉)2, further applying (B.10) and (B.11) gives

at+1 ≤ at ·
[
1 + Θ(η) · exp

[
O(bα2) · bt − at

]
+O(ηρbα2)

]
bt+1 ≤ bt ·

[
1 + Θ(η) · exp

[
O(bα2) · at − bt

]
+O(ηρbα2)

]
.

Then we will first prove a weaker argument on at and bt: for all t ≤ T ′1 it holds that at, bt = o
(
1/(bα2)

)
. In particular, we

will apply standard induction techniques. First, it is easy to verify that this condition holds for t = T0 according to Lemma
B.3. Then assuming this condition holds for all τ ≤ t, we have exp

[
O(bα2) · bt

]
, exp

[
O(bα2) · at

]
= Θ(1) and thus

aτ+1 ≤ aτ ·
[
1 + Θ(η) · exp(−aτ ) +O(ηρbα2)

]
,

bτ+1 ≤ bτ ·
[
1 + Θ(η) · exp(−bτ ) +O(ηρbα2)

]
, (B.14)

for all τ ∈ [T0, t]. Then by Lemma B.6, we can immediately get that

at+1 ≤ O
(

log

(
1

ρbα2
· etηρbα

2

))
.

Then recall that T ′1 = O
(
1/(ηρbα2)

)
and t ≤ T ′1, we can further get at+1, bt+1 = O

(
log( 1

ρbα2 )
)
, which verify the

hypothesis that at+1, bt+1 ≤ o(1/(bα2)). Moreover, recall the definitions of at and bt: at :=
∑m
r=1(〈w(t+1)

1,r ,v〉)2 and

bt :=
∑m
r=1(〈w(t+1)

2,r ,u〉)2, we can further get that for all r ∈ [m],

|〈w(t+1)
1,r ,v〉| = Õ

(
log1/2

(
1

ρbα2

))
= O

(
polylog(n)

)
,

and |〈w(t+1)
2,r ,u〉| = O

(
polylog(n)

)
. This completes the proof.

Lemma B.6. Let {at}t=0,..., be a sequence with a0 ∈ [0, 1] that satisfies

at+1 = at · [1 + c1 · e−at + c2],

where c1 and c2 are two constants satisfying c1, c2 ∈ [0, 1] and c2 ≤ c1. Then it holds that

at ≤ O
(

log(c1/c2) · e2c2t
)
.
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Proof of Lemma B.6. Note that c2 ≤ c1, we will then consider two cases: (1) c1e−at ≥ c2 and (2) c1e−at < c2. Then case
(2) will occur after case (1) since at is strictly increasing. Regarding case (1), it is easy to see that at ≤ log(c1/c2) by the
condition that c1e−at ≥ c2. For case (2), let t0 be the first iteration t that c1e−at < c2, we can get that at0 = O

(
log(c1/c2)

)
and then for all t > t0

at+1 ≤ at · [1 + 2c2],

which implies that

at ≤ at0 · [1 + 2c2]t−T0 ≤ O
(

log(c1/c2) · e2c2t
)
.

Combining the results for case (1) and case (2), we can complete the proof.

Then we will focus on the rare feature data. Note that in the early stage of the second phase, their corresponding loss
derivatives `(t)k,i’s are still in the constant order. The following Lemma summarizes the learning of rare features and noises
for the rare feature data.

Lemma B.7. Let T1 = O
(n log(1/(σ0d

1/2σp))
dσ2η

)
be a quantity that satisfies T0 < T1 < T ′1. Then for any t ∈ [T0, T1], it holds

that

〈w(t+1)
1,r ,v′〉 = 〈w(t)

1,r,v
′〉 ·
[
1 + Θ(ρη)

]
, 〈w(t+1)

2,r ,v′〉 = 〈w(t)
2,r,v

′〉 ·
[
1−Θ(ρη)

]
〈w(t+1)

1,r ,u′〉 = 〈w(t)
1,r,u

′〉 ·
[
1−Θ(ρη)

]
, 〈w(t+1)

2,r ,u′〉 = 〈w(t)
2,r,u

′〉 ·
[
1 + Θ(ρη)

]
Besides, for any i ∈ S+

1 ∪ S
−
1 and k = ys, we have

max
r,p
|〈w(t+1)

k,r , ξ(q)
s 〉| = max

r,p
|〈w(t)

k,r, ξ
(q)
s 〉| ·

[
1 +

η

n
· Θ̃(dσ2

p)

]
;

for k 6= ys,

max
r,p
|〈w(t+1)

k,r , ξ(q)
s 〉| = Õ(d−1/2n).

Proof. The proof is similar to that of Lemma B.2, except the proof for the dynamics of 〈w(t+1)
k,r , ξ

(q)
s 〉. First, by standard

concentration argument, we can get with probability 1− 1/poly(n), for all ξ(p)
i ∈ {ξ}, it holds that

dσ2
p − Õ

(
d1/2σ2

p

)
≤ ‖ξ(p)

i ‖
2
2 ≤ dσ2

p + Õ
(
d1/2σ2

p

)
.

Then by (B.2), we can get

〈w(t+1)
k,r , ξ(q)

s 〉 = 〈w(t)
k,r, ξ

(q)
s 〉 ·

[
1 +

2η

n
· `(t)k,s · ‖ξ

(q)
s ‖22

]
± 2η

n
·
∑

i 6=s||p 6=q

|`(t)k,i| · |〈w
(t)
k,r, ξ

(q)
i 〉| · Õ

(
d1/2σ2

p

)
= 〈w(t)

k,r, ξ
(q)
s 〉 ·

[
1 +

2η

n
· `(t)k,s · dσ

2
p

]
± 2η

n
·
∑

ξ
(q)
i ∈{ξ}

|`(t)k,i| · |〈w
(t)
k,r, ξ

(q)
i 〉| · Õ

(
d1/2σ2

p

)
.

Then let ζ = O
(
1/polylog(n)

)
be some user-defined constant, then let T ′ be the smallest iteration number such that

maxi |`(t)k,i| ∈ [0.5− ζ, 0.5 + ζ]. Then we can get for any t ≤ T ′ and any i, r,

〈w(t+1)
k,r , ξ(q)

s 〉 = 〈w(t)
k,r, ξ

(q)
s 〉 ·

[
1 +

2η

n
· (0.5± ζ) · dσ2

p

]
± 2η

n
·
∑

ξ
(q)
i ∈{ξ}

|`(t)k,i| · |〈w
(t)
k,r, ξ

(q)
i 〉| · Õ

(
d1/2σ2

p

)
. (B.15)

Then we will prove the main arguments via mathematical induction, including the following hypothesis:
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• For all i ∈ S+
1 ∪ S

−
1 , it holds that maxr,q |〈w(t)

k,r, ξ
(p)
i 〉| ≥ 1

n0.1 ·maxr,i′,q |〈w(t)
k,r, ξ

(q)
i′ 〉|

• maxr,q |〈w(t+1)
k,r , ξ

(q)
s 〉| = maxr,q |〈w(t)

k,r, ξ
(q)
s 〉| ·

[
1 + 2η

n · (0.5± 2ζ) · dσ2
p

]
.

Then it is clear that the first argument holds for t = T0 as with probability at least 1 − 1/poly(n) we have
maxr,q |〈w(T0)

k,r , ξ
(p)
i 〉| = Θ̃(σ0d

1/2σp) and maxr,i′,q |〈w(t)
k,r, ξ

(q)
i′ 〉| = Θ̃(σ0d

1/2σp), which implies that |〈w(t)
k,r, ξ

(p)
i 〉| ≥

1
polylog(n) ·maxr,i′,q |〈w(t)

k,r, ξ
(q)
i′ 〉|.

Besides, given the first argument, we have∑
ξ
(q)
i ∈{ξ}

|`(t)k,i| · |〈w
(t)
k,r, ξ

(q)
i 〉| · Õ

(
d1/2σ2

p

)
≤ Õ(nPd1/2σ2

p) ·max
r,i′,q
|〈w(t)

k,r, ξ
(q)
i′ 〉|

≤ O(n1.1Pd1/2σ2
p) ·max

r,q
|〈w(t)

k,r, ξ
(p)
i 〉|

≤ ζ · dσ2
p ·max

r,q
|〈w(t)

k,r, ξ
(p)
i 〉|,

where we use the fact that d−1/2n1.1P = o
(
1/polylog(n)

)
= o(ζ). Then by (B.15), we can directly obtain the second

argument.

Now we will verify the hypotheses by induction. First, similar to the previous derivation, the first argument at the t-th
iteration can directly imply the second argument at the t+ 1-th iteration. Then it remains to verify the first argument. In fact,
given the second argument, we have for any i and i′ and τ ≤ t,

maxr,q |〈w(τ+1)
k,r , ξ

(p)
i 〉|

maxr,q |〈w(τ+1)
k,r , ξ

(p)
i′ 〉|

≤
1 + 2η

n · (0.5 + 2ζ) · dσ2
p

1 + 2η
n · (0.5− 2ζ) · dσ2

p

·
maxr,q |〈w(τ)

k,r , ξ
(p)
i 〉|

maxr,q |〈w(τ)
k,r , ξ

(p)
i′ 〉|

≤
(

1 +
ηζdσ2

p

n

)T1

·
maxr,q |〈w(T1)

k,r , ξ
(p)
i 〉|

maxr,q |〈w(T1)
k,r , ξ

(p)
i′ 〉|

.

Therefore, using the fact that T1 = O
(n log(1/(σ0d

1/2σp))
dσ2η

)
, setting ζ = 1/ log2(1/(σ0d

1/2σp), we can directly get that

maxr,q |〈w(t+1)
k,r , ξ

(p)
i 〉|

maxr,q |〈w(t+1)
k,r , ξ

(p)
i′ 〉|

≤
(

1 +
ηζdσ2

p

n

)T1

·O(polylog(n)) = o(n0.1).

Note that the above holds for all i and i′, taking i′ = arg maxi |〈w(t+1)
k,r , ξ

(p)
i′ 〉| directly completes the verification of the

first argument.

The proof for maxr,q |〈w(t)
k,r, ξ

(q)
s 〉| with k 6= ys, we have the following by (B.2),

max
r,q
|〈w(t+1)

k,r , ξ(q)
s 〉| ≤ max

r,q
|〈w(t)

k,r, ξ
(q)
s 〉|+

2η

n
·
∑

i 6=s||p 6=q

|`(t)k,i| · |〈w
(t)
k,r, ξ

(q)
i 〉| · Õ

(
d1/2σ2

p

)
≤ max

r,q
|〈w(T0)

k,r , ξ
(q)
s 〉|+ T1Pη · Õ(d1/2σ2

p)

= Õ(d−1/2n),

where we use the fact that for all t ≤ T1, it holds that maxi,r,q |〈w(t+1)
k,r , ξ

(q)
s 〉| = Õ(1).

Lemma B.8 (End of Phase 2). Let T1 be the same quantity defined in Lemma B.7, we have for all i ∈ S+
0 ∪ S

−
0 ,

|〈w(T1)
1,r ,v〉|, |〈w

(T1)
2,r ,u〉| = Θ̃(1), |〈w(T1)

2,r ,v〉|, |〈w
(T1)
1,r ,u〉| = Õ(σ0), |〈w(T1)

k,r , ξ
(p)
i 〉| = Õ

(
d−1/2n

)
;
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for all i ∈ S+
1 ∪ S

−
1 ,

|〈w(T1)
1,r ,v

′〉|, |〈w(T1)
2,r ,u

′〉| = Õ(σ0), |〈w(T1)
2,r ,v

′〉|, |〈w(T1)
1,r ,u

′〉| = Õ(σ0), |〈w(T1)
yi,r , ξ

(p)
i 〉| = Θ̃(1).

Proof. The proof of this lemma is simply a combination of Lemmas B.7 and B.7, where we only need to verify the bound
for |〈w(T1)

k,r ,v
′〉| and |〈w(T1)

k,r ,u
′〉|. This can be done as follows:

|〈w(T1)
k,r ,v

′〉| ≤
[
1 + Θ(ρη)

]T1 · |〈w(T0)
k,r ,v

′〉| ≤ exp
[
Õ(nρ/(dσ2))

]
· |〈w(T0)

k,r ,v
′〉| = Õ(σ0),

where we use the fact that ρn = o(dσ2
p). The proof for |〈w(T1)

k,r ,v
′〉| will be similar and thus is ommited here.

Phase 3. Training until convergence. In this phase, we will show that the feature learning and noise learning in Phase 2
will be maintained. Particularly, we first make the following hypothesis and then verify them via mathematical induction.

Hypothesis 1. For all t = poly(n) that is greater than T1, it holds that

(a) We have
∑m
r=1(〈w(t)

1,r,v〉)2 = Θ̃(1) and
∑m
r=1

(
〈w(t)

2,r,u〉
)2

= Θ̃(1).

(b) We have |〈w(t)
1,r,u〉| = O

(
|〈w(T1)

1,r ,u〉|
)

= o
(

1
polylog(n)

)
and |〈w(t)

2,r,v〉| = O
(
|〈w(T1)

2,r ,v〉|
)

= o
(

1
polylog(n)

)
.

(c) We have |〈w(t)
k,r,v

′〉| = O
(
|〈w(T1)

k,r ,v
′〉|
)

= o
(

1
polylog(n)

)
and |〈w(t)

k,r,u
′〉| = O

(
|〈w(T1)

k,r ,u
′〉|
)

= o
(

1
polylog(n)

)
.

(d) For all i ∈ S+
0 ∪ S

−
0 , we have |〈w(t)

k,r, ξ
(p)
i 〉| = O

(
|〈w(T1)

k,r , ξ
(p)
i 〉|

)
= o
(

1
polylog(n)

)
.

(e) For all i ∈ S+
1 , we have

∑m
r=1

∑
p∈Pi(ξ)(〈w

(t)
1,r, ξ

(p)
i 〉)2 = Θ̃(1); for all i ∈ S−1 , we have∑m

r=1

∑
p∈Pi(ξ)(〈w

(t)
2,r, ξ

(p)
i 〉)2 = Θ̃(1).

(f) For all i ∈ S+
1 , we have |〈w(t)

2,r, ξ
(p)
i 〉| = o

(
1

polylog(n)

)
; for all i ∈ S−1 , we have |〈w(t)

1,r, ξ
(p)
i 〉| = o

(
1

polylog(n)

)
.

The hypothesis will be verified via induction. First, it is clear that all hypothesis are satisfied at t = T1 according to Lemma
B.8. Then, the following lemma is useful in the entire proof.

Lemma B.9. Assuming all hypothesis in Hypothesis 1 hold for τ ∈ [0, t], then we have for all k ∈ [2],

t∑
τ=T1

∑
i∈S+

0 ∪S
−
0

|`(τ)
k,i | = Õ

(
n

η

)
, and

t∑
τ=T1

∑
i∈S+

1 ∪S
−
1

|`(τ)
k,i | ≤ Õ

(
ρn2

dσ2
pη

)
,

moreover, for any i ∈ S+
0 ∪ S

−
0 , we have

t∑
t=T1

|`(τ)
k,i | = Õ(1/η).

Proof of Lemma B.9. By (B.1), we have

m∑
r=1

(w
(τ+1)
1,r ,v)2 =

m∑
r=1

(w
(τ)
1,r ,v)2 ·

[
1 +

2η

n
·
∑
i∈[n]

`
(τ)
1,i

∑
p∈Pi(v)

α2
i,p

]2

≥
m∑
r=1

(w
(τ)
1,r ,v)2 ·

[
1 + Θ

(
η

n

)
·
∑
i∈S+

0

|`(τ)
1,i | −Θ

(
bηα2

n

)
·
∑
i 6∈S+

0

|`(τ)
1,i |
]
;

m∑
r=1

(w
(τ+1)
2,r ,u)2 =

m∑
r=1

(w
(τ)
2,r ,v)2 ·

[
1 +

2η

n
·
∑
i∈[n]

`
(τ)
2,i

∑
p∈Pi(v)

〈w(τ)
2,r ,v〉 · α2

i,p

]2
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≥
m∑
r=1

(w
(τ)
2,r ,v)2 ·

[
1 + Θ

(
η

n

)
·
∑
i∈S−0

|`(τ)
2,i | −Θ

(
bηα2

n

)
·
∑
i6∈S−0

|`(τ)
2,i |
]
. (B.16)

where we use the fact that |`1,i| = |`2,i| Summing them up and further taking a summation over τ ∈ [T1, t− 1], applying
Hypothesis 1(a) gives

Θ

(
η

n

)
·
t−1∑
τ=T1

∑
i∈S+

0 ∪S
−
0

|`(τ)
1,i | −Θ

(
bηα2

n

)
·
t−1∑
τ=T1

n∑
i=1

|`(τ)
1,i | ≤ Õ(1). (B.17)

where we use the fact that |`(t)1,i| = |`(t)2,i| and
∑m
r=1(〈w(t)

1,r,v〉)2,
∑m
r=1

(
〈w(t)

2,r,u〉
)2

= Θ̃(1). Besides, by (B.2) and
Hypotheses (e) and (f), we know that the correct noise learning for different weak feature data will be different by at most
O(polylog(n)) factors, therefore, we can get that

∑
i∈S+

1

∑
p∈[P ]

(〈w(τ+1)
1,r , ξ

(p)
i 〉)

2 ≥
∑
i∈S+

1

∑
p∈[P ]

(〈w(τ)
k,r , ξ

(p)
i 〉)

2 ·
[
1 +

2η

n
· `(τ)

1,i · ‖ξ
(p)
i ‖

2
2 −

2η

n
·
n∑
i=1

|`(τ)
1,i | · Õ

(
Pd1/2σ2

p

)]2

≥
∑
i∈S+

1

∑
p∈[P ]

(〈w(τ)
1,r , ξ

(p)
i 〉)

2 ·
[
1 + Θ̃

(
ηdσ2

p

n

)
· |`(τ)

1,i | − Θ̃

(
ηd3/2σ4

pP

n

)
·
n∑
i=1

|`(τ)
1,i |
]
,

(B.18)

and similarly,

∑
i∈S−1

∑
p∈[P ]

(〈w(τ+1)
2,r , ξ

(p)
i 〉)

2 ≥
∑
i∈S−1

∑
p∈[P ]

(〈w(τ)
2,r , ξ

(p)
i 〉)

2 ·
[
1 + Θ̃

(
ηdσ2

p

n

)
· |`(τ)

2,i | − Θ̃

(
ηd3/2σ4

pP

n

)
·
n∑
i=1

|`(τ)
2,i |
]
.

Therefore, taking a summation over r ∈ [m] and τ ∈ [T1, t− 1], and using the Hypothesis 1(e), we have

Θ

(
ηdσ2

p

n

)
·
t−1∑
τ=T1

∑
i∈S+

1 ∪S
−
1

|`(τ)
1,i | −Θ

(
ηd3/2σ4

pP

n

)
·
t−1∑
τ=T1

n∑
i=1

|`(τ)
1,i | ≤ Õ(|S+

1 ∪ S
−
1 |) = Õ(ρn). (B.19)

Combining (B.17) and (B.19) and using the fact that dσ2
p = ω(1) and bα2 = ω(d3/2σ4

pP ), we can get that

Θ

(
η

n

)
·
t−1∑
τ=T1

n∑
i=1

|`(τ)
1,i | −Θ

(
bηα2

n

)
·
t−1∑
τ=T1

n∑
i=1

|`(τ)
1,i | ≤ Õ(ρn).

Note that bα2 = o(1), the above inequality immediately implies that

t−1∑
τ=T1

n∑
i=1

|`(τ)
1,i | ≤ Õ

(
ρn2

η

)
.

We will further use this argument to sharpen our result. First, (B.19) directly leads to

Θ

(
ηdσ2

p

n

)
·
t−1∑
τ=T1

∑
i∈S+

1 ∪S
−
1

|`(τ)
1,i | ≤ Õ(ρn) + Õ

(
d3/2σ4

pPρn
)

= Õ(ρn),

which implies that

t−1∑
τ=T1

∑
i∈S+

1 ∪S
−
1

|`(τ)
1,i | ≤ Õ

(
ρn2

dσ2
pη

)
.
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Plugging the above inequality into (B.19) and using the fact that bα2 = o(1) gives

Θ

(
η

n

)
·
t−1∑
τ=T1

∑
i∈S+

0 ∪S
−
0

|`(τ)
1,i | ≤ Õ(1) + Θ

(
bηα2

n

)
·
t−1∑
τ=T1

∑
i∈S+

1 ∪S
−
1

|`(τ)
1,i | ≤ Õ(1) + Õ

(
ρnbα2

dσ2
p

)
= Õ(1).

where the last inequality is due to ρn = o(dσ2
p). Further note that |`(t)1,i| ≤ 1 and η = o(1), we have

t∑
τ=T1

∑
i∈S+

1 ∪S
−
1

|`(τ)
1,i | ≤ Õ

(
ρn2

dσ2
pη

)
+O(ρn) = Õ

(
ρn2

dσ2
pη

)
;

t∑
τ=T1

∑
i∈S+

0 ∪S
−
0

|`(τ)
1,i | ≤ Õ

(
n

η

)
+O(n) = Õ

(
n

η

)
.

Moreover, by Hypothesis 1 for all τ ∈ [T1, t], we also have for all i ∈ S+
0 ,

|`(τ)
1,i | =

exp
[
F2(W(τ);xi)− F1(W(τ);xi)

]
1 + exp

[
F2(W(τ);xi)− F1(W(τ);xi)

] .
Moreover, we have

F2(W(τ);xi)− F1(W(τ);xi) =

m∑
r=1

∑
p∈[P ]

〈w(τ)
2,r ,x

(p)
i 〉 −

m∑
r=1

∑
p∈[P ]

〈w(τ)
1,r ,x

(p)
i 〉

= −
m∑
r=1

∑
p∈Pi(v)

(〈w(τ)
k,r ,v〉)

2 ± o
(

1

polylog(n)

)
≤ 0.

This implies that for any i, j ∈ S+
0 with |Pi(v)| = |Pj(v)|, we have

|`(τ)
1,i |

|`(τ)
1,j |

= Θ

(
exp

[
F2(W(τ);xi)− F1(W(τ);xi)

]
exp

[
F2(W(τ);xj)− F1(W(τ);xj)

]) = Θ
(

exp[o
(
1/polylog(n)

)
]
)

= Θ(1).

Further note that, by Definition 3.1, the number of feature patches are uniformly sampled from [1,Θ(1)], implying that with
probability at least 1− 1/poly(n), for any i ∈ S+

0 ,

#
{
j : j ∈ S+

0 , |Pj(v)| = |Pi(v)|
}

= Θ(n)

Therefore, let S ′ be the above set of data points, we have for any s ∈ S+
0 or s ∈ S+

1 ,

t∑
τ=T1

|`(τ)
1,s | = Θ

(
|S ′|−1

) t∑
τ=T1

∑
i∈S′
|`(τ)

1,i | ≤ Θ
(
|S ′|−1

) t∑
τ=T1

∑
i∈S+

0 ∪S
−
0

|`(τ)
1,i | ≤ Õ

(
1

η

)
.

where the last inequality is due to |S ′| = Θ(n). This completes the proof.

We will then verify Hypothesis 1(c), which is summarized in the following lemma.

Lemma B.10. Let Hypothesis 1 holds for all τ ≤ t, then we have |〈w(t+1)
k,r ,v′〉| = O

(
|〈w(T1)

k,r ,v
′〉|
)

and |〈w(t+1)
k,r ,u′〉| =

O
(
|〈w(T1)

k,r ,u
′〉|
)
.

Proof of Lemma B.10. Recall the update of rare features in (B.1), we have

〈w(τ+1)
k,r ,v′〉 = 〈w(τ)

k,r ,v
′〉+

2η

n
·
∑
i∈S+

1

`
(τ)
k,i

∑
p∈Pi(v′)

〈w(τ)
k,r ,v

′〉
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〈w(τ+1)
k,r ,u′〉 = 〈w(τ)

k,r ,u
′〉+

2η

n
·
∑
i∈S−1

`
(τ)
k,i

∑
p∈Pi(u′)

〈w(τ)
k,r ,u

′〉.

Then according to the Hypothesis 1(c) for all τ ∈ [T1, t], we have

|〈w(t+1)
k,r ,v′〉| ≤ |〈w(T1)

k,r ,v
′〉|+ 2η

n
·

t∑
τ=T1

∑
i∈S+

1

|`(τ)
k,i |

∑
p∈Pi(v′)

|〈w(τ)
k,r ,v

′〉|

≤ O
(
|〈w(T1)

k,r ,v
′〉|
)

+
η

n
·

t∑
τ=T1

∑
i∈S+

1

|`(τ)
k,i | ·O

(
|〈w(T1)

k,r ,v
′〉|
)
,

where the last inequality is due to the fact that |Pi(v′)| = Θ(1). By Lemma B.9, it is clear that
∑t
τ=T1

∑
i∈S+

1
|`(τ)
k,i | =

Õ
(
ρn2

dσ2
pη

)
. Therefore,

|〈w(t+1)
k,r ,v′〉| ≤ O

(
|〈w(T1)

k,r ,v
′〉|
)

+ Õ

(
ρn

dσ2

)
·O
(
|〈w(T1)

k,r ,v
′〉|
)

= O
(
|〈w(T1)

k,r ,v
′〉|
)
.

The proof for |〈w(t+1)
k,r ,u′〉| is similar so we omit it here.

Using the similar proof technique, we are able to verify Hypothesis 1(b), 1(d), and 1(f), which are summarized in the
following lemmas.

Lemma B.11. Let Hypothesis 1 holds for all τ ≤ t, then we have |〈w(t+1)
2,r ,v〉| = O

(
|〈w(T1)

2,r ,v〉|
)

and |〈w(t+1)
1,r ,u〉| =

O
(
|〈w(T1)

1,r ,u〉|
)
.

Proof of Lemma B.11. Since the proofs for |〈w(t+1)
2,r ,v〉| and |〈w(t+1)

1,r ,u〉| are basically identical, we will only provide the

proof regarding |〈w(t+1)
2,r ,v〉|. By (B.1) and data distribution in Definition 3.1, we have

〈w(τ+1)
2,r ,v〉 = 〈w(τ)

2,r ,v〉 ·
[
1 +

2η

n
·
∑
i∈S+

0

`
(τ)
2,i

∑
p∈Pi(v)

α2
i,p‖v‖22 +

2η

n
·
∑

i∈[n]\S+
0

`
(τ)
2,i

∑
p∈Pi(v)

α2
i,p‖v‖22

]

≤ 〈w(τ)
2,r ,v〉+

2ηbα2

n
· 〈w(τ)

2,r ,v〉 ·
n∑
i=1

|`(τ)
2,i |.

Taking an absolute value on both sides and then applying Hypothesis 1(b), we have

|〈w(t+1)
2,r ,v〉| ≤ |〈w(T1)

2,r ,v〉|+
2ηbα2

n
·

t∑
τ=T1

n∑
i=1

|`(τ)
2,i |〈w

(τ)
2,r ,v〉|

≤ |〈w(T1)
2,r ,v〉|+O

(
|〈w(T1)

2,r ,v〉|
)
·O
(
ηbα2

n

)
· Õ
(
ρn2

dσ2
pη

+
n

η

)
= O

(
|〈w(T1)

2,r ,v〉|
)
,

where the second inequality is by Lemma B.9 and the last inequality is due to the fact that ρn = o(dσ2
p) and bα2 = o(1).

This completes the proof.

Lemma B.12. Let Hypothesis 1 holds for all τ ≤ t, then we have |〈w(t+1)
k,r , ξ

(q)
s 〉| = o

(
1/polylog(n)

)
for all s ∈ S+

0 ∪S
−
0 ,

r ∈ [m], k ∈ [2], and q ∈ [P ].
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Proof of Lemma B.12. By (B.2), we have

|〈w(t+1)
k,r , ξ(q)

s 〉| ≤ |〈w
(t)
k,r, ξ

(q)
s 〉|+ |〈w

(t)
k,r, ξ

(q)
s 〉| · Õ

(
ηdσ2

p

n

)
· |`(t)k,s|+ Õ

(
d1/2σ2

pη

n

)
·
∑
p∈[P ]

n∑
i=1

|`(t)k,i| · |〈w
(t)
k,r, ξ

(p)
i 〉|

≤ |〈w(T1)
k,r , ξ

(q)
s 〉|+

t∑
τ=T1

|〈w(τ)
k,r , ξ

(q)
s 〉| · Õ

(
ηdσ2

p

n

)
· |`(t)k,s|

+ Õ

(
d1/2σ2

pη

n

)
·

t∑
τ=T1

∑
p∈[P ]

n∑
i=1

|`(τ)
k,i | · |〈w

(τ)
k,r , ξ

(p)
i 〉|.

Then by Hypotheses 1, we can further get

|〈w(t+1)
k,r , ξ(q)

s 〉| ≤ |〈w
(T1)
k,r , ξ

(q)
s 〉|+ o

(
1

polylog(n)

)
· Õ
(
ηdσ2

p

n

)
·

t∑
τ=T1

|`(t)k,s|+ Õ

(
Pd1/2σ2

pη

n

)
·

t∑
τ=T1

n∑
i=1

|`(τ)
k,i |.

(B.20)

Note that s ∈ S+
0 ∪ S

−
0 , then by Lemma B.9, we have

t∑
t=T1

|`(τ)
k,s| = Õ

(
1

η

)
,

t∑
τ=T1

n∑
i=1

|`(τ)
k,i | ≤ Õ

(
n

η

)
.

Therefore, plugging the above inequalities into (B.20) gives

|〈w(t+1)
k,r , ξ(q)

s 〉| ≤ |〈w
(T1)
k,r , ξ

(q)
s 〉|+ o

(
1

polylog(n)

)
· Õ
(
ηdσ2

p

n

)
· Õ
(

1

η

)
+ Õ

(
Pd1/2σ2

pη

n

)
· Õ
(
n

η

)
= o

(
1

polylog(n)

)
+ o

(
dσ2

p

n

)
+ Õ

(
d1/2σ2

p

)
= o

(
1

polylog(n)

)
,

where we use the fact that dσ2
p = o(n) and d1/2σ2

p = o(1/polylog(n)). This completes the proof.

Lemma B.13. Let Hypothesis 1 holds for all τ ≤ t, then we have |〈w(t+1)
k,r , ξ

(q)
s 〉| = O

(
|〈w(T1)

2,r , ξ
(q)
s 〉|

)
for all s ∈ S+

1 ∪S
−
1 ,

r ∈ [m], k 6= ys, and q ∈ [P ].

Proof of Lemma B.13. Similar to the previous proof, we will only prove the argument for s ∈ S+
1 , the proof for s ∈ S−1 can

be performed using exactly the same analysis. By (B.2), we have for s ∈ S+
1

|〈w(t+1)
2,r , ξ(q)

s 〉| ≤ |〈w
(t)
2,r, ξ

(q)
s 〉| − |〈w

(t)
2,r, ξ

(q)
s 〉| · Õ

(
ηdσ2

p

n

)
· |`(t)2,s|+ Õ

(
d1/2σ2

pη

n

)
·
∑
p∈[P ]

n∑
i=1

|`(t)2,i| · |〈w
(t)
2,r, ξ

(P )
i 〉|

≤ |〈w(T1)
2,r , ξ

(q)
s 〉|+

t∑
τ=T1

Õ

(
Pd1/2σ2

pη

n

)
·
n∑
i=1

|`(τ)
k,i |

= |〈w(T1)
2,r , ξ

(q)
s 〉|+ Õ

(
Pd1/2σ2

pη

n

)
·

t∑
τ=T1

n∑
i=1

|`(τ)
2,i |

= o

(
1

polylog(n)

)
,

where the last inequality is by Lemma B.9. This completes the proof.
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Finally, we will verify the common features learning (Hypothesis 1(a)) and noise learning for rare feature data (Hypothesis
1(e)).

Lemma B.14. Let Hypothesis 1 holds for all τ ≤ t, then we have
∑m
r=1(〈w(t+1)

1,r ,v〉)2 = Θ̃(1) and
∑m
r=1(〈w(t+1)

2,r ,u〉)2 =

Θ̃(1).

Proof of Lemma B.14. We first prove the upper bound:
∑m
r=1(〈w(t+1)

1,r ,v〉)2 ≤ Θ̃(1). Particularly, by (B.8), (B.9) and
Definition 3.1, we have

〈w(t+1)
1,r ,v〉 ≤ 〈w(t)

1,r,v〉 ·
[
1 + Θ

(
η

n

)
·
∑
i∈S+

0

|`(t)1,i|+ Θ

(
bα2η

n

)
·
n∑
i=1

|`(t)1,i|
]
.

Therefore, we can get that

m∑
r=1

(〈w(t+1)
1,r ,v〉)2 ≤

m∑
r=1

(〈w(t)
1,r,v〉)2 ·

[
1 + Θ

(
η

n

)
·
∑
i∈S+

0

|`(t)1,i|+ Θ

(
bα2η

n

)
·
n∑
i=1

|`(t)1,i|
]
, (B.21)

where we use the fact that |`(t)1,i| = |`
(t)
2,i|. By Hypothesis 1, we have for all τ ≤ t and i,

`
(τ)
1,i =

exp
[
F2(W(τ);xi)− F1(W(τ);xi)

1 + exp
[
F2(W(τ);xi)− F1(W(τ);xi)

] = exp

[
−Θ

( m∑
r=1

(〈w(τ)
1,r ,v〉)2

)]
.

Therefore, let aτ :=
∑m
r=1(〈w(τ)

1,r ,v〉)2, we have the following according to (B.21)

aτ+1 ≤ aτ ·
[
1 + Θ(η) · e−caτ + Θ

(
bα2η

n

)
·
n∑
i=1

|`(τ)
1,i |
]
, (B.22)

where c is an absolute positive constant. Let T = polylog(n) be the total iteration number, then we will show that
at ≤ 3c−1 log(T ) for all τ ≤ t. Particularly, we will prove that either (1) aτ < 2c−1 log(T ) or (2) aτ > 2 log(T ) > aτ−1

but it will not reach 3 log(T ) as τ increases before it becomes less than 2c−1 log(T ) again. The first case immediately implies
that aτ < 3c−1 log(T ), so we will only need to focus on case (2). In this case, we have aτ ≤ aτ−1 +Θ(η) ≤ 2.1c−1 log(T ).
Then before aτ becomes less than 2c−1 log(T ), we have for any τ ′ ∈ [τ, t] that

aτ ′ ≤ aτ +

τ ′−1∑
s=τ

as ·
[
Θ(η) · e−cas + Θ

(
bα2η

n

)
·
n∑
i=1

|`(s)1,i |
]
.

Note that as · e−cas ≤ 2c−1 log(T )/T 2 ≤ 0.1c−1/T if T = ω(1), then using the fact that η = o(1),

aτ ′ ≤ aτ +

τ ′−1∑
s=τ

[
η

T
+ Θ

(
bα2η

n

)
· as

n∑
i=1

|`(s)1,i |
]
≤ 2.2c−1 log(T ) + Θ

(
bα2η

n

)
·
τ ′−1∑
s=τ

as

n∑
i=1

|`(s)1,i |.

Then as long as as < 10c−1 log(T ) for s ∈ [τ, τ ′], we have the following according to Lemma B.9,

Θ

(
bα2η

n

)
·
τ ′−1∑
s=τ

as

n∑
i=1

|`(s)1,i | = Õ

(
bα2 +

ρnbα2

dσ2
p

)
= o(1) ≤ 0.1c−1 log(T ),

where we use the fact that bα2 = o(1) and dσ2
p = ω(ρn). Therefore, we can conclude that before α′τ reaches 10c−1 log(T ),

it must satisfy

aτ ′ ≤ 2.3c−1 log(T ),

for any τ ′ ≤ t. This further implies that

at+1 ≤ at + Õ(η) ≤ 3c−1 log(T ) = O
(
polylog(n)

)
,
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which completes the proof of
∑m
r=1(〈w(t+1)

1,r ,v〉)2 = Õ(1).

The next step is to show that
∑m
r=1(〈w(t+1)

1,r ,v〉)2 = Ω̃(1). Similar to (B.22), we can get that

aτ+1 ≥ aτ ·
[
1 + Θ(η) · e−Caτ −Θ

(
bα2η

n

)
·
n∑
i=1

|`(τ)
1,i |
]
,

where C is an absolute positive constant. In fact, we must have aτ ≥ 1
polylog(n) since otherwise,

aτ+1 ≥ aτ ·
[
1 + Θ(η) · e−Caτ −Θ

(
bα2η

n

)
·
n∑
i=1

|`(τ)
1,i |
]
≥ aτ ·

[
1 + Θ(η)

]
,

where the first inequality is due to e−caτ = Θ(1) if aτ = O(1) and the second inequality is due to |`(τ)
1,i | ≤ 1 and bα2 = o(1).

This implies that aτ+1 will keep increase, which will at least continue to the case that aτ > 1. This completes the proof that
at+1 = Ω̃(1).

The proof for
∑m
r=1(〈w(t+1)

2,r ,u〉)2 = Θ̃(1) will be basically the same so we omit it here.

Lemma B.15. Let Hypothesis 1 holds for all τ ≤ t, then we have
∑m
r=1

∑
q∈Ps(ξ)(〈w

(t+1)
1,r , ξ

(q)
s 〉)2 = Θ̃(1) for all s ∈ S+

1 ,

and
∑m
r=1

∑
q∈Ps(ξ)(〈w

(t+1)
2,r , ξ

(q)
i 〉)2 = Θ̃(1) for all s ∈ S−1 .

Proof of Lemma B.15. Note that P,m = Θ(polylog(n)), it suffices to prove that maxq,r(〈w(t+1)
1,r , ξ

(q)
s 〉)2 = Θ̃(1) for all

s ∈ S+
1 and maxq,r(〈w(t+1)

2,r , ξ
(q)
s 〉)2 = Θ̃(1) all s ∈ S−1 . In the following proof we will only consider s ∈ S+

1 as the proof
for s ∈ S−1 will exactly the same.

By (B.2), we have for all s ∈ S+
1 ,

〈w(τ+1)
1,r , ξ(q)

s 〉 = 〈w(τ)
1,r , ξ

(q)
s 〉 ·

[
1 +

2η

n
· `(τ)

1,s · ‖ξ(q)
s ‖22

]
± 2η

n
· Õ
(
d1/2σ2

p

)
·
∑

i 6=s||p 6=q

|`(τ)
k,i | · |〈w

(τ)
1,r , ξ

(p)
i 〉|. (B.23)

We first prove the upper bound of
∑m
r=1

∑
q∈Ps(ξ)(〈w

(τ)
2,r , ξ

(q)
s 〉)2. Then, using the Hypothesis 1 (e), we have for any

i ∈ [n], s ∈ S+
1 , r ∈ [m], and p ∈ [P ]

(〈w(τ)
1,r , ξ

(p)
i 〉)

2 ≤ O
(

polylog(n)

)
·O(mP ) ·max

r,q
(〈w(τ)

1,r , ξ
(q)
s 〉)2 = O

(
polylog(n)

)
·max
r,q

(〈w(τ)
1,r , ξ

(q)
s 〉)2.

Then (B.23) implies that

max
r,q

(〈w(τ+1)
1,r , ξ(q)

s 〉)2 ≤ max
r,q

(〈w(τ)
1,r , ξ

(q)
s 〉)2 ·

[
1 + Θ

(
ηdσ2

p

n

)
· `(τ)

1,s + Õ

(
ηPd1/2σ2

p

n

)
·
n∑
i=1

|`(τ)
1,i |
]
.

Then by Hypothesis 1, we can further get that the quantity
∑m
r=1

∑
q∈Ps(ξ)(〈w

(τ+1)
1,r , ξ

(q)
s 〉)2 will be the dominating

term in the neural network output function, so that `(τ)
1,s ≥ e−cmaxr,q(〈w(τ)

1,r ,ξ
(q)
s 〉)

2

for some constant c. Therefore, let

aτ = maxr,q(〈w(τ)
1,r , ξ

(q)
s 〉)2, we can follow the similar derivation of (B.22). Thus, it follows that

aτ+1 ≤ aτ ·
[
1 + Θ

(
ηdσ2

p

n

)
· e−caτ + Õ

(
ηPd1/2σ2

p

n

)
·
n∑
i=1

|`(τ)
1,i |
]

Then we can follow the exact proof technique in Lemma B.14 to conclude that at+1 = Õ(1), while it only requires to verify
that

Õ

(
ηPd1/2σ2

p

n

)
·

t∑
τ=T1

n∑
i=1

|`(τ)
1,i | = o(1),
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which clearly holds by Lemma B.9 and the fact that Pd1/2σ2
p = o(1).

The lower bound can be similarly obtained as the following can be deduced by (B.23):

max
r,q

(〈w(τ+1)
1,r , ξ(q)

s 〉)2 ≥ max
r,q

(〈w(τ)
1,r , ξ

(q)
s 〉)2 ·

[
1 + Θ

(
ηdσ2

p

n

)
· `(τ)

1,s − Õ
(
ηPd1/2σ2

p

n

)
·
n∑
i=1

|`(τ)
1,i |
]
,

which leads to

aτ+1 ≥ aτ ·
[
1 + Θ

(
ηdσ2

p

n

)
· e−Caτ − Õ

(
ηPd1/2σ2

p

n

)
·
n∑
i=1

|`(τ)
1,i |
]

for some absolute constant C. Then following the same proof of Lemma B.14, we can get that at+1 = Ω̃(1). This completes
the proof.

B.3 Proof of Theorem 4.1

Proof of Theorem 4.1. We first show that ‖w(T )
k,r ‖2 = Õ(n) for all k ∈ [2] and r ∈ [m]. In particular, note that the update

of standard training is always the linear combination of all critical vectors, i.e., v, u, v′, u′, and ξ(p)
i ’s. Therefore, we have

w
(t)
k,r = w

(0)
k,r + ρ

(t)
k,r(v) · v + ρ

(t)
k,r(u) · u + ρ

(t)
k,r(v

′) · v′ + ρ
(t)
k,r(u

′) · u′ +
n∑
i=1

∑
p∈Pi(ξ)

ρ
(t)
k,r(ξ

(p)
i ) · ξ(p)

i .

Here we use ρ(t)
k,r(a) to denote the coefficient of a for all a ∈ {v,u,v′,u′} ∪ {ξ}. Then by Lemma 5.3 and using the fact

that ‖v‖2, ‖u‖2, ‖v′‖2, ‖u′‖2 = 1, we have

|ρ(t)
k,r(v)|, |ρ(t)

k,r(u)| = Õ(1), |ρ(t)
k,r(v

′)|, |ρ(t)
k,r(u

′)| = o

(
1

polylog(n)

)
.

Moreover, using the fact that |〈ξ(p)
i , ξ

(q)
j 〉| = o(1/polylog(n)) for any i 6= j or p 6= q, applying Lemma 5.3 and the fact

that ‖ξ(p)
i ‖22 = Ω(1) for all i ∈ [n] and p ∈ [P ], we have∥∥∥∥ n∑

i=1

∑
p∈Pi(ξ)

ρ
(t)
k,r(ξ

(p)
i ) · ξ(p)

i

∥∥∥∥2

2

≤ Õ(n2).

Combining the above results, we can readily conclude that ‖w(t)
k,r‖2 = Õ(n).

Then we will characterize the test errors for common feature data and rare feature data separately. Regarding the common
feature data, we can take a positive common feature data (x, 1) as an example and obtain the following by Lemma 5.3,

F1(W(t);x) =

m∑
r=1

P∑
p=1

(
〈w(t)

1,r,x
(p)〉
)2 ≥ m∑

r=1

∑
p:x(p)=v

(
〈w(t)

1,r,v〉
)2

= Θ̃(1). (B.24)

Besides, we have the following regarding F2(W(t);x):

F2(W(t);x) =

m∑
r=1

∑
p:x(p)=v

(
〈w(t)

2,r,v〉
)2

+

m∑
r=1

∑
p:x(p) 6=v

(
〈w(t)

2,r,x
(p)〉
)2

=

m∑
r=1

∑
p:x(p) 6=v

(
〈w(t)

2,r,x
(p)〉
)2

+ o

(
1

polylog(n)

)
. (B.25)

where we use the result |〈w(t)
2,r,v〉| = o

(
1/polylog(n)

)
. Then, note that if x(p) 6= v, it can be either feature noise (i.e.,

αu or αv) or random noise ζ(p)
i , which is independent of the random noise vectors in the training data points (i.e., {ξ}).
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Therefore, using the result that ‖w(t)
k,r‖2 = Õ(n), we can obtain with probability at least 1− exp(−Ω(d1/2)), it holds that

for all r ∈ [m]

(〈w(t)
2,r, ζ

(p)
i 〉)

2 = Õ(σ2
pn

2). (B.26)

Besides, note that there are at most b patches within the total P patches that are feature noise, we have

m∑
r=1

∑
p:x(p) 6=v

(
〈w(t)

2,r,x
(p)〉
)2 ≤ O(mbα2) + Õ(mPσ2

pn
2) = o

(
1

polylog(n)

)
,

where the last equality is by the data model in Definition 3.1: bα2 = o
(
1/polylog(n)

)
and σp = o(d−1/2n1/2). Therefore,

comparing (B.24) and (B.25), we can get F1(W(t);x) > F2(W(t);x) with probability at least 1− 1/poly(n).

Then we will move on to study the rare feature data. In particular, we consider the rare feature data with incorrect feature
noise. Without loss of generality, we take a positive data (x, 1) as an example, which contains rare feature v and incorrect
feature noise αu. Then we can get the following results for Fk(W(t);x)

Fk(W(t);x) =
m∑
r=1

∑
p:x(p)=v′

(
〈w(t)

k,r,v
′〉
)2

+
m∑
r=1

∑
p:x(p)=αu

(
〈w(t)

k,r, αu〉
)2

+
m∑
r=1

∑
p:x(p) 6∈{v′,αu}

(
〈w(t)

k,r,x
(p)〉
)2
.

Note that if x(p) 6∈ {v′, αu}, then x(p) must be a random noise vector that is independent of w(t)
k,r. To begin with, the first

two terms of the above equation for different k’s can be bounded by applying Lemma 5.3 (particularly
∑m
r=1(〈w(t)

2,r,u〉)2 =

Ω̃(1)), we have

m∑
r=1

∑
p:x(p)=v′

(
〈w(t)

1,r,v
′〉
)2

= Õ(σ2
0),

m∑
r=1

∑
p:x(p)=αu

(
〈w(t)

1,r, αu〉
)2

= Õ(bα2σ2
0),

m∑
r=1

∑
p:x(p)=v′

(
〈w(t)

2,r,v
′〉
)2

= Õ(σ2
0),

m∑
r=1

∑
p:x(p)=αu

(
〈w(t)

2,r, αu〉
)2

= Ω̃(α2).

Moreover, by (B.26), we can further get that with probability at least 1− exp(−Ω(d1/2)) > 1− 1/poly(n), we have

m∑
r=1

∑
p:x(p) 6∈{v′,αu}

(
〈w(t)

k,r,x
(p)〉
)2

= Õ(mPσ2
pn

2) = o(α2).

where the last equality is by our data model in Definition 3.1. This further implies that conditioning on W(t), with probability
at least 1− 1/poly(n), we have

F2(W(t);x) > F1(W(t);x)

on the positive rare feature data that has incorrect feature noise.

P(x,y)∼Drare
[argmax

k
Fk(W(t);x) 6= y] ≥ 1

2
− 1

poly(n)
≥ 1

2.01
.

Therefore, combining the test error analysis for common feature data and rare feature data and using the fact that the fraction
of rare feature data is ρ, we can finally obtain:

P(x,y)∼D[argmax
k

Fk(W(t);x) 6= y] ≥ ρ · P(x,y)∼Drare
[argmax

k
Fk(W(t);x) 6= y] ≥ ρ

2.01
.

This completes the proof.
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C Mixup data

C.1 Characterization of the mixup dataset

Category of different Mixup data patches. First recall the category of different Mixup training data points:

• Mix between two common feature data points, including S+,+
0,0 , S−,−0,0 , S+,−

0,0 , S−,+0,0 , each of them is of size Θ(n2).

• Mix between common feature and rare feature data points with the same label, including S+,+
0,1 , S−,−0,1 , S+,+

1,0 , and
S−,−1,0 , each of them is of size Θ(ρn2).

• Mix between common feature and rare feature data points with different labels, including S+,−
0,1 , S−,+0,1 , S+,−

1,0 , and
S−,+1,0 , each of them is of size Θ(ρn2).

• Mix between two rare feature data points, including S+,+
1,1 ,S−,−1,1 , S+,−

1,1 and S−,+1,1 , each of them is of size Θ(ρ2n2).

Then, given n2 mixed data points, we have in total n2P data patches. Besides, note that in the original dataset that consists
of n training data points, each data patch x

(p)
i satisfies

x
(p)
i ∈

{
v,u, αu, αv,v′,u′, ξ

(p)
i

}
.

Moreover, by the data distribution defined in Definition 3.1, we have

• v and u will appear in Θ(n) data and Θ(n) data patches.

• αv and αu will appear in n data and Θ(bn) data patches.

• v′ and u′ will appear in Θ(ρn) data and Θ(ρn) data patches.

• ξ(p)
i , if it is not zero, will appear in one data and one data patch.

Then based on the above facts, we provide the following lemma that characterizes the number of different types of data
patches on the mixup dataset.

Lemma C.1. Let P := {x(p)
i,j }i,j∈[n],p∈[P ] be the collection of all data patches of the mixup dataset, then among these n2P

data patches, with probability at least 1− 1/poly(n), let x(p)
i,j = λa + (1− λ)b, we have

• The vector with a ∈ {v,u} and b ∈ {v,u} will appear in Θ(n2/P ) data patches.

• The vector with a ∈ {v,u} and b ∈ {v′,u′} will appear in Θ(ρn2/P ) patches.

• The vector with a ∈ {v,u} and b ∈ {αv, αu} will appear in O(bn2/P ) patches.

• The vector with a ∈ {v,u} and b ∈ {ξ} will appear in Θ(n2) patches.

• The vector with a ∈ {v′, αu′} and b ∈ {v′,u′} will appear in Θ(ρ2n2/P ) data patches.

• The vector with a ∈ {v′, αu′} and b ∈ {αv, αu} will appear in O(ρbn2/P ) patches.

• The vector with a ∈ {v′, αu′} and b ∈ {ξ} will appear in Θ(ρn2) patches.

• The vector with a ∈ {αv, αu} and b ∈ {αv, αu} will appear in O(b2n2/P ) patches.

• The vector with a ∈ {αv, αu} and b ∈ {ξ} will appear in O(bn2) patches.

Besides, regarding any non-zero noise vector ξ(p)
i , we have, among the collection of data patches {x(p)

i,j }j∈[n], with
probability at least 1− 1/poly(n),
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• x
(p)
i,j = λξ

(p)
i,j + (1− λ)b with b ∈ {v,u} will appear in Θ(n/P ) patches.

• x
(p)
i,j = λξ

(p)
i,j + (1− λ)b with b ∈ {αv, αu} will appear in O(bn/P ) patches.

• x
(p)
i,j = λξ

(p)
i,j + (1− λ)b with b ∈ {v′,u′} will appear in Θ(ρn/P ) patches.

• x
(p)
i,j = λξ

(p)
i,j + (1− λ)b with b ∈ {ξ} will appear in Θ(n) patches.

Proof of Lemma C.1. We first consider a fixed xi and the corresponding collection of data patches {x(p)
i,j }j∈[n],p∈[P ]. Then

by Definition 3.1, conditioning on x
(p)
i = v, we have for any j 6= i

P[x
(p)
j = v|x(p)

i = v] = P[x
(p)
j = v] = Θ

(
1

P

)
.

Therefore, we can further get that conditioning on x
(p)
i = v, the summation

∑
j 6=i 1[x

(p)
i,j = v] follows Binomial distribution

Binom(n− 1, p) with probability parameter p = Θ(1/P ). Then by Hoeffding’s inequality, we can get that with probability
at least 1− exp(−n2/P 2), it holds that ∑

j∈[n]

1[x
(p)
j = v|x(p)

i = v] = Θ

(
n

P

)
.

Note that we have at least Θ(n) number of xi’s that consist of the common feature vector v, then applying union bound
over these xi’s, we can further get with probability at least 1− 1/poly(n), it holds that∑

i,j∈[n]

∑
p∈[P ]

1[x
(p)
i,j = v] ≥

∑
i,j∈[n]

1[x
(pi)
i,j = v|x(pi)

i = v] · 1[x
(pi)
i = v]

≥ Θ(n) ·Θ
(
n

P

)
= Θ

(
n2

P

)
.

Here we define pi as the index of the data patch that is v if the data xi has such a common feature vector, otherwise, pi is
arbitrarily chosen. On the other hand, we can also get∑

i,j∈[n]

∑
p∈[P ]

1[x
(p)
i,j = v] ≤

∑
i,j∈[n]

∑
p∈[P ]

1[x
(p)
i,j = v|x(p)

i = v] · 1[x
(p)
i = v] ≤ n ·Θ(1) ·Θ

(
n

P

)
= Θ

(
n2

P

)
,

where the second inequality is due to that each data will have at most Θ(1) patches being v. Similarly, we can also prove
the same results for the case of x(p)

i,j = λa + (1− λ)b with a, b ∈ {u,v}.

The proof for the case of x(p)
i,j = λa + (1− λ)b with a ∈ {u,v} and b ∈ {αv, αu} will be also similar, the only difference

is that conditioning on x
(p)
i = v, the probability of x(p)

j = αv or x(p)
j = αu will be O(b/P ). Finally, we can get that (here

we take a = v and b = v as an example)∑
i,j∈[n]

∑
p∈[P ]

1[x
(p)
i,j = λv + α(1− λ)v] = Θ(n) ·Θ

(
bn

P

)
= Θ

(
bn2

P

)
.

The proof for the case of x(p)
i,j = λa + (1− λ)b with a ∈ {u,v} and b ∈ {u′,v′} will also be similar, where we only need

to use the fact that P[x
(p)
j = v′|x(p)

i = v] = Θ(ρ/P ). Here we take a = v and b = v′ as an example.

Regarding the case of x(p)
i,j = λa + (1 − λ)b with a ∈ {u,v} and b ∈ {ξ}, we only need to use the fact that P[x

(p)
i,j =

λv + (1 − λ)ξ
(p)
j |x

(p)
i = v] = Θ(1), where we take a = v as an example. Then the desired result can be proved in a

similar way.
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When a ∈ {v′,u′} we will also need to use the fact that we have in total Θ(ρn) number of xi’s that consist of v′ or u′.
Then take a = v′ and b = v′ as an example, conditioning on x

(p)
i = v′, we have for any j 6= i

P[x
(p)
j = v′|x(p)

i = v′] = P[x
(p)
j = v′] = Θ

(
ρ

P

)
.

Therefore, we can get that with probability at least 1− 1/poly(n),∑
j∈[n]

1[x
(p)
j = v′|x(p)

i = v′] = Θ

(
ρn

P

)
.

Accordingly, we can further obtain∑
i,j∈[n]

∑
p∈[P ]

1[x
(p)
i,j = v′] =

∑
i,j∈[n]

∑
p∈[P ]

1[x
(p)
i,j = v′|x(p)

i = v′] · 1[x
(p)
i = v′] = Θ(ρn) ·Θ

(
ρn

P

)
= Θ

(
ρ2n2

P

)
.

The proof for the case of x(p)
i,j = λa+ (1− λ)b with a ∈ {u′,v′} and b ∈ {αv, αv} or b ∈ {ξ} will also be similar, where

we only need to use the fact that P[x
(p)
j = αv|x(p)

i = v′] = O(b/P ) and P[x
(p)
j = αξ

(p)
j |x

(p)
i = v′] = Θ(1).

When a ∈ {αv, αu} we only need to use the fact that we have in total Θ(n) number of xi’s that consist of Θ(b) number of
v′ or u′. The remaining proof will be similar to previous ones based on the fact that P[x

(p)
j = αv|x(p)

i = αv] = O(b/P )

and P[x
(p)
j = αξ

(p)
j |x

(p)
i = αv] = Θ(1), where we take a = αv and b = αv as an example.

Lastly, we will move on to the case of a = ξ
(p)
i . In this case, we only need to use the facts that for any j 6= i,

P[x
(p)
j = v|x(p)

i = ξ
(p)
i ] = P[x

(p)
j = v] = Θ(1/P )

P[x
(p)
j = u|x(p)

i = ξ
(p)
i ] = P[x

(p)
j = u] = Θ(1/P )

P[x
(p)
j = v′|x(p)

i = ξ
(p)
i ] = P[x

(p)
j = v′] = Θ(ρ/P )

P[x
(p)
j = u′|x(p)

i = ξ
(p)
i ] = P[x

(p)
j = u′] = Θ(ρ/P )

P[x
(p)
j = αv|x(p)

i = ξ
(p)
i ] = P[x

(p)
j = αv] = O(b/P )

P[x
(p)
j = αu|x(p)

i = ξ
(p)
i ] = P[x

(p)
j = αu] = O(b/P )

P[x
(p)
j ∈ {ξ}|x

(p)
i = ξ

(p)
i ] = P[x

(p)
j ∈ {ξ}] = Θ(1).

Then applying the standard concentration argument for binomial distribution yields the desired results.

C.2 Learning Dynamics of Feature and Noise vectors

Now, we will seek to study the learning of feature and noise vectors. Particularly, the update formulas of all feature vectors
are provided as follows: for any a ∈ {u,v,u′,v′} ∪ {ξ}, we have

〈w(t+1)
k,r ,a〉 = 〈w(t)

k,r,a〉 − η · 〈∇wk,rL(W(t)),a〉

= 〈w(t)
k,r,a〉+

η

n2
·
∑
i,j∈[n]

`
(t)
k,(i,j)

∑
p∈[P ]

〈w(t)
k,r,x

(p)
i,j 〉 · 〈x

(p)
i,j ,a〉 (C.1)

More specifically, we summarize the update of all critical vectors (e.g., common features, rare features, and data noise
vectors) in the following Proposition.

Proposition C.2. For any critical vector a ∈ {v,u,v′,u′} ∪ {ξ}, we have

−〈∇wk,rLS(W(t)),a〉 = γ
(t)
k (v,a) · 〈w(t)

k,r,v〉+ γ
(t)
k (u,a) · 〈w(t)

k,r,u〉+ γ
(t)
k (v′,a) · 〈w(t)

k,r,v
′〉
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+ γ
(t)
k (u′,a) · 〈w(t)

k,r,u
′〉+

n∑
i=1

∑
p∈[P ]

γ
(t)
k (ξ

(p)
i ,a) · 〈w(t)

k,r, ξ
(p)
i 〉,

where γ(t)
k (b,a) is a scalar output function that depends on b,a ∈ {v,u,v′,u′} ∪ {ξ}. More specifically, let

x
(p)
i,j = θ

(p)
i,j (v) · v + θ

(p)
i,j (u) · u + θ

(p)
i,j (v′) · v′ + θ

(p)
i,j (u′) · u′ +

n∑
s=1

∑
q∈[P ]

θ
(p)
i,j (ξ(q)

s ) · ξ(q)
s (C.2)

be a linear expansion of x(p)
i,j on the space spanned by {v,u,v′,u′} ∪ {ξ}, we have

γ
(t)
k (b,a) =

1

n2

∑
i,j∈[n]

`
(t)
k,(i,j)

∑
p∈[P ]

θ
(p)
i,j (b) · 〈x(p)

i,j ,a〉. (C.3)

Proof of Proposition C.2. Recall (C.1) and the decomposition of x(p)
i,j in (C.2), we have

−〈∇wk,rLS(W(t)),a〉 =
1

n2

∑
i,j∈[n]

`
(t)
k,(i,j)

∑
p∈[P ]

〈w(t)
k,r,x

(p)
i,j 〉 · 〈x

(p)
i,j ,a〉

=
1

n2

∑
i,j∈[n]

`
(t)
k,(i,j)

∑
p∈[P ]

∑
b∈{v,u,v′,u′}∪{ξ}

θ
(p)
i,j (b) · 〈w(t)

k,r, b〉 · 〈x
(p)
i,j ,a〉

=
∑

b∈{v,u,v′,u′}∪{ξ}

[
1

n2

∑
i,j∈[n]

`
(t)
k,(i,j)

∑
p∈[P ]

θ
(p)
i,j (b) · 〈x(p)

i,j ,a〉
]
· 〈w(t)

k,r, b〉.

Therefore, it is easy to see that using the definition of γ(t)
k (b,a) in (C.3), we have

−〈∇wk,rLS(W(t)),a〉 =
∑

b∈{v,u,v′,u′}∪{ξ}

γ
(t)
k (b,a) · 〈w(t)

k,r, b〉,

which completes the proof.

Note that the neural network outputs are in the order of o(1) in the first few iterations, which implies that the output logits
are within the range [0.5− o(1), 0.5 + o(1)]. Further note that the loss derivatives `(t)k;(i,j) satisfies

|`(t)k;(i,j)| ∈
{

1− Logitk(W(t);xi,j),Logitk(w(t);xi,j), λ− Logitk(W(t);xi,j),Logitk(W(t);xi,j) + λ− 1
}
,

which will also be in the constant order. Then similar to the previous analysis on the standard training, we will directly take
|`(t)k,(i,j)| = Θ(1) when characterizing the learning of feature and noise vectors in the initial phase.

Then, the challenging part in the analysis is the characterization of the mixed data patches {x(p)
i,j }p∈[P ], since it can be:

mixture of common features, mixture of rare features, mixture of common and rare features, mixture of feature and noise,
which will produce different gradients. For any mixed data xi,j = λxi + (1− λ)xj , we will denote it as the positive mixed
data if yi = 1 and the negative mixed data if yi = −1. The following lemma gives the characterization of the data patch of
all mixed data.

C.3 Characterizing the Coefficient γ(t)
k (·, ·)

C.3.1 CORRECT COMMON FEATURE LEARNING

Lemma C.3. Assume maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ ∈
[
ω(bα), o

(
1

polylog(n)

)]
, then recalling the update form in

Proposition C.2, we have

γ
(t)
1 (v,v) = Θ(1), |γ(t)

1 (u,v)| = O(ζ + α), |γ(t)
1 (v′,v)| = O(ρ/P ),

|γ1(u′,v)| = O(ζρ/P ), |γ(t)
1 (ξ(q)

s ,v)| = Õ
(
1/(Pn)

)
.

Proof of Lemma C.3. We will prove all the arguments in order.
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Proof for γ(t)
1 (v,v). We first prove the bound for γ(t)

1 (v,v). By (C.3), we have

γ
(t)
k (v,v) =

1

n2

∑
i,j∈[n]

`
(t)
k,(i,j)

∑
p∈[P ]

θ
(p)
i,j (v) · 〈x(p)

i,j ,v〉, (C.4)

where θ(p)
i,j (v) = 〈x(p)

i,j ,v〉. Therefore, we only need to consider the data patches that contain v (including common feature
v and feature noise αv). The regarding the mixed data xi,j , we consider the following cases

• i ∈ S+
0 and j ∈ S+

0 ;

• i ∈ S+
0 and j ∈ S+

1 , and i ∈ S+
1 and j ∈ S+

0 ;

• i ∈ S+
0 and j ∈ S−0 ∪ S

−
1 , and i ∈ S−0 ∪ S

−
1 and j ∈ S+

0

• i ∈ S−0 ∪ S
+
1 ∪ S

−
1 and j ∈ S−0 ∪ S

+
1 ∪ S

−
1 .

Analysis on the data i ∈ S+
0 and j ∈ S+

0 In particular, note that before the mixup, both the data xi and xj have a constant
number of common feature patches. Therefore, let P∗i,j(v) denote the set of patches with the common feature v (which
appears in either xi or xj), we have∑

p∈[P ]

θ
(p)
i,j (v) · 〈x(p)

i,j ,v〉 =
∑

p∈P∗i,j(v)

θ
(p)
i,j (v) · 〈x(p)

i,j ,v〉+
∑

p∈Pi,j(v)\P∗i,j(v)

θ
(p)
i,j (v) · 〈x(p)

i,j ,v〉. (C.5)

Regarding the first term on the R.H.S. of the above equation, by Definition 3.1, we know that there exists at least one
common feature patch in both xi and xj , which leads to θ(p)

i,j ≥ λ for at least one p ∈ P∗i,j(vb). This further gives∑
p∈P∗i,j(v)

θ
(p)
i,j (v) · 〈x(p)

i,j ,v〉 =
∑

p∈P∗i,j(v)

[θ
(p)
i,j (v)]2 ≥ λ2.

Besides, we also have that the number of common feature patches are upper bounded by some constant (i.e., |P∗i,j(v)| =
Θ(1)), this further leads to ∑

p∈P∗i,j(v)

θ
(p)
i,j (v) · 〈x(p)

i,j ,v〉 ≤ Θ(1).

Regarding the second term on the R.H.S. of (C.5), we have θ(p)
i,j ≤ α since v can only appear in the form of feature noise.

Besides, by Definition 3.1, we know that the number of patches containing feature noise is at most b, then∑
p∈Pi,j(v)\P∗i,j(v)

θ
(p)
i,j (v) · 〈x(p)

i,j ,v〉 =
∑

p∈Pi,j(v)\P∗i,j(v)

[θ
(p)
i,j (v)]2 ≤ bα2 = o

(
1

polylog(n)

)
.

Moreover, note that in the initial phase we have `(t)1,(i,j) = Θ(1) for (i, j) ∈ S+,+
0,0 , we can further get that

`
(t)
1,(i,j)

∑
p∈[P ]

θ
(p)
i,j (v) · 〈x(p)

i,j ,v〉 = Θ(1).

Analysis on the data i ∈ S+
0 and j ∈ S+

1 . The analysis for this type of data will be similar. In fact, we will consider two
types of data: i ∈ S+

0 and j ∈ S+
1 , and i ∈ S+

1 and j ∈ S+
0 since two original training data will give two mixed data.

In particular, note that `(t)i,j = Θ(1) for these two types of data, we can immediately get that there is a constant number of

patches that satisfy θ(p)
i,j ≥ 1− λ, while the remaining patches p ∈ Pi,j(v) satisfy θ(p)

i,j ≤ α. Therefore, we can follow the
same proof technique as that for the data (i, j) ∈ S+,+

0,0 and get that for all (i, j) ∈ S+,+
0,1 ∪ S

+,+
1,0 ,

`
(t)
k,(i,j)

∑
p∈[P ]

θ
(p)
i,j (v) · 〈x(p)

i,j ,v〉 = `
(t)
k,(i,j)

∑
p∈P∗i,j(v)

[θ
(p)
i,j (v)]2 +

∑
p∈Pi,j(v)\P∗i,j(v)

[θ
(p)
i,j (v)]2 = Θ(1). (C.6)
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Analysis on the data i ∈ S+
0 and j ∈ S−0 ∪ S

−
1 . In this part, we will handle data xi,j and xj,i together. Different from

the previous cases where the loss derivatives `(t)1,(i,j) are positive, here the loss derivative `(t)1,(i,j) will become negative for

(i, j) ∈ S−,+0,0 ∪ S
−,+
0,1 . Particularly, for any (i, j) ∈ S+,−

0,0 , we have (j, i) ∈ S−,+0,0 , then

`
(t)
1,(i,j)

∑
p∈[P ]

θ
(p)
i,j (v) · 〈x(p)

i,j ,v〉+ `
(t)
1,(j,i)

∑
p∈[P ]

θ
(p)
j,i (v) · 〈x(p)

j,i ,v〉

= `
(t)
1,(i,j)

∑
p∈Pi,j(v)

[
[θ

(p)
i,j (v)]2 − [θ

(p)
j,i (v)]2

]
+
[
`
(t)
1,(i,j) + `

(t)
1,(j,i)

]
·
∑

p∈Pi,j(v)

[
θ

(p)
j,i (v)

]2
, (C.7)

where we use the fact that Pi,j(v) = Pj,i(v) and 〈x(p)
i,j ,v〉 = θ

(p)
i,j (v). Recall that the neural network output is upper

bounded by ζ, then it is easy to see

|`(t)1,(i,j) + `
(t)
1,(j,i)| = |λ− 0.5±O(ζ) + 0.5− λ±O(ζ)| = O(ζ).

Besides, note that

x
(p)
i,j = λx

(p)
i + (1− λ)x

(p)
j , x

(p)
j,i + (1− λ)x

(p)
i + λx

(p)
j .

Then we will also define P∗i,j(v) as the set of patches with common feature. Note that x(p)
j does not have the common

feature patch since j ∈ S−0 ∪ S
−
1 , we can immediately get that P∗i,j(v) = P∗i (v), where P∗i (v) denotes the set of common

feature patches of xi. Besides, it is also clear that all data patches in Pi,j(v) only contain the feature noise αv. Then it
follows that

`
(t)
1,(i,j)

∑
p∈Pi,j(v)

[
[θ

(p)
i,j (v)]2 − [θ

(p)
j,i (v)]2

]
= Θ(1) ·

[ ∑
p∈P∗i,j(v)

[λ2 − (1− λ)2] +
∑

p∈Pi,j(v)\P∗i,j(v)

[
[θ

(p)
i,j (v)]2 − [θ

(p)
j,i (v)]2

]]
= Θ(1)±O(bα2)

= Θ(1).

Similarly, we can also get
∑
p∈Pi,j(v)[θ

(p)
j,i ]2 = Θ(1). Therefore, putting everything to (C.7), we can finally obtain the

following

`
(t)
1,(i,j)

∑
p∈[P ]

θ
(p)
i,j (v) · 〈x(p)

i,j ,v〉+ `
(t)
1,(j,i)

∑
p∈[P ]

θ
(p)
j,i (v) · 〈x(p)

j,i ,v〉 = Θ(1)±Θ(1) ·O(ζ) = Θ(1).

Analysis on the data i, j ∈ S−0 ∪ S
+
1 ∪ S

−
1 In this case, we can observe that there is no common feature patches in xi

and xj , while the vector v will only appear in at most 2b patches of xi,j in the form of feature noise. Therefore, we have
|Θ(p)
i,j | ∈ [(1− λ)α, α] for at most 2b patches and the remaining patches will give |Θ(p)

i,j | = 0. Consequently, we have∣∣∣∣`(t)k,(i,j) ∑
p∈[P ]

θ
(p)
i,j (v) · 〈x(p)

i,j ,v〉
∣∣∣∣ =

∣∣∣∣`(t)k,(i,j) ∑
p∈Pi,j(v)

[θ
(p)
i,j (v)]2

∣∣∣∣ = O(bα2) = o

(
1

polylog(n)

)
.

Completing the analysis for γ(t)
1 (v,v). Now we are able to complete the analysis on γ(t)

1 (v,v) based on (C.4):

γ
(t)
1 (v,v) =

1

n2

∑
i,j∈[n]

`
(t)
1,(i,j)

∑
p∈[P ]

θ
(p)
i,j (v) · 〈x(p)

i,j ,v〉

=
1

n2

[ ∑
(i,j)∈S+,+

0,0

`
(t)
1,(i,j)

∑
p∈[P ]

θ
(p)
i,j (v) · 〈x(p)

i,j ,v〉
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+
∑

(i,j)∈S+,+
0,1 ∪S

+,+
1,0

`
(t)
1,(i,j)

∑
p∈[P ]

θ
(p)
i,j (v) · 〈x(p)

i,j ,v〉

+
∑

(i,j)∈S+,−
0,0 ∪S

+,−
0,1 ∪S

−,+
0,0 ∪S

−,+
0,1

`
(t)
1,(i,j)

∑
p∈[P ]

θ
(p)
i,j (v) · 〈x(p)

i,j ,v〉

+
∑

i,j∈S−0 ∪S
+
1 ∪S

−
1

`
(t)
1,(i,j)

∑
p∈[P ]

θ
(p)
i,j (v) · 〈x(p)

i,j ,v〉
]

=
1

n2

[
Θ(1) · |S+,+

0,0 |+ Θ(1) · |S+,+
0,1 ∪ S

+,+
1,0 |+ Θ(1) · |S+,−

0,0 ∪ S
+,−
0,1 ∪ S

−,+
0,0 ∪ S

−,+
0,1 |

± o
(

1

polylog(n)

)
· |S−,−0,0 ∪ S

−,+
0,1 ∪ S

−,−
0,1 ∪ S

+,−
1,0 ∪ S

+,+
1,1 ∪ S

+,−
1,1 ∪ S

−,−
1,0 ∪ S

−,+
1,1 ∪ S

−,−
1,1 |

]
=

1

n2

[
Θ(n2)± o

(
n2

polylog(n)

)]
= Θ(1).

Proof for γ(t)
k (u,v). The next step is to characterize γ(t)

k (u,v). We will split the entire mixed training dataset into the
following classes:

• i ∈ S+
0 and j ∈ S−0 , and i ∈ S−0 and j ∈ S+

0 , i.e., S+,−
0,0 ∪ S

−,+
0,0 .

• all (i, j) 6∈ S+,−
0,0 ∪ S

−,+
0,0 .

We first recall the formula of γ(t)
1 (u,v) (see Proposition C.2):

γ
(t)
1 (u,v) =

1

n2

∑
i,j∈[n]

`
(t)
1,(i,j)

∑
p∈[P ]

θ
(p)
i,j (u) · 〈x(p)

i,j ,v〉. (C.8)

Analysis on the data (i, j) ∈ S+,−
0,0 ∪ S

−,+
0,0 . Since S+,−

0,0 and S−,+0,0 are symmetric: i.e., for any (i, j) ∈ S+,−
0,0 , we have

(j, i) ∈ S−,+0,0 and vise versa. Then we will handle data xi,j and xj,i together by studying the following quantity:

∗ := `
(t)
1,(i,j)

∑
p∈[P ]

θ
(p)
i,j (u) · 〈x(p)

i,j ,v〉+ `
(t)
1,(j,i)

∑
p∈[P ]

θ
(p)
j,i (u) · 〈x(p)

j,i ,v〉

= `
(t)
1,(i,j)

∑
p∈[P ]

θ
(p)
i,j (u) · θ(p)

i,j (v) + `
(t)
1,(j,i)

∑
p∈[P ]

θ
(p)
j,i (u) · θ(p)

j,i (v).

Note that we will only consider the patch that contains both u and v. Then consider a data patch x
(p)
i,j satisfy this

condition: x(p)
i = αiv and x

(p)
j = αju, where αi, αj ∈ {α, 1}, which further leads to x

(p)
i,j = λαiv + (1 − λ)αju and

x
(p)
j,i = λαju + (1− λ)αiv. Accordingly, it further gives

θ
(p)
i,j (u) · θ(p)

i,j (v) = (1− λ)αj · αiλi = λαj · (1− λ)αi = θ
(p)
j,i (u) · θ(p)

j,i (v).

Additionally, for any p ∈ Pi,j(v), we have at most Θ(1) among them satisfy θ(p)
j,i (u) = Θ(1) and at most Θ(1) among them

satisfy θ(p)
j,i (v) = Θ(1), while the remaining, with size at most 2b, can only give θ(p)

j,i (u), θ
(p)
j,i (v) = Θ(α). This implies that∑

p∈[P ]

θ
(p)
j,i (u) · θ(p)

j,i (v) = O(1) +O(α) +O(bα2) = O(1).

Therefore, applying the above equations, we can get that

∗ = `
(t)
1,(i,j)

∑
p∈Pi,j(v)

[
θ

(p)
i,j (u) · θ(p)

i,j (v)− θ(p)
j,i (u) · θ(p)

j,i (v)
]

+
[
`
(t)
1,(i,j) + `

(t)
1,(j,i)

]
·
∑
p∈[P ]

θ
(p)
j,i (u) · θ(p)

j,i (u)
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=
[
`
(t)
1,(i,j) + `

(t)
1,(j,i)

]
·O(1).

Further note that in the initial phase we have `(t)1,(i,j) + `
(t)
1,(j,i) = O(ζ), we consequently get

| ∗ | =
∣∣∣∣`(t)1,(i,j)

∑
p∈[P ]

θ
(p)
i,j (u) · 〈x(p)

i,j ,v〉+ `
(t)
1,(j,i)

∑
p∈[P ]

θ
(p)
j,i (u) · 〈x(p)

j,i ,v〉
∣∣∣∣ = O(ζ).

Analysis on the remaining data (i, j) 6∈ S+,−
0,0 ∪ S

−,+
0,0 . In this case, we note that there are no data patches that satisfy

θ
(p)
j,i (v) = Θ(1) and θ(p)

j,i (u) = Θ(1) simultaneously. Therefore, for any data xi,j , there will exist at most Θ(1) patches that

satisfy θ(p)
j,i (v) · θ(p)

j,i (u) = α and at most 2b patches satisfying θ(p)
j,i (v) · θ(p)

j,i (u) = α2, while the remaining patches will

give θ(p)
j,i (v) · θ(p)

j,i (u) = 0. Therefore, we can get that∑
p∈[P ]

θ
(p)
i,j (u) · 〈x(p)

i,j ,v〉 =
∑
p∈[P ]

θ
(p)
i,j (u) · θ(p)

i,j (u) = Θ(1) · α+ 2bα2 = O(α),

where the last equality follows from the setting of the data distribution that bα < 1.

Completing the analysis for γ(t)
1 (u,v). By (C.8) and using the fact that |`(t)1,(i,j)| ≤ 1, we have

|γ(t)
1 (u,v)| = 1

n2

∣∣∣∣ ∑
i,j∈[n]

`
(t)
1,(i,j)

∑
p∈[P ]

θ
(p)
i,j (u) · θ(p)

i,j (v)

∣∣∣∣
=

1

n2
·
[
|S+,−

0,0 ∪ S
−,+
0,0 | ·O(ζ) +

(
n2 − |S+,−

0,0 ∪ S
−,+
0,0 |

)
·O(α)

]
= O(ζ + α).

Proof for γ(t)
1 (v′,v). We then tend to characterize γ(t)

1 (v′,v). We will consider the following two classes of data:

• (i, j) ∈ S+,+
0,1 ∪ S

+,+
1,0

• all (i, j) 6∈ S+,+
0,1 ∪ S

+,+
1,0 .

Analysis on the data (i, j) ∈ S+,+
0,1 ∪ S

+,+
1,0 First, it is easy to see that with probability at least 1 − 1/poly(n), we have

|S+,+
0,1 ∪ S

+,+
1,0 | = O(ρn2). For this class of data, with probability Θ(1/P ) we have the data x

(p)
i,j has a constant number of

patches that satisfy θ(p)
i,j (v) · θ(p)

i,j (v′) = Θ(1). Besides, by Lemma C.1, we have with probability at least 1− 1/poly(n),

there are Θ(bρn2/P ) patches are the mixture of αv and v′, leading to θ(p)
i,j (v) · θ(p)

i,j (v′) = Θ(α). The remaining patches

will give θ(p)
i,j (v) · θ(p)

i,j (v′) = 0. Combine the above results, we can get

∑
(i,j)∈S+,+

0,1 ∪S
+,+
1,0

`
(t)
1,(i,j)

∑
p∈P

θ
(p)
i,j (v) · θ(p)

i,j (v′) = Θ

(
ρn2

P

)
+ Θ

(
bαρn2

P

)
= Θ

(
ρn2

P

)

where we use the fact that bα = o(1).

Analysis on the remaining data Particular, we will only consider the data (i, j) ∈ S−,+0,1 ∪S
−,+
1,1 ∪S

+,−
1,0 since otherwise there is

no data containing the rare feature vector v′. Moreover, note that for this class of data we only have θ(p)
i,j (v)·θ(p)

i,j (v′) = O(α)
since there is no data consisting of common feature patch (but only contain feature noise αv). Therefore, similar to the
previous analysis, we can get that, by Lemma C.1, with probability at least 1− 1/poly(n), there are Θ(bρn2/P ) patches
that give θ(p)

i,j (v) · θ(p)
i,j (v′) = Θ(α), which consequently leads to

∑
(i,j)∈S−,+0,1 ∪S

−,+
1,1 ∪S

+,−
1,0

∣∣∣∣`(t)1,(i,j)

∑
p∈P

θ
(p)
i,j (v) · θ(p)

i,j (v′)

∣∣∣∣ = O

(
bαρn2

P

)
.
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Completing the analysis for γ(t)
1 (v′,v). Completing the previous analysis, we have

γ
(t)
1 (v′,v) =

1

n2

∑
i,j∈[n]

`
(t)
1,(i,j)

∑
p∈[P ]

θ
(p)
i,j (v′) · θ(p)

i,j (v) = Θ

(
ρ

P

)
±O

(
bαρ

P

)
= Θ

(
ρ

P

)
.

Proof for γ(t)
1 (u′,v). Regarding the coefficient γ(t)

1 (u′,v), we consider two cases (1) mixup between u′ and v; (2) mixup
between u′ and αv. Then it can be seen that the first cases cover the data (i, j) ∈ S−,+1,0 and (i, j) ∈ S+,−

0,1 , which is
equivalent to the dataset {(i, j), (j, i) : (i, j) ∈ S+,−

1,0 }. Therefore, we will handle the data (i, j) and (j, i) together in this
case. In particular, we have

`
(t)
1,(i,j)

∑
p∈[P ]

θ
(p)
i,j (u′) · θ(p)

i,j (v) + `
(t)
1,(j,i)

∑
p∈[P ]

θ
(p)
j,i (u′) · θ(p)

j,i (v)

= `
(t)
1,(i,j)

∑
p∈[P ]

[
θ

(p)
i,j (u′) · θ(p)

i,j (v)− θ(p)
j,i (u′) · θ(p)

j,i (v)
]

+
[
`
(t)
1,(i,j) + `

(t)
1,(j,i)

]
·
∑
p∈[P ]

θ
(p)
j,i (u′) · θ(p)

j,i (v).

It is clear that the first term on the R.H.S. of the above equation is zero since in case (1)

θ
(p)
i,j (u′) · θ(p)

i,j (v) = θ
(p)
j,i (u′) · θ(p)

j,i (v) = λ(1− λ).

Regarding the second term, we can use Lemma C.1 and get that the number of patches falling in case (1) is Θ(ρn2/P ).
Then using the fact that |`(t)1,(i,j) + `

(t)
1,(i,j)| = O(ζ) can lead to the final bound for case (1).

Regarding case (2), we can follow the analysis for γ(t)
1 (v′,v), which relies on the fact that θ(p)

i,j (u) · θ(p)
i,j (v′) = Θ(α).

Therefore, we can finally get

|γ(t)
1 (u,v′)| =

∣∣∣∣ 1

n2

∑
(i,j)∈S−,+0,1 ∪S

+,−
1,0

`
(t)
1,(i,j)

∑
p∈[P ]

θ
(p)
i,j (u) · θ(p)

i,j (v′)

∣∣∣∣
= O

(
ρ

P

)
·Θ(ζ) +O

(
bαρ

P

)
= Θ

(
ζρ

P

)
,

where we use the fact that ζ = ω(bα).

Proof for γ(t)
1 (ξ

(q)
s ,v). Finally, we will study γ(t)

1 (ξ
(q)
s ,v). Recall its formula in (C.3) we can get

γ
(t)
1 (ξ(q)

s ,v) =
1

n2

∑
i,j∈[n]

`
(t)
1,(i,j)

∑
p∈[P ]

θ
(p)
i,j (ξ(q)

s ) · θ(p)
i,j (v).

Then it can be seen that the noise vector ξ(p)
s will appear in 2n − 1 mixup data patches. By Lemma C.1, we have with

probability at least 1− 1/poly(n), Θ(1/P ) fraction of them are mixed with v and O(b/P ) fraction of them are mixed with
αv. Therefore, we can get that

γ
(t)
1 (ξ(q)

s ,v) =
1

n2

∑
p=q,i=s||p=q,j=s

`
(t)
1,(i,j)θ

(p)
i,j (ξ(q)

s ) · θ(p)
i,j (v)

︸ ︷︷ ︸
I1

+
1

n2

∑
p 6=q||i 6=s,j 6=s

`
(t)
1,(i,j)

∑
p∈[P ]

θ
(t)
i,j (ξ(q)

s ) · θ(p)
i,j (v)

︸ ︷︷ ︸
I2

,

where it holds that

|I1| ≤
1

n2
·
[
Θ(n/P ) + Θ(bα/P )

]
= Θ

(
1

Pn

)
,
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and

|I2| ≤ Õ
(

P

d1/2

)
,

where we use the fact that bα = o(1) and θ(t)
i,j (ξ

(q)
s ) = Õ(d−1/2) for all i 6= s and j 6= s. This further implies that

|γ(t)
1 (ξ(q)

s ,v)| = O

(
1

Pn

)
since we have assumed that d ≥ P 4n2.

We can also get a similar result for the learning of common feature u.

Lemma C.4. Assume maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ = o
(

1
polylog(n)

)
, then recalling the update form in Proposition

C.2, we have for any r ∈ [m], q ∈ [P ], and s ∈ [n],

γ
(t)
2 (u,u) = Θ(1), |γ(t)

2 (v,u)| = O(ζ + α), |γ(t)
2 (v′,u)| = O(ζρ/P ),

|γ2(u′,u)| = O(ρ/P ), |γ(t)
2 (ξ(q)

s ,u)| = Õ
(
1/(Pn)

)
.

C.3.2 INCORRECT COMMON FEATURE LEARNING

In this part, we will study the incorrect common feature learning, i.e., quantifying the inner products 〈w(t)
2,r,v〉 and 〈w(t)

1,r,u〉.

Lemma C.5. Assume maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ = o
(

1
polylog(n)

)
, then recalling the update form in Proposition

C.2, we have

γ
(t)
2 (v,v) = −Θ(1), |γ(t)

2 (u,v)| = O(ζ + α), |γ(t)
2 (v′,v)| = O(ρ/P ),

|γ(t)
2 (u′,v)| = O(ζρ/P ), |γ(t)

2 (ξ(q)
s ,v)| = Õ

(
1/(Pn)

)
.

Proof of Lemma C.5. Recall the definition of γ(t)
2 (v,v), we have

γ
(t)
2 (v,v) =

1

n2

∑
i,j∈[n]

`
(t)
2,(i,j)

∑
p∈[P ]

[θ
(p)
i,j (v)]2.

Then comparing with the previous analysis on γ(t)
2 (v,v), the only difference is to replace `(t)1,(i,j) to `(t)2,(i,j) = −`(t)2,(i,j).

Therefore, we can immediately get that γ(t)
2 (v,v) = −γ(t)

1 (v,v) = −Θ(1).

Regarding other terms that are bounded in terms of their absolute values, we can get the same results as in Theorem C.3.
This completes the proof.

Similarly, we can get the following results for u.

Lemma C.6. Assume maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ = o
(

1
polylog(n)

)
, then recalling the update form in Proposition

C.2, we have

γ
(t)
1 (u,u) = −Θ(1), |γ(t)

1 (v,u)| = O(ζ + α), |γ(t)
1 (v′,u)| = O(ρ/P ),

|γ1(u′,u)| = O(ζρ/P ), |γ(t)
1 (ξ(q)

s ,u)| = Õ
(
1/(Pn)

)
.

C.3.3 RARE FEATURE LEARNING

In this part, we will study the rare feature learning, i.e., quantifying the inner products 〈w(t)
1,r,v

′〉 and 〈w(t)
2,r,u

′〉.
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Lemma C.7. Assume maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ for some ζ = o
(

1
polylog(n)

)
and ζ > bα, then recalling the

update form in Proposition C.2, we have

γ
(t)
1 (v′,v′) = Θ(ρ), γ

(t)
1 (v,v′) = Θ(ρ/P ), |γ(t)

1 (u,v′)| = O(ζρ/P ),

|γ(t)
1 (u′,v′)| = O(ζρ2/P ), |γ(t)

1 (ξ(q)
s ,v′)| = Õ

(
ρ/(Pn)

)
.

Proof of Lemma C.7. Recalling the definition of γ(t)
1 (v′,v′):

γ
(t)
1 (v′,v′) =

1

n2

∑
i,j∈[n]

`
(t)
1,(i,j)

∑
p∈[P ]

[θ
(p)
i,j (v′)]2.

Note that the rare feature v′ will not appear in the form of feature noise, then we will only need to focus on the mixed
data (i, j) with either i ∈ S+

1 or j ∈ S+
1 , where the rare feature can only appear in the form of v, λv, or (1 − λ)v.

Particularly, regarding the data (i, j) ∈ S+,+
1,1 ∪ S

+,+
1,0 ∪

+,+
0,1 , let P∗i,j(v′) be the set of patches that contain the feature v′, we

have |P∗i,j(v′)| = Θ(1) and then

`
(t)
1,(i,j) ·

∑
p∈[P ]

[θ
(p)
i,j (v′)]2 = `

(t)
1,(i,j) ·

∑
p∈P∗i,j(v)

[θ
(p)
i,j (v′)]2 = Θ(1),

where we use the fact that `(t)1,(i,j) = Θ(1) for any (i, j) ∈ S+,+
1,1 .

Regarding the data (i, j) ∈ S+,−
1,0 ∪ S

+,−
1,1 , we will consider (i, j) and (j, i) together. Particularly, we have

`
(t)
1,(i,j) ·

∑
p∈[P ]

[θ
(p)
i,j (v′)]2 + `

(t)
1,(j,i) ·

∑
p∈[P ]

[θ
(p)
j,i (v′)]2 = `

(t)
1,(i,j) ·

∑
p∈[P ]

[
[θ

(p)
i,j (v′)]2 − [θ

(p)
j,i (v′)]2

]
︸ ︷︷ ︸

I1

+
[
`
(t)
1,(i,j) + `

(t)
1,(j,i)

]
·
∑
p∈[P ]

[θ
(p)
j,i (v′)]2

︸ ︷︷ ︸
I2

.

Then using the same definition of P∗i,j(v), we have for any p ∈ P∗i,j(v), it holds that θ(p)
i,j (v′) = λ and θ(p)

j,i (v′) = 1− λ,
then

I1 = Θ(1) · |P∗i,j(v′)| · [λ2 − (1− λ)2] = Θ(1).

Regarding I2, we can use the condition that the neural network output is upper bounded by ζ, then

|I2| =
∣∣∣∣[λ− 0.5 + 0.5− λ±O(ζ)

]
·

∑
p∈P∗i,j(v′)

[θ
(p)
j,i (v′)]2

∣∣∣∣ = O(ζ).

Therefore, combining these results for I1 and I2, we can get

`
(t)
1,(i,j) ·

∑
p∈[P ]

[θ
(p)
i,j (v′)]2 + `

(t)
1,(j,i) ·

∑
p∈[P ]

[θ
(p)
j,i (v′)]2 = I1 + I2 = Θ(1).

To complete the analysis, we have

γ
(t)
1 (v′,v′) =

1

n2

∑
i,j∈[n]

∑
p∈[P ]

[θ
(p)
i,j (v′)]2

=
1

n2

∑
i∈S+

1 ,j∈[n]||i∈[n],j∈S+
1

∑
p∈[P ]

[θ
(p)
i,j (v′)]2

= |S+,+
1,1 ∪ S

+,+
1,0 ∪

+,+
0,1 |+ |S

+,−
1,0 ∪ S

+,−
1,1 |
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= Θ(ρ).

The characterization of γ1(v,v′) and γ1(u,v′) will be exactly the same as γ1(v′,v) and γ1(v′,u) due to the fact that
γ1(a, b) = γ1(b,a). Therefore, we can apply Lemmas C.3 and C.6 to get the desired results.

Regarding the proof for γ(t)
1 (u′,v′), we will follow a similar proof for γ(t)

1 (u′,v) in Lemma C.3, while two differences
need to be considered: (1) the rare feature vectors u′ and v′ will not appear in the form of feature noise, thus we only need
to consider the data (i, j) ∈ S+,−

1,1 ∪ S
−,+
1,1 ; (2) the cardinality of the critical subset of data satisfies |S+,−

1,1 ∪ S
−,+
1,1 | = ρ2n2.

Therefore, for any (i, j) ∈ S+,−
1,1 , we have

`
(t)
1,(i,j)

∑
p∈[P ]

θ
(p)
i,j (u′) · θ(p)

i,j (v′) + `
(t)
1,(j,i)

∑
p∈[P ]

θ
(p)
j,i (u′) · θ(p)

j,i (v′)

= `
(t)
1,(i,j)

∑
p∈[P ]

[
θ

(p)
i,j (u′) · θ(p)

i,j (v′)− θ(p)
j,i (u′) · θ(p)

j,i (v′)
]

+
[
`
(t)
1,(i,j) + `

(t)
1,(j,i)

]
·
∑
p∈[P ]

θ
(p)
j,i (u′) · θ(p)

j,i (v′).

It is easy to see that θ(p)
i,j (u′) · θ(p)

i,j (v′) = θ
(p)
j,i (u′) · θ(p)

j,i (v′) = λ(1− λ). Besides, we have in total ρ2n2/P patches that
consist of both u′ and v′. This further implies that

|γ(t)
1 (u′,v′)| =

∣∣∣∣ 1

n2

∑
(i,j)∈S+,−

1,1 ∪S
−,+
1,1

[
`
(t)
1,(i,j) + `

(t)
1,(j,i)

]
·
∑
p∈[P ]

θ
(p)
j,i (u′) · θ(p)

j,i (v′)

∣∣∣∣
= O

(
ρ2

P

)
·O(ζ)

= O

(
ζρ2

P

)
,

where we use the fact that |`(t)1,(i,j) + `
(t)
1,(j,i)| = O(ζ).

Lastly, we will characterize γ(t)
1 (ξ

(q)
s ,v′). First recall its definition:

γ
(t)
1 (ξ(q)

s ,v′) =
1

n2

∑
i,j∈[n]

`
(t)
1,(i,j)

∑
p∈[P ]

θ
(p)
i,j (ξ(q)

s ) · θ(p)
i,j (v′)

=
1

n2

∑
p=q,i=s||p=q,j=s

`
(t)
1,(i,j)θ

(p)
i,j (ξ(q)

s ) · θ(p)
i,j (v′)

︸ ︷︷ ︸
I1

+
1

n2

∑
p 6=q||i 6=s,j 6=s

`
(t)
1,(i,j)

∑
p∈[P ]

θ
(p)
i,j (ξ(q)

s ) · θ(p)
i,j (v′)

︸ ︷︷ ︸
I2

.

Note that for any fixed ξ(p)
s , it will be mixed with n data patches in total, while, by Lemma C.1, we know that there are only

Θ(ρ/P ) fraction among them are v′. Using the fact that |`(t)1,(i,j)| ≤ 1, we have

|I1| ≤
1

n
·Θ(ρ/P ) = O

(
ρ

Pn

)
.

Besides, note that |θ(p)
i,j (ξ

(q)
s )| = Õ(d−1/2) if i, j 6= s or p 6= q, we have

|I2| ≤ Õ
(
ρP

d1/2

)
= O

(
ρ

Pn

)
,

where the last equality is by the assumption that d ≥ P 4n2. Combining the above results for I1 and I2, we can get

|γ(t)
1 (ξ(q)

s ,v′)| = O

(
ρ

Pn

)
.
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Following the exactly same procedure, we can get the following results regarding the learning of u′.

Lemma C.8. Assume maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ for some ζ = o
(

1
polylog(n)

)
and ζ > bα, then recalling the

update form in Proposition C.2, we have

γ
(t)
2 (u′,u′) = Θ(ρ), γ

(t)
2 (u,u′) = Θ(ρ/P ), |γ(t)

2 (v,u′)| = O(ζρ/P ),

|γ(t)
2 (v′,u′)| = O(ζρ2/P ), |γ(t)

2 (ξ(q)
s ,u′)| = Õ

(
ρ/(Pn)

)
.

C.3.4 INCORRECT RARE FEATURE LEARNING

In contrast to the previous section that studies 〈w(t)
1,r,v

′〉 and 〈w(t)
2,r,u

′〉, the incorrect rare feature learning aims to

characterize the quantities 〈w(t)
2,r,v

′〉 and 〈w(t)
1,r,u

′〉. Similar to the proof of Lemmas C.5 and C.6, we only need to replace

`
(t)
1,(i,j) with `(t)2,(i,j) = −`(t)1,(i,j) or `(t)2,(i,j) with `(t)1,(i,j) = −`(t)2,(i,j). Based on this, the update of 〈w(t)

2,r,v
′〉 and 〈w(t)

1,r,u
′〉 in

each iteration are characterized in the following lemmas.

Lemma C.9. Assume maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ for some ζ = o
(

1
polylog(n)

)
and ζ > bα, then recalling the

update form in Proposition C.2, we have

γ
(t)
2 (v′,v′) = −Θ(ρ), γ

(t)
2 (v,v′) = −Θ(ρ/P ), |γ(t)

2 (u,v′)| = O(ζρ/P ),

|γ(t)
2 (u′,v′)| = O(ζρ2/P ), |γ(t)

2 (ξ(q)
s ,v′)| = Õ

(
ρ/(Pn)

)
.

Lemma C.10. Assume maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ for some ζ = o
(

1
polylog(n)

)
and ζ > bα, then recalling the

update form in Proposition C.2, we have

γ
(t)
1 (u′,u′) = −Θ(ρ), γ

(t)
1 (u,u′) = −Θ(ρ/P ), |γ(t)

1 (v,u′)| = O(ζρ/P ),

|γ(t)
1 (v′,u′)| = O(ζρ2/P ), |γ(t)

1 (ξ(q)
s ,u′| = Õ

(
ρ/(Pn)

)
.

C.3.5 NOISE LEARNING

Lemma C.11. Assume maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ for some ζ = o
(

1
polylog(n)

)
and ζ > bα, then recalling the

update form in Proposition C.2, for any ξ(q)
s with ys = 1, we have

γ
(t)
1 (ξ(q)

s , ξ(q)
s ) =

dσ2
p · [nλ3 − (2λ− 1)(1− λ)2]

2n2
± Õ

(
ζdσ2

p

n

)
|γ(t)

1 (v, ξ(q)
s )| = O

(
dσ2

p/(Pn)
)
, |γ(t)

1 (u, ξ(q)
s )| = O

(
dσ2

p/(Pn)
)
, |γ(t)

1 (v′, ξ(q)
s )| = O

(
dσ2

pρ/(Pn)
)
,

|γ(t)
1 (u′, ξ(q)

s )| = O
(
dσ2

pρ/(Pn)
)
, |γ(t)

1 (ξ
(q)
i , ξ(q)

s )| = 1[yi = ys] ·
λ(1− λ)dσ2

p

n2
±O

(
ζdσ2

p

n2

)
.

Proof of Lemma C.11. Without loss of generality, we assume ys = 1. According to the definition of γ(t)
1

(
ξ

(q)
s , ξ

(q)
s

)
, we

have

γ
(t)
1

(
ξ(q)
s , ξ(q)

s

)
=

1

n2

∑
i,j∈[n]

`
(t)
1,(i,j)

∑
p∈[P ]

[θ
(p)
i,j (ξ(q)

s )]2 · ‖ξ(q)
s ‖22

=
‖ξ(q)
s ‖22
n2

·
( ∑
i∈[n]

`
(t)
1,(s,i)[θ

(q)
s,i (ξ

(q)
s )]2 +

∑
i 6=s

`
(t)
1,(i,s)[θ

(q)
i,s (ξ(q)

s )]2
)

=
‖ξ(q)
s ‖22
n2

·
(
λ2 ·

∑
i∈[n]

`
(t)
1,(s,i) + (1− λ)2 ·

∑
i 6=s

`
(t)
1,(i,s)

)

=
‖ξ(q)
s ‖22
n2

·
[
0.5nλ3 − (λ− 0.5)(1− λ)2 ±O(nζ)

]
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=
‖ξ(q)
s ‖22 · [nλ3 − (2λ− 1)(1− λ)2]

2n2
±O

(
ζ‖ξ(q)

s ‖22
n

)
,

where the second equation is due to the fact that only xi,s or xs,i will contain the component of ξ(q)
s , the fourth inequality

holds since we assume there have n/2 positive samples and n/2 negative samples in the training data. Moreover, note
that ξ(q)

s ∼ N(0, σ2
pI), applying union bound over all s ∈ [n] and p ∈ [P ], we can get that with probability at least

1− 1/poly(n), we have ∣∣‖ξ(q)
s ‖22 − dσ2

p

∣∣ ≤ polylog(n) · d1/2σ2
p.

Therefore, it follows that for all s ∈ [n] and p ∈ [P ], with probability at least 1− 1/poly(n),

γ
(t)
1

(
ξ(q)
s , ξ(q)

s

)
=
dσ2

p · [nλ3 − (2λ− 1)(1− λ)2]

2n2
± Õ

(
d1/2σ2

p

n
+
ζdσ2

p

n

)
=
dσ2

p · [nλ2 − (1− λ)2]

2n2
± Õ

(
ζdσ2

p

n

)
,

where we use the fact that ζ = ω(d−1/2).

Regarding γ(t)
1 (ξ

(q)
i , ξ

(q)
s ), we have

γ
(t)
1 (ξ

(q)
i , ξ(q)

s ) =
λ(1− λ)

n2
· [`(t)1,(i,s) + `

(t)
1,(s,i)] · ‖ξ

(q)
s ‖22

= 1[yi = ys] ·
λ(1− λ)dσ2

p

n2
±O

(
ζdσ2

p

n2

)
.

Regarding the remaining quantities, we can directly apply the aforementioned lemmas on the learning of common and rare
features, since the following holds

γ
(t)
1 (a, ξ(q)

s ) = γ
(t)
1 (ξ(q)

s ,a) · ‖ξ(q)
s ‖22 = γ

(t)
1 (ξ(q)

s ,a) · Õ(dσ2
p),

where a ∈ {v,u,v′,u′}. This completes the proof.

C.4 Outcome of Phase 1 Mixup Training.

In this part, we will provide the outcome of Phase 1 mixup training.

We first recall Proposition C.2 and Lemma C.3 to obtain the learning dynamics of the common feature vector v.

〈w(t+1)
1,r ,v〉 = 〈w(t)

1,r,v〉 − η · 〈∇w1,r
LS(W(t)),v〉

=
[
1 + ηγ

(t)
1 (v,v)

]
· 〈w(t)

1,r,v〉+ ηγ
(t)
1 (u,v) · 〈w(t)

1,r,u〉+ ηγ
(t)
1 (v′,v) · 〈w(t)

1,r,v
′〉

+ ηγ
(t)
1 (u′,v) · 〈w(t)

1,r,u
′〉+

n∑
i=1

∑
p∈[P ]

ηγ
(t)
1 (ξ

(p)
i ,v) · 〈w(t)

1,r, ξ
(p)
i 〉.

Then it can be seen that the most complicated part in the above update form is the composition of noise learning, i.e.,
〈w(t)

1,r, ξ
(p)
i 〉.The following lemma provides an upper bound on the term

∑n
i=1

∑
p∈[P ] ηγ

(t)
1 (ξ

(p)
i ,v) · 〈w(t)

1,r, ξ
(p)
i 〉, which

will leverage the randomness of ξ(p)
i at the initialization.

Lemma C.12. Assume maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ for some ζ ∈
[
ω
(
(nP )−1/2

)
, o
(

1
polylog(n)

)]
. Let zt :=∑n

i=1

∑
p∈[P ] γ

(t)
1 (ξ

(p)
i ,v) · 〈w(t)

1,r, ξ
(p)
i 〉, then we have with probability at least 1−1/poly(n), for all t = O

(
nη−1/(dσ2

p)
)
,

we have

|zt| ≤ O
(
d1/2σ0σp
P 1/2n1/2

)
+O

(
ζ

Pn

)
·
n∑
s=1

∑
p∈[P ]

|〈w(t)
1,r, ξ

(p)
s 〉|+O

(
ηdσ2

p

Pn

)
·
t−1∑
τ=0

[
|〈w(τ)

1,r ,v〉|+ |〈w
(τ)
1,r ,u〉|

]
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+O

(
ηρdσ2

p

Pn

)
·
t−1∑
τ=0

[
|〈w(τ)

1,r ,v
′〉|+ |〈w(τ)

1,r ,u
′〉|
]

+O

(
ηζdσ2

p

n2

)
·
t−1∑
τ=0

∑
p∈[P ]

n∑
s=1

|〈w(τ)
1,r , ξ

(p)
s 〉|.

Proof. Based on the definition of zt, we can conduct the following decomposition:

zt =

n∑
i=1

∑
p∈[P ]

γ
(t)
1 (ξ

(p)
i ,v) · 〈w(t)

1,r, ξ
(p)
i 〉

=
1

n2

n∑
i′=1

∑
q∈[P ]

∑
i,j∈[n]

`
(t)
1,(i,j)

∑
p∈[P ]

θ
(p)
i,j (ξ

(q)
i′ ) · θ(p)

i,j (v) · 〈w(t)
1,r, ξ

(q)
i′ 〉.

Note that during the initial training phase `(t)1,(i,j) is close to the constant l1,(i,j) ∈ {0.5,−0.5, 0.5− λ, λ− 0.5}, which is

independent of the random noise vectors {ξ} and random initial weights {w(0)
1,r}r∈[m]. Then using the fact that |`(t)1,(i,j) −

l1,(i,j)| = O(ζ), we can get

|z0| ≤
∣∣∣∣ 1

n2

n∑
i′=1

∑
q∈[P ]

∑
i,j∈[n]

l1,(i,j)
∑
p∈[P ]

θ
(p)
i,j (ξ

(q)
i′ ) · θ(p)

i,j (v) · 〈w(0)
1,r, ξ

(q)
i′ 〉︸ ︷︷ ︸

I1

∣∣∣∣

+

∣∣∣∣ 1

n2

n∑
i′=1

∑
q∈[P ]

∑
i,j∈[n]

[`
(0)
1,(i,j) − l1,(i,j)]

∑
p∈[P ]

θ
(p)
i,j (ξ

(q)
i′ ) · θ(p)

i,j (v) · 〈w(0)
1,r, ξ

(q)
i′ 〉
∣∣∣∣︸ ︷︷ ︸

I2

.

Regarding I1, note that `1,(i,j), θ
(p)
i,j (ξ

(q)
i′ ), and θ(p)

i,j (v) are independent of the random noise vectors {ξ} and random initial

weights {w(0)
1,r}r∈[m]. Besides, note that the inner products {〈w(0)

1,r, ξ
(q)
i′ 〉}i′∈[n],q∈[P ] are independent conditioning on w

(0)
1,r

and for all i′ ∈ [n] and q ∈ [P ], . We can apply standard concentration arguments to get the upper bound of I1. Before
approaching this, we first apply Lemma C.1 and follow the similar proof of Lemma C.3, and obtain that with probability at
least 1− 1/poly(n) ∣∣∣∣ 1

n2

∑
i,j∈[n]

l1,(i,j)
∑
p∈[P ]

θ
(p)
i,j (ξ

(q)
i′ ) · θ(p)

i,j (v)

∣∣∣∣ = O

(
1

nP

)
. (C.9)

Then performing the following decomposition on I1 according to the value of yi′ :

I1 =
1

n2

∑
i′:yi′=1

∑
q∈[P ]

∑
i,j∈[n]

l1,(i,j)
∑
p∈[P ]

θ
(p)
i,j (ξ

(q)
i′ ) · θ(p)

i,j (v) · 〈w(0)
1,r, ξ

(q)
i′ 〉︸ ︷︷ ︸

I
(1)
1

+
1

n2

∑
i′:yi′=2

∑
q∈[P ]

∑
i,j∈[n]

l1,(i,j)
∑
p∈[P ]

θ
(p)
i,j (ξ

(q)
i′ ) · θ(p)

i,j (v) · 〈w(0)
1,r, ξ

(q)
i′ 〉︸ ︷︷ ︸

I
(2)
1

.

Therefore, note that conditioning on w
(0)
1,r , the quantity 〈w(0)

1,r, ξ
(q)
i′ 〉 is ‖w(0)

1,r‖2 · σp-subGaussian, by (C.9), we can immedi-

ately get that both I(1)
1 and I(2)

1 are ‖w(0)
1,r‖2 · σp · (nP )−1/2-subGuassian. Then using the fact that w(0)

1,r ∈ N(0, σ2
0I), we

can get that with probability at least 1− 1/poly(n),

|I(1)
1 |, |I

(2)
1 | ≤ Õ

(
d1/2σ0σp
(nP )1/2

)
. (C.10)
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Regarding I2, we can also apply Lemma C.1 and follow the similar proof of Lemma C.3, then with probability at least
1− 1/poly(n),∣∣∣∣ 1

n2

∑
i,j∈[n]

[`
(0)
1,(i,j) − l1,(i,j)]

∑
p∈[P ]

θ
(p)
i,j (ξ

(q)
i′ ) · θ(p)

i,j (v)

∣∣∣∣ = O

(
maxi,j |`(0)

1,(i,j) − l1,(i,j)|
nP

)
= O

(
ζ

nP

)
.

This further implies that

I2 ≤ O
(
ζ

nP

)
·
n∑

i′=1

∑
q∈[P ]

|〈w(0)
1,r, ξ

(q)
i′ 〉| ≤ Õ

(
ζd1/2σ0σp

)
. (C.11)

where we use the fact that w(0)
1,r ∼ N(0, σ2

0I) and ξ(q)
i′ ∼ N(0, σ2

pI). Combining (C.10) and (C.11) leads to

|z0| ≤ Õ
(
d1/2σ0σp
(nP )1/2

+ ζd1/2σ0σp

)
= O

(
ζd1/2σ0σp

)
.

where we use the condition that ζ = ω
(
(nP )−1/2

)
.

Next we will move on to study the update of zt using the update results of 〈w(t)
1,r, ξ

(p)
i 〉 in Lemma C.11. Particularly, we can

again use the quantities l1,(i,j)’s and get the following decomposition

zt =
1

n2

n∑
i′=1

∑
q∈[P ]

∑
i,j∈[n]

l1,(i,j)
∑
p∈[P ]

θ
(p)
i,j (ξ

(q)
i′ ) · θ(p)

i,j (v) · 〈w(t)
1,r, ξ

(q)
i′ 〉︸ ︷︷ ︸

I3

+
1

n2

n∑
i′=1

∑
q∈[P ]

∑
i,j∈[n]

[
`
(t)
1,(i,j) − l1,(i,j)

] ∑
p∈[P ]

θ
(p)
i,j (ξ

(q)
i′ ) · θ(p)

i,j (v) · 〈w(t)
1,r, ξ

(q)
i′ 〉︸ ︷︷ ︸

I4

.

Recall the update results of 〈w(t)
1,r, ξ

(p)
i 〉 in Lemma C.11: for any yi = 1,

〈w(t+1)
1,r , ξ

(p)
i 〉 =

[
1 + η ·

(
dσ2

p · [nλ3 − (2λ− 1)(1− λ)2]

2n2
± Õ

(
ζdσ2

p

n

))]
· 〈w(t)

1,r, ξ
(p)
i 〉 ±O

(
ηdσ2

p

Pn

)
· 〈w(t)

1,r,v〉

±O
(
ηdσ2

p

Pn

)
· 〈w(t)

1,r,u〉 ±O
(
ηdσ2

pρ

Pn

)
· 〈w(t)

1,r,v
′〉 ±O

(
ηdσ2

pρ

Pn

)
· 〈w(t)

1,r,u
′〉

+O

(
ηλ(1− λ)dσ2

p

n2

) ∑
s:ys=1

〈w(t)
1,r, ξ

(p)
s 〉 ±O

(
ηζdσ2

p

n2

)
·
n∑
s=1

|〈w(t)
1,r, ξ

(p)
s 〉|. (C.12)

For any yi = 2, we have

〈w(t+1)
1,r , ξ

(p)
i 〉 =

[
1− η ·

(
dσ2

p · [nλ3 − (2λ− 1)(1− λ)2]

2n2
± Õ

(
ζdσ2

p

n

))]
· 〈w(t)

1,r, ξ
(p)
i 〉 ±O

(
ηdσ2

p

Pn

)
· 〈w(t)

1,r,v〉

±O
(
ηdσ2

p

Pn

)
· 〈w(t)

1,r,u〉 ±O
(
ηdσ2

pρ

Pn

)
· 〈w(t)

1,r,v
′〉 ±O

(
ηdσ2

pρ

Pn

)
· 〈w(t)

1,r,u
′〉

−O
(
ηλ(1− λ)dσ2

p

n2

)
·
∑
s:ys=1

〈w(t)
1,r, ξ

(p)
s 〉 ±O

(
ηζdσ2

p

n2

)
·
n∑
s=1

|〈w(t)
1,r, ξ

(p)
s 〉|. (C.13)

We first prove the bound of the quantity
∑
p∈[P ]

∑
s:ys=1〈w

(t)
1,r, ξ

(p)
s 〉. First, using the standard concentration result gives

|
∑
p∈[P ]

∑
s:ys=1〈w

(0)
1,r, ξ

(p)
s 〉| = Õ

(
d1/2σ0σpP

1/2n1/2
)
. Then, by the above update rule, we can get

∑
p∈[P ]

∑
s:ys=1

〈w(t+1)
1,r , ξ(p)

s 〉 =

[
1 + Θ

(
ηdσ2

p

n

)]
·
∑
p∈[P ]

∑
s:ys=1

〈w(t)
1,r, ξ

(p)
s 〉
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±O
(
ηdσ2

p

)
· 〈w(t)

1,r,v〉 ±O
(
ηdσ2

p

)
· 〈w(t)

1,r,u〉 ±O
(
ηρdσ2

p

)
· 〈w(t)

1,r,v
′〉

±O
(
ηρdσ2

p

)
· 〈w(t)

1,r,u
′〉 ±O

(
ηζdσ2

p

n

)
·
∑
p∈[P ]

n∑
s=1

|〈w(t)
1,r, ξ

(p)
s 〉|.

Then we can get that for any t = O
(
nη−1/(dσ2

p)
)
, we have∣∣∣∣ ∑

p∈[P ]

∑
s:ys=1

〈w(t)
1,r, ξ

(p)
s 〉
∣∣∣∣ ≤ O(n1/2P 1/2d1/2σ0σp

)
+O(ηdσ2

p) ·
t−1∑
τ=0

[
|〈w(τ)

1,r ,v〉|+ |〈w
(τ)
1,r ,u〉|

]
+O(ηρdσ2

p) ·
t−1∑
τ=0

[
|〈w(τ)

1,r ,v
′〉|+ |〈w(τ)

1,r ,u
′〉|
]

+O

(
ηζdσ2

p

n

)
·
t−1∑
τ=0

∑
p∈[P ]

n∑
s=1

|〈w(τ)
1,r , ξ

(p)
s 〉|.

Moreover, similar result can be obtained for
∑
s:ys=2〈w

(t)
1,r, ξ

(p)
s 〉 and we omit the proof here.

Now we are ready to upper bound I3. Particularly, let α(t)
1 and α(t)

2 be denoted as follows:

α
(t)
1 =

1

n2

n∑
i′:yi′=1

∑
q∈[P ]

∑
i,j∈[n]

l1,(i,j)
∑
p∈[P ]

θ
(p)
i,j (ξ

(q)
i′ ) · θ(p)

i,j (v) · 〈w(t)
1,r, ξ

(q)
i′ 〉

α
(t)
2 =

1

n2

n∑
i′:yi′=2

∑
q∈[P ]

∑
i,j∈[n]

l1,(i,j)
∑
p∈[P ]

θ
(p)
i,j (ξ

(q)
i′ ) · θ(p)

i,j (v) · 〈w(t)
1,r, ξ

(q)
i′ 〉.

Then it is clear that I3 = α
(t)
1 + α

(t)
2 . Then by (C.9) and (C.12), we can get

α
(t+1)
1 =

[
1 + Θ

(
ηdσ2

p

n

)]
· α(t)

1 ±O
(
ηdσ2

p

Pn

)
· 〈w(t)

1,r,v〉 ±O
(
ηdσ2

p

Pn

)
· 〈w(t)

1,r,u〉

±O
(
ηρdσ2

p

Pn

)
· 〈w(t)

1,r,v
′〉 ±O

(
ηρdσ2

p

Pn

)
· 〈w(t)

1,r,u
′〉

±O
(
ηdσ2

p

n2P

)
·
∣∣∣∣ ∑
p∈[P ]

∑
s:ys=1

〈w(t)
1,r, ξ

(p)
s 〉
∣∣∣∣±O(ηζdσ2

p

n2P

)
·
∑
p∈[P ]

n∑
s=1

|〈w(t)
1,r, ξ

(p)
s 〉|.

Similarly, we can also obtain

α
(t+1)
2 =

[
1−Θ

(
ηdσ2

p

n

)]
· α(t)

2 ±O
(
ηdσ2

p

Pn

)
· 〈w(t)

1,r,v〉 ±O
(
ηdσ2

p

Pn

)
· 〈w(t)

1,r,u〉

±O
(
ηρdσ2

p

Pn

)
· 〈w(t)

1,r,v
′〉 ±O

(
ηρdσ2

p

Pn

)
· 〈w(t)

1,r,u
′〉

±O
(
ηdσ2

p

n2P

)
·
∣∣∣∣ ∑
p∈[P ]

∑
s:ys=2

〈w(t)
1,r, ξ

(p)
s 〉
∣∣∣∣±O(ηζdσ2

p

n2P

)
·
∑
p∈[P ]

n∑
s=1

|〈w(t)
1,r, ξ

(p)
s 〉|.

Then using the previous results on
∣∣∑

p∈[P ]

∑
s:ys=1〈w

(t)
1,r, ξ

(p)
s 〉
∣∣ and

∣∣∑
p∈[P ]

∑
s:ys=2〈w

(t)
1,r, ξ

(p)
s 〉
∣∣ and (C.10), we can

get that for any t = O
(
nη−1/(dσ2

p)
)
,

|α(t)
1 | ≤ O

(
d1/2σ0σp
P 1/2n1/2

)
+O

(
ηdσ2

p

Pn

)
·
t−1∑
τ=0

[
|〈w(τ)

1,r ,v〉|+ |〈w
(τ)
1,r ,u〉|

]
+O

(
ηρdσ2

p

Pn

)
·
t−1∑
τ=0

[
|〈w(τ)

1,r ,v
′〉|+ |〈w(τ)

1,r ,u
′〉|
]

+O

(
ηζdσ2

p

n2P

)
·
t−1∑
τ=0

∑
p∈[P ]

n∑
s=1

|〈w(τ)
1,r , ξ

(p)
s 〉|,
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where we use the upper bound of |α(0)
1 | provided in Similarly, we can obtain the same results for α(t)

2 as follows:

|α(t)
2 | ≤ O

(
d1/2σ0σp
P 1/2n1/2

)
+O

(
ηdσ2

p

Pn

)
·
t−1∑
τ=0

[
|〈w(τ)

1,r ,v〉|+ |〈w
(τ)
1,r ,u〉|

]
+O

(
ηρdσ2

p

Pn

)
·
t−1∑
τ=0

[
|〈w(τ)

1,r ,v
′〉|+ |〈w(τ)

1,r ,u
′〉|
]

+O

(
ηζdσ2

p

n2P

)
·
t−1∑
τ=0

∑
p∈[P ]

n∑
s=1

|〈w(τ)
1,r , ξ

(p)
s 〉|.

Combining the above results leads to the bound of I3.

We will finally bound I4 as follows: using the fact that |`1,(i,j) − l1,(i,j)| = O(ζ) and a similar characterization of (C.9), we
can get

I4 ≤ O
(
ζ

Pn

)
·
n∑
s=1

∑
p∈[P ]

|〈w(t)
1,r, ξ

(p)
s 〉|.

Combining the above bounds on I3 and I4, we can finally get

|zt| ≤ |I3|+ |I4|

≤ O
(
d1/2σ0σp
P 1/2n1/2

)
+O

(
ζ

Pn

)
·
n∑
s=1

∑
p∈[P ]

|〈w(t)
1,r, ξ

(p)
s 〉|+O

(
ηdσ2

p

Pn

)
·
t−1∑
τ=0

[
|〈w(τ)

1,r ,v〉|+ |〈w
(τ)
1,r ,u〉|

]
+O

(
ηρdσ2

p

Pn

)
·
t−1∑
τ=0

[
|〈w(τ)

1,r ,v
′〉|+ |〈w(τ)

1,r ,u
′〉|
]

+O

(
ηζdσ2

p

n2P

)
·
t−1∑
τ=0

∑
p∈[P ]

n∑
s=1

|〈w(τ)
1,r , ξ

(p)
s 〉|.

This completes the proof.

Then the following lemma characterizes the growth of common feature learning.

Lemma C.13. Assume maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ for some ζ = o
(
d−1/2σ−1

p

)
. Then for any t =

O
(
polylog(n)/η

)
that satisfies this condition, we have with probability at least 1 − 1/poly(n), there exists at least

one r ∈ [m] such that

〈w(t+1)
1,r ,v〉 =

[
1 + Θ(η)

]
· 〈w(t)

1,r,v〉.

Proof. First, note that 〈w(0)
1,r,v〉 follows N(0, σ2

0), then it is easy to get that

P
[

max
r∈[m]

|〈w(0)
1,r,v〉| ≥ σ0

]
= 1−

(
Pξ∼N(0,σ2

0)[|ξ| ≤ σ0]
)m ≥ 1− 0.7m ≥ 1− 1/poly(n), (C.14)

where the last inequality is by our assumption that m = polylog(n) > C log(n) for some sufficiently large constant C.

Recall the update rule of 〈w(t)
1,r,v〉:

〈w(t+1)
1,r ,v〉 =

[
1 + ηγ

(t)
1 (v,v)

]
· 〈w(t)

1,r,v〉+ ηγ
(t)
1 (u,v) · 〈w(t)

1,r,u〉+ ηγ
(t)
1 (v′,v) · 〈w(t)

1,r,v
′〉

+ ηγ
(t)
1 (u′,v) · 〈w(t)

1,r,u
′〉+

n∑
i=1

∑
p∈[P ]

ηγ
(t)
1 (ξ

(p)
i ,v) · 〈w(t)

1,r, ξ
(p)
i 〉.

Taking absolute value on both sides leads to

|〈w(t+1)
1,r ,v〉| ≥

[
1 + ηγ

(t)
1 (v,v)

]
· |〈w(t)

1,r,v〉| − η
∣∣γ(t)

1 (u,v) · 〈w(t)
1,r,u〉

∣∣− η∣∣γ(t)
1 (v′,v) · 〈w(t)

1,r,v
′〉
∣∣
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− η
∣∣γ(t)

1 (u′,v) · 〈w(t)
1,r,u

′〉
∣∣− ∣∣∣∣ n∑

i=1

∑
p∈[P ]

ηγ
(t)
1 (ξ

(p)
i ,v) · 〈w(t)

1,r, ξ
(p)
i 〉
∣∣∣∣.

Therefore, the next step is to show that these “negative” terms in the above inequality are dominated by ηγ(t)
1 (v,v) ·

|〈w(t)
1,r,v〉|, i.e., showing that∣∣γ(t)

1 (u,v) · 〈w(t)
1,r,u〉

∣∣, ∣∣γ(t)
1 (v′,v) · 〈w(t)

1,r,v
′〉
∣∣, ∣∣γ(t)

1 (u′,v) · 〈w(t)
1,r,u

′〉
∣∣� |〈w(t)

1,r,v〉|;∣∣∣∣ n∑
i=1

∑
p∈[P ]

ηγ
(t)
1 (ξ

(p)
i ,v) · 〈w(t)

1,r, ξ
(p)
i 〉
∣∣∣∣� |〈w(t)

1,r,v〉|,

where we use our result in Lemma C.3 that γ(t)
1 (v,v) = Θ(1). Then we are able to get that

|〈w(t+1)
1,r ,v〉| =

[
1 + ηγ

(t)
1 (v,v)± o

(
1/polylog(n)

)]
· |〈w(t)

1,r,v〉| ≥
[
1 + Θ(η)

]
· |〈w(t)

1,r,v〉|. (C.15)

Regarding the first three terms, we will prove them by mathematical induction on a stronger argument (recall that
γ

(t)
1 (v,v) = Θ(1), |γ(t)

1 (u,v)|, |γ(t)
1 (v′,v)|, |γ(t)

1 (u′,v)| = o
(
1/polylog(n)

)
, according to Lemma C.3): we aim to

verify the hypothesis

|〈w(t)
1,r,u〉

∣∣, |〈w(t)
1,r,v

′〉
∣∣, |〈w(t)

1,r,u
′〉
∣∣ ≤ c · log2(n)|〈w(t)

1,r,v〉|, (C.16)

where c is some sufficiently small constant.

In particular, we can first consider the initialization where t = 0, then by (C.14) and standard concentration bound of
Gaussian random variable, we have with probability at least 1− 1/poly(n),

|〈w(0)
1,r,v〉| = Ω(σ0),

∣∣〈w(0)
1,r,u〉

∣∣ = O
(

log(n)σ0

)
,∣∣〈w(0)

1,r,v
′〉
∣∣ = O

(
log(n)σ0

)
,
∣∣〈w(0)

1,r,v
′〉
∣∣ = O

(
log(n)σ0

)
.

Therefore, using the fact that ζ = o
(
d−1/2σ−1

p

)
, it is easy to verify the hypothesis. We will then assume the hypothesis

holds for all τ ≤ t and aim to verify it for t+ 1. Particularly, recall the update rules of 〈w(t)
1,r,u〉, we have

|〈w(t+1)
1,r ,u〉| ≤

[
1− ηγ(t)

1 (u,u)
]
· |〈w(t)

1,r,u〉|+ η
∣∣γ(t)

1 (v,u) · 〈w(t)
1,r,v〉

∣∣+ η
∣∣γ(t)

1 (v′,v) · 〈w(t)
1,r,v

′〉
∣∣

+ η
∣∣γ(t)

1 (u′,u) · 〈w(t)
1,r,u

′〉
∣∣+

∣∣∣∣ n∑
i=1

∑
p∈[P ]

ηγ
(t)
1 (ξ

(p)
i ,u) · 〈w(t)

1,r, ξ
(p)
i 〉
∣∣∣∣

≤ |〈w(0)
1,r,u〉|+ η

t∑
τ=0

∣∣γ(τ)
1 (v,u) · 〈w(τ)

1,r ,v〉
∣∣+ η

t∑
τ=0

∣∣γ(τ)
1 (v′,v) · 〈w(τ)

1,r ,v
′〉
∣∣

+ η

t∑
τ=0

∣∣γ(τ)
1 (u′,u) · 〈w(τ)

1,r ,u
′〉
∣∣+

t∑
τ=0

∣∣∣∣ n∑
i=1

∑
p∈[P ]

ηγ
(τ)
1 (ξ

(p)
i ,u) · 〈w(τ)

1,r , ξ
(p)
i 〉
∣∣∣∣

≤ O
(

log(n)σ0

)
+ Õ

(
η(ζ + α)

)
·

t∑
τ=0

|〈w(τ)
1,r ,v〉|+O

(
ηρ

P
+
tρη2dσ2

p

Pn

) t∑
τ=0

[
|〈w(τ)

1,r ,v
′〉|+ |〈w(τ)

1,r ,u
′〉|
]

+O

(
tηd1/2σ0σp
P 1/2n1/2

)
+O

(
tη2dσ2

p

Pn

)
·

t∑
τ=0

[
|〈w(τ)

1,r ,v〉|+ |〈w
(τ)
1,r ,u〉|

]
+O

(
ηζ

Pn
+
tη2ζdσ2

p

n2P

)
·

t∑
τ=0

n∑
s=1

∑
p∈[P ]

|〈w(τ)
1,r , ξ

(p)
s 〉|. (C.17)

where the last inequality is by Lemma C.12. Then by (C.12), we have the following results regarding |〈w(τ)
1,r , ξ

(p)
s 〉|

max
i∈[n],p∈[P ]

|〈w(τ+1)
1,r , ξ

(p)
i 〉| ≤

[
1 +O

(
dσ2

p

n

)]
· max
i∈[n],p∈[P ]

|〈w(τ)
1,r , ξ

(p)
i 〉|+O

(
ηdσ2

p

Pn

)
·
[
|〈w(τ)

1,r ,v〉|+ |〈w
(τ)
1,r ,u〉|

]
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+O

(
ηρdσ2

p

Pn

)
·
[
|〈w(τ)

1,r ,v
′〉|+ |〈w(τ)

1,r ,u
′〉|
]

= O
(
d1/2σ0σp

)
+O

(
ηdσ2

p

Pn

)
·
τ∑
s=0

[
|〈w(s)

1,r,v〉|+ |〈w
(s)
1,r,u〉|

]
+O

(
ηρdσ2

p

Pn

)
·
τ∑
s=0

[
|〈w(s)

1,r,v
′〉|+ |〈w(s)

1,r,u
′〉|
]
.

Therefore, we can accordingly get the following upper bound regarding the last term in the RHS of (C.17),

1

nP

t∑
τ=0

n∑
s=1

∑
p∈[P ]

|〈w(τ)
1,r , ξ

(p)
s 〉| ≤

t∑
τ=0

max
i∈[n],p∈[P ]

|〈w(τ)
1,r , ξ

(p)
i 〉|

≤ O
(
td1/2σ0σp

)
+O

(
tηdσ2

p

Pn

)
·
t−1∑
τ=0

[
|〈w(τ)

1,r ,v〉|+ |〈w
(τ)
1,r ,u〉|

]
+O

(
tηρdσ2

p

Pn

)
·
t−1∑
τ=0

[
|〈w(τ)

1,r ,v
′〉|+ |〈w(τ)

1,r ,u
′〉|
]
. (C.18)

Then using the fact that tη = O
(
polylog(n)

)
and n = ω(dσ2

p), we can further get the following on (C.17)

|〈w(t+1)
1,r ,u〉| ≤ O

(
log(n)σ0

)
+ Õ

(
η(ζ + α)

)
·

t∑
τ=0

|〈w(τ)
1,r ,v〉|+O

(
ηρ

P

) t∑
τ=0

[
|〈w(τ)

1,r ,v
′〉|+ |〈w(τ)

1,r ,u
′〉|
]

+O

(
tηd1/2σ0σp
P 1/2n1/2

+ tηζd1/2σ0σp

)
+O

(
η

P

)
·

t∑
τ=0

[
|〈w(τ)

1,r ,v〉|+ |〈w
(τ)
1,r ,u〉|

]
.

Then according to the Hypothesis C.16 for any τ ≤ t, it is easy to get that

|〈w(t+1)
1,r ,u〉| ≥ |〈w(t)

1,r,u〉| ≥ . . . ≥ |〈w
(0)
1,r,u〉|.

Then we can get |〈w(t+1)
1,r ,u〉| = Ω(σ0), applying the fact that tη = O(polylog(n)) further gives

O
(

log(n)σ0

)
+O

(
tηd1/2σ0σp
P 1/2n1/2

+ tηζd1/2σ0σp

))]
= o(log2(n)σ0) = o

(
log2(n)|〈w(t+1)

1,r ,u〉|
)
. (C.19)

Besides, note that the Hypothesis C.16 holds for all τ ≤ t, we have

|〈w(τ)
1,r ,u〉|, |〈w

(τ)
1,r ,v

′〉|, |〈w(τ)
1,r ,u

′〉| ≤ c · log2(n) · |〈w(τ)
1,r ,v〉| ≤ log2(n) · |〈w(t+1)

1,r ,v〉|, (C.20)

we can immediately get that

Õ
(
η(ζ + α)

)
·

t∑
τ=0

|〈w(τ)
1,r ,v〉| ≤ Õ

(
tη(ζ + α)

)
· |〈w(t+1)

1,r ,v〉| = o
(

log2(n) · |〈w(t+1)
1,r ,v〉|

)
O

(
ηρ

P

)
·

t∑
τ=0

[
|〈w(τ)

1,r ,v
′〉|+ |〈w(τ)

1,r ,u
′〉|
]
≤ Õ

(
tηρ

P

)
· |〈w(t+1)

1,r ,v〉| = o
(

log2(n) · |〈w(t+1)
1,r ,v〉|

)
O

(
η

P

)
·

t∑
τ=0

[
|〈w(τ)

1,r ,v〉|+ |〈w
(τ)
1,r ,u〉|

]
≤ Õ

(
tη

P

)
· |〈w(t+1)

1,r ,v〉| = o
(

log2(n) · |〈w(t+1)
1,r ,v〉|

)
. (C.21)

Putting the above results together, we can verify that

|〈w(t+1)
1,r ,u〉| = o

(
log2(n) · |〈w(t+1)

1,r ,v〉|
)
.
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We will then verify the Hypothesis for 〈w(t+1)
1,r ,v′〉. By its update rule, Lemma C.7, and Lemma C.12, we have

|〈w(t+1)
1,r ,v′〉| ≤

[
1 + ηγ

(t)
1 (v′,v′)

]
· |〈w(t)

1,r,v
′〉|+ η

∣∣γ(t)
1 (v,v′) · 〈w(t)

1,r,v〉
∣∣+ η

∣∣γ(t)
1 (u,v′) · 〈w(t)

1,r,u〉
∣∣

+ η
∣∣γ(t)

1 (u′,v′) · 〈w(t)
1,r,u

′〉
∣∣+

∣∣∣∣ n∑
i=1

∑
p∈[P ]

ηγ
(t)
1 (ξ

(p)
i ,v′) · 〈w(t)

1,r, ξ
(p)
i 〉
∣∣∣∣

≤ 2|〈w(0)
1,r,v

′〉|+ η

t∑
τ=0

∣∣γ(τ)
1 (v,v′) · 〈w(τ)

1,r ,v〉
∣∣+ η

t∑
τ=0

∣∣γ(τ)
1 (u,v′) · 〈w(τ)

1,r ,u〉
∣∣

+ η

t∑
τ=0

∣∣γ(τ)
1 (u′,v′) · 〈w(τ)

1,r ,u
′〉
∣∣+

t∑
τ=0

∣∣∣∣ n∑
i=1

∑
p∈[P ]

ηγ
(τ)
1 (ξ

(p)
i ,v′) · 〈w(τ)

1,r , ξ
(p)
i 〉
∣∣∣∣

≤ O
(

log(n)σ0

)
+O

(
ηρ

P
+
tρη2dσ2

p

Pn

)
·

t∑
τ=0

|〈w(τ)
1,r ,v〉|+O

(
ηζρ

P
+
tη2ρdσ2

p

Pn

)
·

t∑
τ=0

|〈w(τ)
1,r ,u〉|

+O

(
ηζρ2

P
+
tρ2η2dσ2

p

Pn

)
·

t∑
τ=0

|〈w(τ)
1,r ,u

′〉|+O

(
tηρd1/2σ0σp
P 1/2n1/2

)

+O

(
ηρζ

Pn
+
tη2ζρdσ2

p

n2P

)
·

t∑
τ=0

n∑
s=1

∑
p∈[P ]

|〈w(τ)
1,r , ξ

(p)
s 〉|.

Then by (C.18) and using the fact that tη = O(polylog(n)) and n = ω(dσ2
p), we can finally get

|〈w(t+1)
1,r ,v′〉| ≤ O

(
log(n)σ0

)
+O

(
ηρ

P

)
·

t∑
τ=0

|〈w(τ)
1,r ,v〉|+O

(
ηρ

P

)
·

t∑
τ=0

|〈w(τ)
1,r ,u〉|

+O

(
ηρ2

P

)
·

t∑
τ=0

|〈w(τ)
1,r ,u

′〉|+O

(
tηρd1/2σ0σp
P 1/2n1/2

+ tηρζd1/2σ0σp

)
.

Then applying (C.19), (C.20), and (C.21), we can also verify that

|〈w(t+1)
1,r ,v′〉| = o

(
log2(n) · |〈w(t+1)

1,r ,v〉|
)
.

The using exactly the same proof, we are also able to verify that

|〈w(t+1)
1,r ,u′〉| = o

(
log2(n) · |〈w(t+1)

1,r ,v〉|
)
.

Lastly, we will prove that ∣∣∣∣ n∑
i=1

∑
p∈[P ]

γ
(t)
1 (ξ

(p)
i ,v) · 〈w(t)

1,r, ξ
(p)
i 〉
∣∣∣∣ ≤ c · |〈w(t)

1,r,v〉| (C.22)

for some sufficiently small constant c and all t = O
(
polylog(n)/η

)
. This can be proved by the combination of Lemma C.12,

(C.18), and our previous characterizations (C.19), (C.20), (C.21). In particular, using the fact that |〈w(t)
1,r,v〉| = Ω(σ0), we

have ∣∣∣∣ n∑
i=1

∑
p∈[P ]

γ
(t)
1 (ξ

(p)
i ,v) · 〈w(t)

1,r, ξ
(p)
i 〉
∣∣∣∣

≤ O
(
d1/2σ0σp
P 1/2n1/2

)
+O

(
ζ

Pn

)
·
n∑
s=1

∑
p∈[P ]

|〈w(t)
1,r, ξ

(p)
s 〉|+O

(
ηdσ2

p

Pn

)
·
t−1∑
τ=0

[
|〈w(τ)

1,r ,v〉|+ |〈w
(τ)
1,r ,u〉|

]
+O

(
ηρdσ2

p

Pn

)
·
t−1∑
τ=0

[
|〈w(τ)

1,r ,v
′〉|+ |〈w(τ)

1,r ,u
′〉|
]

+O

(
ηζdσ2

p

n2P

)
·
t−1∑
τ=0

∑
p∈[P ]

n∑
s=1

|〈w(τ)
1,r , ξ

(p)
s 〉|
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≤ O
(
d1/2σ0σp
P 1/2n1/2

+ ζd1/2σ0σp

)
+O

(
ηdσ2

p

Pn

)
·
t−1∑
τ=0

[
|〈w(τ)

1,r ,v〉|+ |〈w
(τ)
1,r ,u〉|

]
+O

(
ηρdσ2

p

Pn

)
·
t−1∑
τ=0

[
|〈w(τ)

1,r ,v
′〉|+ |〈w(τ)

1,r ,u
′〉|
]

≤ O
(
d1/2σ0σp
P 1/2n1/2

+ ζd1/2σ0σp

)
+O

(
dσ2

p

Pn

)
· |〈w(t)

1,r,v〉|

≤ O
((

d1/2σp
P 1/2n1/2

+ ζd1/2σp +
dσ2

p

Pn

)
· |〈w(t)

1,r,v〉|
)
. (C.23)

Then using the facts that ζ = o(d−1/2σ−1
p ) and dσ2

p = o(n), we are able to complete the proof of (C.22).

Lemma C.14. Assume maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ for some ζ = o
(
d−1/2σ−1

p

)
. Then for any t =

O
(
polylog(n)/η

)
that satisfies this condition, we have with probability at least 1− 1/poly(n),

|γ(t)
1 (v,v)− γ(t)

2 (u,u)| ≤ o
(

1

polylog(n)

)
.

Proof. Recall γ(t)
1 (v,v), we have

γ
(t)
1 (v,v) =

1

n2

∑
i,j∈[n]

`
(t)
1,(i,j)

∑
p∈[P ]

[θ
(p)
i,j (v)]2

=
1

n2

∑
i∈S+

0 or j∈S+
0

`
(t)
1,(i,j)

∑
p∈[P ]

[θ
(p)
i,j (v)]2

︸ ︷︷ ︸
I1

+
1

n2

∑
i 6∈S+

0 and j 6∈S+
0

`
(t)
1,(i,j)

∑
p∈[P ]

[θ
(p)
i,j (v)]2

︸ ︷︷ ︸
I2

.

Regarding I2, using the similar proof in Lemma C.3, we can obtain that I2 = o
(
1/polylog(n)

)
. For I1, using the condition

that maxk∈[2],(i,j)∈S |Fk(W(t);xi,j)| ≤ ζ, we have

I1 =
1

n2

∑
i∈S+

0 or j∈S+
0

l1,(i,j)
∑
p∈[P ]

[θ
(p)
i,j (v)]2 ±O(ζ),

where l1,(i,j) ∈ {0.5,−0.5, 0.5− λ, λ− 0.5} denotes the loss derivative of data (xi,j , yi,j) when its neural network output
is forced to be zero. To this end, using the similar decomposition for γ(t)

2 (u,u) and noting ζ = o(1/polylog(n)), we can
obtain

|γ(t)
1 (v,v)− γ(t)

2 (u,u)| ≤
∣∣∣∣ 1

n2

∑
i∈S+

0 or j∈S+
0

l1,(i,j)
∑
p∈[P ]

[θ
(p)
i,j (v)]2 − 1

n2

∑
i∈S−0 or j∈S−0

l2,(i,j)
∑
p∈[P ]

[θ
(p)
i,j (u)]2

∣∣∣∣
+ o
(
1/polylog(n)

)
. (C.24)

Moreover, for any i ∈ S+
0 , note that∑

j∈[n]

l1,(i,j)
∑
p∈[P ]

[Θ
(p)
i,j (v)]2 =

∑
j∈[n]

l1,(i,j)
∑

p∈P∗i,j(v)

[Θ
(p)
i,j (v)]2 +

∑
j∈[n]

l1,(i,j)
∑

p 6∈P∗i,j(v)

[Θ
(p)
i,j (v)]2

= `1,(i,i) +
∑
j 6=i

l1,(i,j) · z2
i,j ± o

(
n/polylog(n)

)
,

where zi,j = (1− λ)2 if j ∈ S+
1 ∪ S

−
0 ∪ S

−
1 and

zi,j =

{
1 with probability 1/P ;

(1− λ)2 + λ2 with probability (P − 1)/P,
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if j ∈ S+
0 . Consequently, applying Hoeffeding’s inequality regarding the random variable zi,j (when j ∈ S+

0 ), we have with
probability at least 1− 1/poly(n),

1

n2

∑
i∈S+

0 ,j 6∈S
+
0

l1,(i,j)
∑
p∈[P ]

[θ
(p)
i,j (v)]2 =

(1− λ)2

n2

∑
i∈S+

0 ,j∈S
+
1 ∪S

−
0 ∪S

−
1

l1,(i,j) ± o
(

1

polylog(n)

)
1

n2

∑
i∈S+

0 ,j∈S
+
0

l1,(i,j)
∑
p∈[P ]

[θ
(p)
i,j (v)]2 =

`1,(i,i)

n2
+

1 + [(1− λ)2 + λ2](P − 1)

Pn2
·

∑
i∈S+

0 ,j∈S
+
0 ,j 6=i

l1,(i,j) ± o
(

1

polylog(n)

)
.

Similarly, we can also obtain

1

n2

∑
i 6∈S+

0 ,j∈S
+
0

l1,(i,j)
∑
p∈[P ]

[θ
(p)
i,j =

(1− λ)2

n2

∑
i∈S+

1 ∪S
−
0 ∪S

−
1 ,j∈S

+
0

l1,(i,j) ± o
(
1/polylog(n)

)
Therefore, combining the above results, we can get

1

n2

∑
i∈S+

0 or j∈S+
0

l1,(i,j)
∑
p∈[P ]

[θ
(p)
i,j (v)]2

=
1

n2

∑
i∈S+

0 ,j 6∈S
+
0

l1,(i,j)
∑
p∈[P ]

[θ
(p)
i,j (v)]2 +

1

n2

∑
i∈S+

0 ,j∈S
+
0

l1,(i,j)
∑
p∈[P ]

[θ
(p)
i,j (v)]2 +

1

n2

∑
i6∈S+

0 ,j∈S
+
0

l1,(i,j)
∑
p∈[P ]

[θ
(p)
i,j (v)]2

=
(1− λ)2

n2

∑
i∈S+

0 ,j 6∈S
+
0 or i6∈S+

0 ,j∈S
+
0

l1,(i,j) +
`1,(i,i)

n2
+

1 + [(1− λ)2 + λ2](P − 1)

Pn2
·

∑
i∈S+

0 ,j∈S
+
0 ,j 6=i

l1,(i,j)

± o
(

1

polylog(n)

)
.

Similarly, we can get

1

n2

∑
i∈S−0 or j∈S−0

l1,(i,j)
∑
p∈[P ]

[θ
(p)
i,j (u)]2

=
1

n2

∑
i∈S−0 ,j 6∈S

−
0

l1,(i,j)
∑
p∈[P ]

[θ
(p)
i,j (u)]2 +

1

n2

∑
i∈S−0 ,j∈S

−
0

l1,(i,j)
∑
p∈[P ]

[θ
(p)
i,j (u)]2 +

1

n2

∑
i 6∈S−0 ,j∈S

−
0

l1,(i,j)
∑
p∈[P ]

[θ
(p)
i,j (u)]2

=
(1− λ)2

n2

∑
i∈S−0 ,j 6∈S0− or i 6∈S−0 ,j∈S

−
0

l1,(i,j) +
`1,(i,i)

n2
+

1 + [(1− λ)2 + λ2](P − 1)

Pn2
·

∑
i∈S−0 ,j∈S

−
0 ,j 6=i

l1,(i,j)

± o
(

1

polylog(n)

)
.

Then note that the positive and negative data are generated with equal probability, we have |S−0 | and |S+
0 | are different by at

most o
(
1/polylog(n)

)
, therefore, it is easy to get that∣∣∣∣ 1

n2

∑
i∈S+

0 or j∈S+
0

l1,(i,j)
∑
p∈[P ]

[θ
(p)
i,j (v)]2 − 1

n2

∑
i∈S−0 or j∈S−0

l2,(i,j)
∑
p∈[P ]

[θ
(p)
i,j (u)]2

∣∣∣∣ ≤ o(1/polylog(n)
)
.

Plugging the above inequality into (C.24) we can conclude that

|γ(t)
1 (v,v)− γ(t)

2 (u,u)| ≤ o
(

1

polylog(n)

)
.

This completes the proof.

Finally, we state the outcome of noise learning, common feature learning, and rare feature learning in the following Lemma.
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Lemma C.15. Let ζ be a preset quantity satisfying ζ = [ω(dσ2
p/(Pn)), o(d−1/2σ−1

p )] and T be the smallest iteration
number such that maxk∈[2],(i,j)∈S |Fk(W(T );xi,j)| ≥ ζ/2, then with probability at least 1− 1/poly(n), it holds that

max
r
|〈w(T )

1,r ,v〉|,max
r
|〈w(T )

2,r ,u〉| = Ω

(
ζ1/2

m1/2

)
, max

r
|〈w(T )

1,r ,v
′〉|,max

r
|〈w(T )

2,r ,u
′〉| = Ω

(
ρζ1/2

Pm1/2

)
max
r
|〈w(T )

2,r ,v〉|,max
r
|〈w(T )

1,r ,u〉| = Õ(ζ3/2), max
r
|〈w(T )

2,r ,v
′〉|,max

r
|〈w(T )

1,r ,u
′〉| = Õ(ζ3/2)

Proof. We will only prove the results for the inner products 〈w(t)
1,r,v〉, 〈w

(t)
2,r,u〉, 〈w

(t)
1,r,v

′〉, 〈w(t)
1,r,u〉, and 〈w(t)

1,r,u
′〉, as

the proof for the remaining inner products will be exactly the same.

We first recall the update of 〈w1,r,v
′〉:

〈w(t+1)
1,r ,v′〉 =

[
1 + ηγ

(t)
1 (v′,v′)

]
· 〈w(t)

1,r,v
′〉+ ηγ

(t)
1 (v,v′) · 〈w(t)

1,r,v〉+ ηγ
(t)
1 (u,v′) · 〈w(t)

1,r,u〉

+ ηγ
(t)
1 (u′,v′) · 〈w(t)

1,r,u
′〉+

n∑
i=1

∑
p∈[P ]

ηγ
(t)
1 (ξ

(p)
i ,v′) · 〈w(t)

1,r, ξ
(p)
i 〉.

The using Lemma C.7 and the similar proof of Lemma C.13, we can get

∣∣γ(t)
1 (u,v′) · 〈w(t)

1,r,u〉
∣∣ = O

(
ζρ

P

)
· |〈w(t)

1,r,u〉| = O

(
ζρ log2(n)

P

)
· |〈w(t)

1,r,v〉|∣∣γ(t)
1 (u′,v′) · 〈w(t)

1,r,u〉
∣∣ = O

(
ζρ2

P

)
· |〈w(t)

1,r,u〉| = O

(
ζρ2 log2(n)

P

)
· |〈w(t)

1,r,v〉|∣∣∣∣ n∑
i=1

∑
p∈[P ]

γ
(t)
1 (ξ

(p)
i ,v′) · 〈w(t)

1,r, ξ
(p)
i 〉
∣∣∣∣ ≤ O(( ρd1/2σp

P 1/2n1/2
+ ρζd1/2σp

)
· |〈w(t)

1,r,v〉|
)
.

Therefore, noting that we have assumed dσp = o(n/P ) and ζ = o
(

1
Pd1/2σp

)
,

∣∣γ(t)
1 (u,v′) · 〈w(t)

1,r,u〉
∣∣, ∣∣γ(t)

1 (u′,v′) · 〈w(t)
1,r,u

′〉
∣∣, ∣∣∣∣ n∑

i=1

∑
p∈[P ]

γ
(t)
1 (ξ

(p)
i ,v′) · 〈w(t)

1,r, ξ
(p)
i 〉
∣∣∣∣ ≤ c · |γ(t)

1 (v,v′) · 〈w(t)
1,r,v〉|

for some sufficiently small constant c < 0.5. Therefore, further applying Lemma C.7, we can get that

〈w(t+1)
1,r ,v′〉 =

[
1 + Θ(ηρ)

]
· 〈w(t)

1,r,v
′〉+ Θ(ηρ/P ) · 〈w(t)

1,r,v〉 (C.25)

Given the above equation, we are able to complete the proof by combining it with Lemma C.13:

〈w(t+1)
1,r ,v〉 =

[
1 + Θ(η)

]
· 〈w(t)

1,r,v〉. (C.26)

In particular, given the fact that |〈w(0)
1,r,v〉| = Ω(σ0), we can get the following

|〈w(T )
1,r ,v〉| = Ω

(
ζ1/2

m1/2

)
(C.27)

for some T = O
( log(ζ/(mσ0))

η

)
. Besides, by Lemma C.14 and (C.15), we have for any r′ ∈ [m],

|〈w(t+1)
1,r ,u〉|

|〈w(t+1)
2,r′ ,u〉|

=
|〈w(t)

1,r,v〉|

|〈w(t)
2,r′ ,u〉|

·
(

1 + ηγ
(t)
1 (v,v)± o

(
η/polylog(n)

)
1 + ηγ

(t)
2 (u,u)± o

(
η/polylog(n)

))

=
|〈w(t)

1,r,v〉|

|〈w(t)
2,r′ ,u〉|

·
[
1 + η ·

(
γ

(t)
1 (v,v)− γ(t)

2 (u,u)
)
± o
(
η/polylog(n)

)]
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=
|〈w(0)

1,r,v〉|

|〈w(0)
2,r′ ,u〉|

·
[
1± o

(
η/polylog(n)

)]t
.

Note that t ≤ T = Õ(1/η), we can further get
|〈w(t+1)

1,r ,u〉|
|〈w(t+1)

2,r′ ,u〉|
= Θ(1) · |〈w

(0)
1,r,v〉|

|〈w(0)

2,r′ ,u〉|
. This immediately implies that

maxr |〈w(T )
2,r ,u〉| = Θ(maxr |〈w(T )

1,r ,v〉|) = Ω
(
ζ1/2/m1/2

)
.

Moreover, (C.25) implies that

〈w(T )
1,r ,v

′〉 =
[
1 + Θ(ηρ)

]T · 〈w(0)
1,r,v

′〉+ Θ(ηρ/P ) ·
T−1∑
t=0

[
1 + Θ(ηρ)

]t · 〈w(t)
1,r,v〉.

Further note that 〈w(t)
1,r,v〉 has the same sign for all t ≤ T and [1 + Θ(ηρ)]t = Θ(1) for all t ≤ T , then define

T ′ = T −Θ(1/η), we have

|〈w(T )
1,r ,v

′〉| =
∣∣∣∣Θ(1) · 〈w(0)

1,r,v
′〉+ Θ(ηρ/P ) ·

T−1∑
t=0

〈w(t)
1,r,v〉

∣∣∣∣
≥ Θ(ηρ/P ) ·

∣∣∣∣ T−1∑
t=0

〈w(t)
1,r,v〉

∣∣∣∣−Θ(1) ·
∣∣〈w(0)

1,r,v
′〉
∣∣

≥ Θ(ηρ/P ) ·
T−1∑
t=T ′

∣∣〈w(t)
1,r,v〉

∣∣− Õ(σ0).

Then by (C.26) and (C.27), we have for all t ∈ [T ′, T − 1], it holds that

|〈w(t)
1,r,v〉| = Θ

(
|〈w(T )

1,r ,v〉|
)

= Ω

(
ζ1/2

m1/2

)
.

Therefore, we can finally get

|〈w(T )
1,r ,v

′〉| ≥ Θ

(
(T − T ′)ηρ

P
·
)
· Ω
(
ζ1/2

m1/2

)
− Õ(σ0)

= Ω

(
ρζ1/2

Pm1/2

)
.

The remaining part is to establish the upper bounds in terms of incorrect feature learning, i.e., 〈w(T )
1,r ,u〉 and 〈w(T )

1,r ,u
′〉.

Particularly, recall their update forms as follows:

〈w(t+1)
1,r ,u〉 =

[
1− ηγ(t)

1 (u,u)
]
· 〈w(t)

1,r,u〉+ ηγ
(t)
1 (v,u) · 〈w(t)

1,r,v〉+ ηγ
(t)
1 (v′,u) · 〈w(t)

1,r,v
′〉

+ ηγ
(t)
1 (u′,u′) · 〈w(t)

1,r,u
′〉+

n∑
i=1

∑
p∈[P ]

ηγ
(t)
1 (ξ

(p)
i ,u) · 〈w(t)

1,r, ξ
(p)
i 〉,

〈w(t+1)
1,r ,u′〉 =

[
1− ηγ(t)

1 (u′,u′)
]
· 〈w(t)

1,r,u
′〉+ ηγ

(t)
1 (v,u′) · 〈w(t)

1,r,v〉+ ηγ
(t)
1 (u,u′) · 〈w(t)

1,r,u〉

+ ηγ
(t)
1 (v′,u′) · 〈w(t)

1,r,v
′〉+

n∑
i=1

∑
p∈[P ]

ηγ
(t)
1 (ξ

(p)
i ,u′) · 〈w(t)

1,r, ξ
(p)
i 〉.

Then by Lemmas C.6 and C.10, we have

max
{
|γ(t)

1 (u′,u)|, γ(t)
1 (u,u′)|

}
≤ min

{
γ

(t)
1 (u,u), γ

(t)
1 (u′,u′)

}
,

the above equations further yield

|〈w(t+1)
1,r ,u〉|+ |〈w(t+1)

1,r ,u′〉|
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≤ |〈w(t)
1,r,u〉|+ |〈w

(t)
1,r,u

′〉|+O(ηζ) · |〈w(t)
1,r,v〉|+O(ηζρ/P ) · |〈w(t)

1,r,v
′〉|

+

∣∣∣∣ n∑
i=1

∑
p∈[P ]

ηγ
(t)
1 (ξ

(p)
i ,u) · 〈w(t)

1,r, ξ
(p)
i 〉
∣∣∣∣+

∣∣∣∣ n∑
i=1

∑
p∈[P ]

ηγ
(t)
1 (ξ

(p)
i ,u′) · 〈w(t)

1,r, ξ
(p)
i 〉
∣∣∣∣.

Then using the fact that Tη = O(polylog(n)), we can further obtain

|〈w(T )
1,r ,u〉|+ |〈w

(T )
1,r ,u

′〉| ≤ Õ(σ0) + Õ(ζ) ·max
t∈[T ]

|〈w(t)
1,r,v〉|+ Õ(ζρ/P ) ·max

t∈[T ]
|〈w(t)

1,r,v
′〉|

+

T−1∑
t=0

[∣∣∣∣ n∑
i=1

∑
p∈[P ]

ηγ
(t)
1 (ξ

(p)
i ,u) · 〈w(t)

1,r, ξ
(p)
i 〉
∣∣∣∣+

∣∣∣∣ n∑
i=1

∑
p∈[P ]

ηγ
(t)
1 (ξ

(p)
i ,u′) · 〈w(t)

1,r, ξ
(p)
i 〉
∣∣∣∣].

Moreover, following the same procedure of (C.23), we can get

T−1∑
t=0

∣∣∣∣ n∑
i=1

∑
p∈[P ]

ηγ
(t)
1 (ξ

(p)
i ,u) · 〈w(t)

1,r, ξ
(p)
i 〉
∣∣∣∣, T−1∑
t=0

∣∣∣∣ n∑
i=1

∑
p∈[P ]

ηγ
(t)
1 (ξ

(p)
i ,u′) · 〈w(t)

1,r, ξ
(p)
i 〉
∣∣∣∣

≤ Õ(σ0) + Õ

(
dσ2

p

Pn

)
·max
t∈[T ]

[
|〈w(t)

1,r,v〉|+ |〈w
(t)
1,r,u〉|+ |〈w

(t)
1,r,v

′〉|+ |〈w(t)
1,r,u

′〉|
]

Finally, using the assumption that ζ = ω(dσ2
p/(Pn)), we can get that

|〈w(T )
1,r ,u〉|+ |〈w

(T )
1,r ,u

′〉|

≤ Õ(σ0) + Õ(ζ) ·
[

max
t∈[T ]

|〈w(t)
1,r,v〉|+ max

t∈[T ]
|〈w(t)

1,r,v
′〉|+ max

t∈[T ]

[
|〈w(t)

1,r,u〉|+ |〈w
(t)
1,r,u

′〉|
]]
.

Besides, note that the above inequality actually holds for any T ′ ≤ T , thus

|〈w(T ′)
1,r ,u〉|+ |〈w

(T ′)
1,r ,u

′〉|

≤ Õ(σ0) + Õ(ζ) ·
[

max
t∈[T ′]

|〈w(t)
1,r,v〉|+ max

t∈[T ′]
|〈w(t)

1,r,v
′〉|+ max

t∈[T ′]

[
|〈w(t)

1,r,u〉|+ |〈w
(t)
1,r,u

′〉|
]]

≤ Õ(σ0) + Õ(ζ) ·
[

max
t∈[T ]

|〈w(t)
1,r,v〉|+ max

t∈[T ]
|〈w(t)

1,r,v
′〉|+ max

t∈[T ]

[
|〈w(t)

1,r,u〉|+ |〈w
(t)
1,r,u

′〉|
]]
.

This further implies that

max
t∈[T ]

[
|〈w(t)

1,r,u〉|+ |〈w
(t)
1,r,u

′〉|
]

≤ Õ(σ0) + Õ(ζ) ·
[

max
t∈[T ]

|〈w(t)
1,r,v〉|+ max

t∈[T ]
|〈w(t)

1,r,v
′〉|+ max

t∈[T ]

[
|〈w(t)

1,r,u〉|+ |〈w
(t)
1,r,u

′〉|
]]
.

Then, rearranging terms will readily give the following result:

|〈w(T )
1,r ,u〉|+ |〈w

(T )
1,r ,u

′〉| ≤ max
t∈[T ]

[
|〈w(t)

1,r,u〉|+ |〈w
(t)
1,r,u

′〉|
]

≤ Õ(σ0) + Õ(ζ) ·
[

max
t∈[T ]

[
|〈w(t)

1,r,v〉|+ max
t∈[T ]

[
|〈w(t)

1,r,v
′〉|
]

≤ Õ(ζ3/2),

where the last inequality holds since we must have

max
t∈[T ]

|〈w(t)
1,r,v〉|,max

t∈[T ]
|〈w(t)

1,r,v
′〉| = O

(
log(n) · ζ1/2

)
as otherwise, we cannot have maxk∈[2],(i,j)∈S |Fk(W(T );xi,j)| ≤ ζ/2 for all t ≤ T , which contradicts the condition made
in this lemma. This completes the upper bounds of |〈w(T )

1,r ,u〉| and |〈w(T )
1,r ,u

′〉|.
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C.5 Proof of Theorem 4.2

Proof of Theorem 4.2. We will evaluate the test error for common feature data and rare feature data separately. In particular,
take the positive data (x, 1) as an example. Then note that the data x consists of the common feature v, we can obtain the
following by Lemma 5.6:

F1(W(t);x) =

m∑
r=1

P∑
p=1

(
〈w(t)

1,r,x
(p)〉
)2 ≥ m∑

r=1

∑
p:x(p)=v

(
〈w(t)

1,r,v〉
)2

= Ω̃(ζ).

On the other hand, we can follow the similar proof of Theorem 4.1 to show that |〈w(T )
k,r , ζ〉|2 = Õ(σ2

pn
2) with probability at

least 1− 1/poly(n), then it follows that

F2(W(t);x) =

m∑
r=1

P∑
p=1

(
〈w(t)

2,r,x
(p)〉
)2 ≤ Õ(bα2ζ3) + Õ(σ2

pn
2) < F1(W(t);x).

where we use the fact that bα2 = o(1/polylog(n)) and d = ω(n3P ). This clearly suggests that

P(x,y)∼Dcommon
[argmax

k
Fk(W(t),x) 6= y] ≤ 1

poly(n)
.

Then let’s move on to the rare feature data. In particular, consider the positive rare feature data (x, 1), which contains the
rare feature v′, we have

F1(W(t);x) =

m∑
r=1

P∑
p=1

(
〈w(t)

1,r,x
(p)〉
)2 ≥≥ m∑

r=1

∑
p:x(p)=v′

(
〈w(t)

1,r,v〉
)2

= Ω̃(ρ2ζ).

On the other hand, it holds that

F2(W(t);x) =

m∑
r=1

P∑
p=1

(
〈w(t)

2,r,x
(p)〉
)2 ≤ Õ(bα2ζ3) + Õ(σ2

pn
2) = o(ρ2ζ) < F1(W(t);x),

where we use the fact that bα2ζ2 = o(ρ) and d = ω(n3P 3/ρ2). Therefore, this implies that

P(x,y)∼Drare
[argmax

k
Fk(W(t),x) 6= y] ≤ 1

poly(n)
.

Putting the results for common feature data and rare feature data together, we are able to complete the proof.
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