
JMLR: Workshop and Conference Proceedings 21:133–138, 2012 The 11th ICGI

Improving Model Inference of Black Box Components having
Large Input Test Set

Muhammad Naeem Irfan irfan@imag.fr

Roland Groz groz@imag.fr

Catherine Oriat oriat@imag.fr

LIG, Computer Science Lab, Grenoble Institute of Technology, France

Editors: Jeffrey Heinz, Colin de la Higuera and Tim Oates

Abstract

The deterministic finite automata (DFA) learning algorithm L∗ has been extended to learn
Mealy machine models which are more succinct for input/output (i/o) based systems. We
propose an optimized learning algorithm L1 to infer Mealy models of software black box
components. The L1 algorithm uses a modified observation table and avoids adding un-
necessary elements to its columns and rows. The proposed improvements reduce the worst
case time complexity. The L1 algorithm is compared with the existing Mealy inference
algorithms and the experiments conducted on a comprehensive set confirm the gain.

Keywords: black box; Mealy machine; model inference; testing;

1. Introduction

For software black box components, models can be learned from interactions with compo-
nents, available specifications, knowledge of experts and other such sources. Automatically
learning and testing models from interactions with software components is a well known
approach. Software models help to steer testing of such components. The L∗ algorithm
(Angluin (1987)) learns unknown models as a DFA. It has been adapted formally (Niese
(2003)) to infer black box implementations as Mealy machines.

In this paper, we propose an optimized Mealy inference algorithm L1. To record the
observations, the L1 algorithm uses an observation table and initially keeps its columns
empty. The columns of the table are only populated to process counterexamples. The
rows of the table keep only the sequences which correspond to valid states. The paper is
organized as follows: Section 2 introduces the basic definitions and notations. In Section 3,
the Mealy inference algorithm L1 is formally presented. Final section concludes the paper.

2. Preliminaries

Definition 1 A Mealy Machine is a sextuple (Q, I,O, δ, λ, q0), where Q is the non-empty
finite set of states, q0 ∈ Q is the initial state, I is the non-empty finite set of input symbols,
O is the non-empty finite set of output symbols, δ : Q×I → Q is the transition function that
maps pairs of states and input symbols to the corresponding next states, λ : Q × I → O is
the output function that maps pairs of states and input symbols to the corresponding output
symbols. We assume dom(δ) = dom(λ) = Q× I, i.e. the Mealy machine is input enabled.

c© 2012 M.N. Irfan, R. Groz & C. Oriat.

Irfan Groz Oriat

A word ω is a sequence of inputs i1i2 . . . in ∈ I∗ and the empty word is denoted by
ε. The size of a word is the number of letters that ω contains and it is denoted by |ω|.
The transition function for ω is extended as δ(q0, ω) = δ(. . . δ(δ(q0, i1), i2) . . . , in) and the
output function for ω is extended as λ(q0, ω) = λ(. . . λ(λ(q0, i1), i2) . . . , in). If a non-empty
word ω = u · v then u and v are prefix and suffix of ω, respectively. Let suffixj(ω) denote
the suffix of a word ω of length j and prefixj(ω) denotes the prefix of a word ω of length j,
where j ∈ {1, 2, . . . |ω|}. Let outputj(ω) denote the output for jth input symbol in ω. For
example, if we have a sequence of outputs 0010 for a word aaba then output3(aaba) = 1. A
set is prefix closed iff all the prefixes of every element of the set also belong to the set. A set
is suffix closed iff all the suffixes of every element of the set also belong to the set. If a word
ω is executed on a machine and a state sω is reached then ω is the access string for sω, it
is a valid access string if sω corresponds to a state and invalid access string, otherwise.

Figure 1: Coffee machine with I = {pad,water, button, clean}

3. Optimized Mealy Inference Algorithm

The Mealy adaptations of L∗ learn a target model by asking output queries (Niese (2003);
Shahbaz and Groz (2009)) which fill the observation table with output strings. The columns
of the table are initialized with the inputs of I. This enables the algorithm to detect i/o to
annotate the edges in Mealy models. The rows of the table are labeled with access strings
of the states of a target model and the columns are strings that distinguish these states.

If the input set I has a large number of symbols and the columns of the table are
initialized with I, there is a strong possibility that the columns are initialized with too
many symbols and this results in increased number of output queries. The L1 algorithm
initially keeps the columns of the table empty with the intent to add only those elements
from the set I which are really required. To enable L1 to calculate the output labels for
the transition edges of a conjectured Mealy model, we record the output for the last input
symbol of the access strings that label rows of the table.

We assume that the target system is deterministic and input enabled. To attain this, the
Mealy adaptations use the collection of all possible inputs I for each state. While inferring
models, when an access string of a new state is identified then its one letter extensions are
added to the table to identify its successor states. But for software applications valid inputs
for every state are smaller than I. For L1 the output recorded along access strings helps
to identify that an access string is valid or invalid, and only valid access strings are kept
in the table. Invalid access strings can be kept in the table but they are excluded from
subsequent tests. To process a counterexample L1 adds the suffixes of the counterexample

134

Improving Model Inference of Black Box Components

by increasing length to the columns of the table until the table is not closed (Irfan et al.
(2010)). Since L1 does not initialize the columns with I and adds only those elements from
I which are really required, the gain with the L1 algorithm increases with increase in |I|
for a target black box model. The table used by L1 is described as follows.

3.1. Observation Table

The observation table is defined as a quadruple (S,E,L, T), where S ⊆ I∗ is a prefix closed
non-empty finite set of access strings and its elements label the rows of the table, E ⊆ I+ is
a suffix closed finite set, which labels the columns of the table, for S′ = S ∪ S · I, the finite
function T maps S′ × E to outputs O+, and the finite function L maps S′\{ε} to outputs
O. The access strings are concatenated with the distinguishing sequences to construct the
output queries as s · e1, for all s ∈ S′ and e ∈ E. In the table, ∀s ∈ S′, ∀e ∈ E, T (s, e) =
suffix|e|(λ(q0, s · e)), and L(s) = output|s|(λ(q0, s · e)). By means of function L, all the access
strings s ∈ S′\{ε} labeling the rows of the table contain the output o for the last input
symbol of s and S′ is a prefix closed set, this implies that λ(q0, s) can be calculated from
these outputs. Thus, recording the suffix of the output query answer suffix|e|(λ(q0, s · e)) to
the cell labeled by row s and column e in the table is sufficient. Initial table (S,E,L, T) for
Mealy inference of the machine in Figure 1 is presented in Table 1.

Table 1: Initial Observation Table for the Mealy machine in Figure 1.
E
∅

S ε

S · I\S

pad/ok
water/ok

button/error
clean/ok

The equivalence of rows in the table is defined with the help of the function T . Two
rows s1, s2 ∈ S′ are said to be equivalent, iff ∀e ∈ E, T (s1, e) = T (s2, e), and it is denoted
as s1 ∼= s2. For every row s ∈ S′, the equivalence class of a row s is denoted by [s].
To construct a conjecture, L1 requires the table to satisfy the closure and compatibility
properties. The table is closed, if ∀s1 ∈ S · I\S, there exists s2 ∈ S such that s1 ∼= s2. The
table is compatible, if whenever two rows s1 ∼= s2 for s1, s2 ∈ S then s1 · i ∼= s2 · i for ∀i ∈ I.
Since the rows size |S| of the table increases only to make it closed, L1 always maintains the
condition, for all s1, s2 ∈ S, s1 � s2. Thus, the compatibility condition is always trivially
satisfied. When the table is closed and compatible, a conjecture is defined as follows.

Definition 2 Let (S,E,L, T) be a closed and compatible observation table then the Mealy
machine conjecture Conj1 = (QC , I, O, δC , λC , q0C) is defined, where

– QC = {[s]|s ∈ S}, (∀s1, s2 ∈ S, always s1 � s2, thus, |S| = |QC |)
– q0C = [ε], ε ∈ S is the initial state of the conjecture

– δC([s], i) = [s · i], for all s ∈ S, i ∈ I
– λC([s], i) = L(s · i), s ∈ S, i ∈ I ∃!s · i ∈ S′

1. s · e for s ∈ S′, e ∈ E and s · i for s ∈ S′, i ∈ I are constructed by considering the access strings only.

135

Irfan Groz Oriat

Theorem 3 If (S,E,L, T) is a closed and compatible observation table then the Mealy con-
jecture Conj1 from (S,E,L, T) is consistent with the finite function T . Any other conjecture
consistent with T but inequivalent to Conj1 must have more states.

Input: Black box and set of inputs I
Output: Mealy Machine Conjecture
begin

initialize the rows S = {ε}, and columns E = ∅;
execute output queries for S · I strings;
construct a conjecture C; repeat

search counterexamples;
if the oracle replies with a counterexample CE then

while CE is a counterexample do
for j = 1 to |CE| do

if suffixj(CE) /∈ E then

add suffixj(CE) to E;
complete (S,E, T, L) by asking output queries s · e such that s ∈
S′ ∧ e ∈ E;
if (S,E, T, L) is not closed then

break for loop;
end

end

end
while (S,E,L, T) is not closed do

find s1 ∈ S · I\S such that s1 � s2, for all s2 ∈ S;
move s1 to S;
add valid s1 · i to S · I, for all i ∈ I;
complete table by asking output queries for new added rows;

end
construct a conjecture C;

end

end

until oracle says yes to the conjecture C;

end
Algorithm 1: The Algorithm L1

We explain the L1 algorithm with the help of an example in Appendix B and show some
experiments for learning random machines in Appendix A.

4. Conclusion

L1 restricts the table columns to distinguishing sequences and their suffixes, and the table
rows to access strings of distinct states and their valid one letter extensions. These improve-
ments bring down the theoretical and practical time complexity of the learning algorithm.
The theoretical worst case time complexity for the L1 algorithm is O(|I|mn2). Real world
systems work on huge data sets as their inputs, thus, gain with L1 is obvious for inferring
models of such systems.

136

Improving Model Inference of Black Box Components

References

Dana Angluin. Learning regular sets from queries and counterexamples. Inf. Comput., 75
(2):87–106, 1987.

Muhammad Naeem Irfan, Catherine Oriat, and Roland Groz. Angluin style finite state
machine inference with non-optimal counterexamples. In Proceedings of the First Inter-
national Workshop on Model Inference In Testing, MIIT ’10, pages 11–19. ACM, 2010.

Oliver Niese. An Integrated Approach to Testing Complex Systems. PhD thesis, University
of Dortmund, 2003.

Muzammil Shahbaz and Roland Groz. Inferring mealy machines. In FM, pages 207–222,
2009.

Bernhard Steffen, Falk Howar, and Maik Merten. Introduction to active automata learning
from a practical perspective. In SFM, pages 256–296, 2011.

Appendix A. Experiments

Shahbaz and Groz (2009) show that their Mealy adaptation algorithm LM
+ outperforms

Mealy inference with rest of the counterexample processing methods. We have performed
an experimental evaluation to compare L1 and LM

+.
We use random machines, which allow to study the influence of the various parameters

(number of inputs, states, etc) on the learning algorithms. For both of the following sets
of experiments in order to increase our confidence, we repeat the learning for every target
machine for 30 times and average on the calculated data. We record the number of output
queries to analyze the learning algorithms for two sets of experiments. We have simulated
an oracle so that the algorithms can ask the equivalence queries for the correctness of
conjectured models.

Figure 2: |I|∈{2, 3 . . . 10}|O|=5 & n=40 Figure 3: |I|=5,|O|=7 & n∈{3, 4 . . . 40}

On average L1 requires 16 output queries to learn the machine with states size n = 3
and LM

+ requires 80 output queries. So there is a gain of 80% for output queries. For the
largest machine having states size n = 40, L1 requires 784 output queries and LM

+ requires
1202 output queries, there is a gain of 34.78% output queries. Thus, clearly L1 outperforms
LM

+ for both of the considered sets of experiments.

137

Irfan Groz Oriat

Appendix B. Example

We illustrate the L1 algorithm by learning the Mealy model Mcoffee of the coffee machine
presented in Figure 1 and show how invalid access strings can be excluded from subsequent
tests using the output for the last input of the access strings.

Figure 4: Conjcoffee1
from

Table 1
Figure 5: Conjcoffee2

from Table 6(c)

The oracle replies with a counterexample water · pad · button for Conjcoffee1
in Figure 4.

L1 adds the smallest suffix button of the counterexample to the columns. The observation
table remains closed so the suffix pad · button is added, which makes the table unclosed. To
make the table closed the row water is moved to S as presented in Table 6(a).

button pad · button
ε error ok · error

water/ok error ok · coffee

pad/ok error ok · error
clean/ok error ok · error

water · water/ok error ok · coffee
water · pad/ok coffee ok · coffee

water · button/error error
water · clean/ok error ok · error

(a) Close the table by
moving water to S.

button pad · button
ε error ok · error

water/ok error ok · coffee
water · pad/ok coffee ok · coffee

pad/ok error ok · error
clean/ok error ok · error

water · water/ok error ok · coffee
water · clean/ok error ok · error

water · pad · water/ok coffee ok · coffee
water · pad · pad/ok coffee ok · coffee

water · pad · button/coffee error error · error
water · pad · clean/ok error ok · error

(b) Close the table by mov-
ing water · pad to S.

button pad · button
ε error ok · error

water/ok error ok · coffee
water · pad/ok coffee ok · coffee

water · pad · button/coffee error error · error
pad/ok error ok · error
clean/ok error ok · error

water · water/ok error ok · coffee
water · clean/ok error ok · error

water · pad · water/ok coffee ok · coffee
water · pad · pad/ok coffee ok · coffee
water · pad · clean/ok error ok · error

water · pad · button · water/error error
water · pad · button · pad/error error
water · pad · button · button/error error
water · pad · button · clean/ok error ok · error

(c) Move water · pad · button
to S.

Table 2: Processing the counterexample water · pad · button.

button pad · button water · button
ε error ok · error ok · error

water/ok error ok · coffee ok · error
water · pad/ok coffee ok · coffee ok · coffee

water · pad · button/coffee error error · error error · error
pad/ok error ok · error ok · coffee

clean/ok error ok · error ok · error
water · water/ok error ok · coffee ok · error
water · clean/ok error ok · error ok · error

water · pad · water/ok coffee ok · coffee ok · coffee
water · pad · pad/ok coffee ok · coffee ok · coffee
water · pad · clean/ok error ok · error ok · error

water · pad · button · clean/ok error ok · error ok · error

(d) After adding water · button to E.

button pad · button water · button
ε error ok · error ok · error

water/ok error ok · coffee ok · error
water · pad/ok coffee ok · coffee ok · coffee

water · pad · button/coffee error error · error error · error
pad/ok error ok · error ok · coffee

clean/ok error ok · error ok · error
water · water/ok error ok · coffee ok · error
water · clean/ok error ok · error ok · error

water · pad · water/ok coffee ok · coffee ok · coffee
water · pad · pad/ok coffee ok · coffee ok · coffee
water · pad · clean/ok error ok · error ok · error

water · pad · button · clean/ok error ok · error ok · error
pad · water/ok coffee ok · coffee ok · coffee
pad · pad/ok error ok · error ok · coffee

pad · button/error error
pad · clean/ok error ok · error ok · error

(e) Moving the row pad to S.

Table 3: Processing the counterexample pad · pad · water · button
We have taken the Coffee machine example used by Steffen et al. (2011), they ask 155

output queries to conjecture its model, whereas L1 asks only 54 output queries.

138

	Introduction
	Preliminaries
	Optimized Mealy Inference Algorithm
	Observation Table

	Conclusion
	Experiments
	Example

