
JMLR: Workshop and Conference Proceedings 21:177–182, 2012 The 11th ICGI

Estimation of Generating Processes of Strings
Represented with Patterns and Substitutions

Keisuke Otaki ootaki@iip.ist.i.kyoto-u.ac.jp

Akihiro Yamamoto akihiro@i.kyoto-u.ac.jp

Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501, Japan.

Editors: Jeffrey Heinz, Colin de la Higuera and Tim Oates

Abstract

We formalize generating processes of strings based on patterns and substitutions, and give
an algorithm to estimate a probability mass function on substitutions, which is an element of
processes. Patterns are non-empty sequences of characters and variables. Variables indicate
unknown substrings and are replaced with other patterns by substitutions. By introducing
variables and substitutions, we can deal with the difficulty of preparing production rules
in generative grammar and of representing context-sensitivity with them. Our key idea is
to regard sequences of substitutions as generations of strings, and to give probabilities of
substitutions like PCFG. In this study, after giving a problem to estimate a probability
mass function from strings based on our formalization, we solve it by the Passing algorithm
that runs in an iterative manner. Our experimental results with synthetic strings show that
our method estimates probability mass functions with sufficient small errors.

Keywords: patterns, substitutions, latent structures of strings

1. Introduction

Our goal is to investigate a method to represent and find latent structures of strings using
patterns and substitutions for applying them to the area of Knowledge Discovery from
strings. Patterns are non-empty sequences of characters and variables. Substitutions are
used for replacing variables in patterns with other patterns (Angluin, 1979; Shinohara and
Arikawa, 1995). Our key strategy is to represent generations of strings as sequences of
substitutions, and to regard latent structures of strings as their generating processes based
on generations of strings represented with patterns and substitutions. During recent years,
various data represented by strings such as genome sequences and documents in natural
languages have been generated and stored. To find useful knowledge from them becomes
an important task for Knowledge Discovery. For finding latent structures to understand
properties of strings, generative grammar, in particular, context free grammar (CFG) have
been adopted. However production rules of CFG often become complicated, and it is also
difficult to represent context-sensitivity with them. In contrast, by introducing variables and
substitutions, we can represent context-sensitivity. In this report, our task is to estimate
a probability mass function, which is an element of our formalization from given strings.
For that purpose, we give an algorithm that runs in an iterative manner. Our experimental
results with synthetic strings show that our method works with sufficient small errors.

c© 2012 K. Otaki & A. Yamamoto.



Otaki Yamamoto

2. Preliminaries and Generating Processes

Let Σ be a finite and non-empty set of characters and X be an enumerable set of variables
such that Σ ∩ X = ∅. Variables are denoted with indices of natural numbers like x0 and
x1. A pattern π is an element of (Σ ∪ X)+ = PΣ,X . We can represent every pattern as
π = w0v0 · · ·wn−1vn−1wn, where wi ∈ Σ∗ (0 ≤ i ≤ n) and vi ∈ X (0 ≤ i ≤ n − 1).
For example, sequences 0x01x1x2, 011, and x0x1x0 are patterns. We can represent every
pattern as the standard form π ↓= w0x0 · · ·wn−1xn−1wn, where wi ∈ Σ∗ (0 ≤ i ≤ n) and
xi ∈ X (0 ≤ i ≤ n − 1). Here we only deal with standard forms denoted by downarrows
like π ↓. Refer the literature (Shinohara and Arikawa, 1995) for details.

Variables in patterns are replaced with other patterns by substitutions. A substitution
θ is a finite set of the form { v1/π1, . . . , vn/πn }, where vi ∈ X and πi ∈ PΣ,X for 1 ≤ i ≤ n
and dom(θ) = { vi | vi/πi ∈ θ }. If n = 1, we write the substitution without parenthesis as
v1/π1. The new pattern πθ is the pattern obtained from π by simultaneously replacing each
occurrence of vi by πi. We generate strings and patterns by substitutions chosen from a
fixed set Θ of substitutions, and they are characterized in the form of refinement paths. For
two patterns π and τ , we define a refinement path from π to τ denoted by π ⇒p τ , if there
exists a sequence p = (θ1, . . . , θn) such that θi ∈ Θ for 1 ≤ i ≤ n and πθ1 ↓ . . . θn ↓= τ . If
w ∈ Σ+, p is called a generation of w. We denote the set of all refinement paths from π to
τ with a fixed set Θ by Ref Θ(π, τ).

Example 1 For a pattern π = x0 and Θ = { θ0, θ1, θ2, θ3 } such that θ0 = x0/x0x0, θ1 =
x0/x0x1, θ2 = x0/0, and θ3 = x0/1, it holds that πθ1 ↓= x0x1, πθ1 ↓ θ2 ↓= 0x0, and
πθ1 ↓ θ2 ↓ θ3 ↓= 01. The sequence of (θ1, θ2, θ3) is a refinement path from π to 01.

We regard refinement paths as generations of strings and treat generating processes that
can be regarded as functions to provide refinement paths.

We define generating processes of strings and their probabilistic extension as systems
and components, respectively. For the common initial pattern π and a fixed set Θ of sub-
stitutions, we define a system as a pair S = (π,Θ). Just like in the case of context free lan-
guages, the language L(S) of a system S is defined as L(S) ≡ { w ∈ Σ+ | Ref Θ(π,w) 6= ∅ }.
We introduce a probability mass function µ on Θ for characterizing refinement paths. We
define a component c by a triple c = (π,Θ, µ), i.e., a pair c = (S, µ), where S = (π,Θ)
in which a probability of each substitution θ ∈ Θ is given by µ(θ). When we correspond
a system for a CFG, a component corresponds to a PCFG. We use µ(Θ) to represent
the set { θ1 :µ(θ1), . . . , θn :µ(θn) } to represent the correspondence between θi and µ(θi)
for θi ∈ Θ. We define the probability Prµ(p) of a refinement path p = (θ1, . . . , θn) on
µ as Prµ(p) =

∏n
i=1 µ(θi), and also define the generation probability Prg(w) of a string

w as Prg(w) =
∑

p∈RefΘ(π,w) Prµ(p). Note that we assume that given sets of strings are
represented as multisets with assuming that the occurrences of strings are related to the
generation probabilities of them.

Example 2 Let an Extension component c = (x0,Θ, µ) such that Θ = { θ1, θ2, θ3, θ4 },
θ0 = x0/x0x0, θ1 = x0/x0x1, θ2 = x0/0, θ3 = x0/1, and µ(Θ) = { θ0: 0.2, θ1: 0.2, θ2: 0.4, θ3: 0.2 }.
Strings 0 and 01 are generated by the component c with p1 = (θ2) and p2 = (θ1, θ2, θ3),
respectively. The probability of them are Prµ(p1) = 0.4 and Prµ(p2) = 0.016 as follows:

x0 ⇒0.4
(θ2) 0 and x0 ⇒0.4

(θ1) x0x1 ⇒0.2
(θ2) 0x0(= 0x1 ↓)⇒0.2

(θ3) 01,

178



Estimation of Generating Processes of Strings

where the number on each arrow shows µ(θ) and θ is a applied substitution.

In this study, we consider simple substitutions and left-most applications instead of consid-
ering various substitutions. A substitution θ is simple if dom(θ) is a singleton and it is
either of the form of v/vu or v/c, where v, u ∈ X, and c ∈ Σ. We say that a substitution θ
is applied to the left-most of a pattern π if dom(θ) = { v } and v is the left-most variable
of π. A variable v in π is called left-most if no other variables occur in the left of v on π.

3. The Estimating Approach for the Probability Estimation Problem

We solve the Probability Estimation Problem, which is a problem to estimate µ(Θ) from
training data T and a system S = (π,Θ). In this report, we propose an heuristic algorithm
called the Passing algorithm that runs in an iterative manner. It updates a hypothesis with
difference and constants calculated with the current hypothesis and given data.

As a preliminary, we enumerate all refinement paths by constructing a search tree, where
every edge represents a substitution and every node is labeled with a pattern. We can find
all refinement paths of a string w ∈ T by Depth-First Search (DFS) on the tree.

We introduce three types of effects, E1, E2, and E3 of refinement paths. We calculate
those effects for each path p ∈ Ref Θ(π,w) for w ∈ T . The first effect E1(p) is calculated
on the hub h of p. We call the parent of the node labeled with w a hub h and the node
labeled with a string w a constant node. If we have a path p = (θ1, . . . , θm) ∈ Ref Θ(π,w),
we increase the value µ(θm). The value sign(p, θi) = 1.0 if θm = θi and −1.0 if θm 6= θi.
The effect E1 is defined as E1(p) = { θi: sign(p, θi) | 1 ≤ i ≤ | Θ| }.

The second one E2 and the third one E3 are defined with a refinement path from the
root to the hub h and a path from the hub h to the constant node labeled with a string w,
respectively. We define r2h(p, θi) and r2d(p, θi) respectively as the number of occurrences
of θi on the refinement path p from the root to the hub h and that of the path p from
the hub h to the node labeled with the string w. The effects E2 and E3 are defined as
E2(p) = { θi: r2h(p, θi)/Z2 | 1 ≤ i ≤ | Θ| } and E3(p) = { θi: r2d(p, θi)/Z3 | 1 ≤ i ≤ | Θ| },
where Z2 and Z3 are regularization constants.

We calculate a difference ∆(w) of a string w between the current hypothesis µcur and T
for updating the hypothesis µcur. The difference is calculated by ∆(w) ≡ Prg(w)−PrE(w),
where PrE(w) ≡ (# of occurrences of w ∈ T )/|T |. The algorithm takes the three effects
E1, E2 and E3 multiplied with ∆(w) for w ∈ T and some rates α, β, and γ such that
0 ≤ α, β, γ ≤ 1 into the hypothesis µcur. The initial values of µ(Θ) is simply prepared as
( 1
|Θ| , . . . ,

1
|Θ|). This iteration is repeated until µcur is unchanged and the estimated result is

denoted by µ̂. The above method, named the Passing algorithm, is illustrated in Figure 1.

4. Experiments

We prepared two components c1 and c2, that is, Duplication c1 = (x0,Θ1, µ1) such that
µ1(Θ1) = { x0/x0x0: 0.3, x0/0: 0.15, x0/1: 0.4, x0/2: 0.15 } and the Extension component c2

which we used in Example 2. In experiments, we generate 100 strings using c1 and c2,
and estimate µ(Θ) with the parameter vector (0.01, 0.01, 0.1) as (α, β, γ). Because of corre-
spondences between components and PCFG, we can apply the maximum likelihood estima-
tion (MLE) method by referring to the literature (Lari and Young, 1990). We will explain

179



Otaki Yamamoto

Passing algorithm with an initial pattern π and a set Θ of substitutions

Input: Training data T , Constants M, δ, α, β, γ
Output: Estimated values µ̂(θ) for θ ∈ Θ.
Procedure:

For i = 1 to M until w exists such that ∆(w) < δ:
0. Prepare initial values of µcur(Θ) as ( 1

|Θ| , . . . ,
1

|Θ| ).

For each w ∈ T :
1. Prepare the DFS tree to find Ref Θ(π,w) and calculate ∆(w).
For each p ∈ Ref Θ(π,w):

2. Calculate three effects E1(p), E2(p) and E3(p).

3. For θ ∈ Θ, µcur(θ)← µcur(θ) + ∆(w)(αE1(p)(θ) + βE2(p)(θ) + γE3(p)(θ)).

Figure 1: The outline of the Passing algorithm.

Table 1: Estimated values µ̂(Θ) for c1 and c2 with two methods.
(a) Duplication: c1 = (x0,Θ1, µ1)

Methods µ̂1(x0/x0x0) µ̂1(x0/0) µ̂1(x0/1) µ̂1(x0/2) # of iters

Passing algorithm 0.230 0.190 0.400 0.180 50
MLE method 0.288 0.160 0.407 0.145 –

(b) Extension: c2 = (x0,Θ2, µ2)

(α, β, γ) µ̂2(x0/x0x0) µ̂2(x0/x0x1) µ̂2(x0/0) µ̂2(x0/1) # of iters

Passing algorithm 0.172 0.199 0.413 0.217 48
MLE method 0.169 0.385 0.171 0.275 –

the MLE method in Appendix A formally. The estimated results are listed in Tables 1(a)
and 1(b). From the experimental results, the MLE method works better for c1 because we
do not need any heuristics for c1, where we estimate the values from visible data. However,
the simple MLE method does not work well for c2 comparing with the Passing algorithm,
in particular, for the value µ(θ1). We conclude that our algorithm can estimate the values
µ(Θ) well as seen in Tables 1(a) and 1(b). The substitutions θ0 and θ1 concern structures
of strings, and therefore, we conclude that the results of the Passing algorithm are better.
We conjecture that it is because of the difference between our formalization and PCFG.

5. Conclusion and Future Work

We formalized generating processes of strings based on patterns and substitutions, and pro-
posed a method of estimating probability mass functions of the processes. Our experimental
results with synthetic data shows that our method works well compared with the results for
the MLE method. In our future work, we investigate theoretical properties of our algorithm
more precisely and improve our methods by referring to the method for PCFG like EM algo-
rithm and Bayesian inference. We can simulate generations of strings by estimated values,
therefore we will try to find some features of given strings by using the estimated values.
For example, we would like to apply our formalization to find frequent substrings based on
generating processes. We also consider to try other experiments for real data. which are
represented by strings and codes like binary codes in order to examine the properties of our
formalization.

180



Estimation of Generating Processes of Strings

References

D. Angluin. Finding patterns common to a set of strings (extended abstract). In Proceedings
of the eleventh annual ACM symposium on Theory of computing, pages 130–141, 1979.

K. Lari and S. J. Young. The estimation of stochastic context-free grammars using the
inside-outside algorithm. Computer Speech and Language, 4:35–56, 1990.

T. Shinohara and S. Arikawa. Pattern inference. In GOSLER Final Report, pages 259–291,
1995.

Appendix A. The MLE Method for PCFG and Correspondences

The MLE method for our problems based on patterns and substitutions are given as follows.
Let p = { p1, . . . , pN } be a set of refinement paths which generate a given set of strings
T = { w1, . . . , wN }. We denote the likelihood L(µ) as follows:

L(µ) =

N∏
i=1

Prµ(pi) =
∏
θ∈Θ

µ(θ)fθ(p),

where fθ(p) is the number of occurrences of the substitution θ in the set of refinement paths
p. For v ∈ X, we need to satisfy ∑

θ∈{φ∈Θ|dom(φ)=v}

µ(θ) = 1.

On this restriction, we introduce Lagrange constants. In our settings, where we only adopt
left-most applications and simple substitutions, we only consider a Lagrange constant c and
maximize the following function:

Λ(µ, c) = L(µ)− c

(∑
θ∈Θ

µ(θ)− 1

)
.

By setting ∂Λ
∂µ(θ) to 0, we can estimate the probability µ(θ) by calculating relative frequencies

as

µ̂(θ) =
fθ(p)∑
θ∈Θ fθ(p)

.

We can use this method for the component c1 because for each generated string w with
c1, it holds that |Ref Θ1

(π1, w)| = 1, that is, they have unique refinement paths and each
refinement path corresponds to each string.

For the component c2, we need some adjustments for estimating µ(Θ2) from generated
strings T = { w1, . . . , wN } because the refinement paths for generated strings with c2 are
not unique. For this problem, we calculate weighted estimated frequencies as follows:

µ̂(θ) =

∑
p∈RefΘ(π,w) fθ(p)Prµ(p)∑

p∈RefΘ(π,w)

∑
φ∈Θ fφ(p)Prµ(p)

.

181



Otaki Yamamoto

Note that we can regard the Passing algorithm as a heuristic extension of the MLE method.
Updating the hypothesis with effects E2 and E3 in the Passing algorithm can be regarded
as that they have the same function of counting the number of occurrences of each θ ∈ Θ in
refinement paths with some constants by regularization. We introduced the effect E1 with
aiming at estimating better results for the substitution x0/x0x0 or x0/x0x1 because such
substitutions determine the forms of generated strings by variables. It can be regarded as
important invisible features of strings how many times such substitutions are applied in our
settings.

182


	Introduction
	Preliminaries and Generating Processes
	The Estimating Approach for the Probability Estimation Problem
	Experiments
	Conclusion and Future Work
	The MLE Method for PCFG and Correspondences

