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Abstract

This paper reviews the development of active learning in the last decade under the per-
spective of treating of data, a major source of undecidability, and therefore a key problem
to achieve practicality. Starting with the first case studies, in which data was completely
disregarded, we revisit different steps towards dealing with data explicitly in active learn-
ing: We discuss Mealy Machines as a model for systems with (data) output, automated
alphabet abstraction refinement as a two-dimensional extension of the partition-refinement
based approach of active learning for inferring not only states but also optimal alphabet
abstractions, and Register Mealy Machines, which can be regarded as programs restricted
to data-independent data processing as it is typical for protocols or interface programs.
We are convinced that this development has the potential to transform active automata
learning into a technology of high practical importance.

Keywords: Active Automata Learning, Mealy Machines, Automated Alphabet Abstrac-
tion Refinement, Register Automata

1. Introduction

Web services or other third party or legacy software components which come without
code and/or appropriate documentation, are intrinsically tied to the increasingly popu-
lar orchestration-based development style of service-oriented solutions. (Active) automata
learning has shown to be a powerful means to overcome the major drawback of these com-
ponents, their inherent black box character. The success story began a decade ago, when its
application led to major improvements in the context of regression testing (Hagerer et al.,
2001, 2002). Since then, the technology has undergone an impressive development, in par-
ticular concerning the aspect of practical application.

Today, active learning is a valuable asset for bringing formal methods to black-box
systems, e.g., in the Connect project (Issarny et al., 2009), which aims at developing
“Emergent Middleware” capable of synthesizing mediators between systems automatically
at runtime. The process of automated system integration envisioned Connect has five
main steps: (i) discovery of systems, (ii) inference of the (application) protocol of systems,
(iii) model-based synthesis of mediators, (iv) functional and non-functional validation of
mediators, and discovery of systems, (ii) inference of the (application) protocol of systems,
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(iii) model-based synthesis of mediators, (iv) functional and non-functional validation of
mediators, and finally (v) deployment of mediators. Key to step (ii) is active automata
learning.

In this paper, we will review the development of active learning in the last decade under
the perspective of treating data, a major source of undecidability, and therefore the problem
with the highest potential for tailored, application-specific solutions. In the first practical
applications of active learning, data was typically simply ignored. We will sketch the way
form the first primitive treatment of data to the state of the art, where data are treated
as first class citizens in models like the so-called Register Automata (Cassel et al., 2011).
These models are able to faithfully represent interface programs, i.e., programs describing
the typical protocol of interaction with components and services. In particular, we will
discuss

• Mealy Machines as a model for systems explicitly distinguishing input and output
(data),

• automated alphabet abstraction refinement as a two-dimensional extension of the partition-
refinement based approach of active learning for inferring not only states but also
optimal alphabet abstractions, and

• Register Mealy Machines, which can be regarded as programs restricted to data-
independent data processing as it is typical for protocols or interface programs.

We are convinced that this development has the potential to transform active automata
learning into a technology of high practical importance.

Outline. The remainder of the paper is structured as follows. We start with introducing
some notation and briefly describing active automata learning for regular languages in
Section 2. We also sketch the scenario of active learning in practice and provide a running
example (a data structure with stack semantics). Section 3 contains the actual survey:
we discuss different approaches for inferring models of the stack and respective resulting
models with a special emphasis on how data is treated. Related approaches are discussed
in Section 4, before we present our conclusions and perspectives in Section 5.

2. Preliminaries

Let us start with introducing some basic notation, giving a rough sketch of active learn-
ing, and by presenting an example along which we will illustrate the different approaches
reviewed in Section 3.

2.1. Regular languages and deterministic finite automata

Let Σ be a finite set of input symbols a1, . . . , ak. Sequences of input symbols are called
words. The empty word (of length zero) is denoted by ε. Words can be concatenated in
the obvious way: we write uv when concatenating two words u and v. Finally, a language
L ⊆ Σ∗ is a set of words.

Definition 1 (Deterministic finite automaton) A deterministic finite automaton (DFA)
is a tuple 〈Q, q0,Σ, δ, F 〉, where
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• Q is the finite set of states,

• q0 ∈ Q is the dedicated initial state,

• Σ is the finite input alphabet,

• δ : Q× Σ → Q is the transition function, and

• F ⊆ Q is the set of final states.

We write q
a
−→ q′ for δ(q, a) = q′ and q

w
=⇒ q′ if for w = a1 · · · an there is a sequence

q = q0, q1, . . . , qn = q′ of states such that qi−1 ai−→ qi for 1 ≤ i ≤ n. �

A DFA A accepts the regular language LA of words that lead to final states on A, i.e,
LA = {w ∈ Σ∗ | q0

w
=⇒ q, with q ∈ F}.

For words over Σ, we can define their residual (language) wrt. L, which is closely related
to the well-known Nerode relation (Nerode, 1958): for a language L let the residual language
of a word u ∈ Σ∗ wrt. L, denoted by u−1L, be the set {v ∈ Σ∗ | uv ∈ L}.

Definition 2 (Nerode equivalence) Two words w,w′ from Σ∗ are equivalent wrt. L,
denoted by w ≡L w′, iff w−1L = w′−1L. �

By [w] we denote the equivalence class of w in ≡L. For regular languages (where ≡L has
finite index), a DFA AL for L can be constructed from ≡L (cf. Hopcroft et al., 2001): For
each equivalence class [w] of ≡L, there is exactly one state q[w], with q[ε] being the initial

one. Transitions are formed by one-letter extensions, i.e. q[u]
a
−→ q[ua]. Finally, a state is

accepting if [u] ⊆ L (if not, then [u] ∩ L = ∅, as either ε is in the residual or not). No
DFA recognizing L can have less states than AL, and since it is unique up to isomorphism,
it is called the canonical DFA for L. This construction and the Nerode relation are the
conceptual backbone of active learning algorithms.

2.2. Active learning of regular languages

Active learning aims at inferring (unknown) regular languages. Many active learning al-
gorithms are formulated in the MAT-learning model introduced by Angluin (1987), which
assumes the existence of a Minimally Adequate Teacher (MAT) answering two kinds of
queries.

Membership queries test whether a word w ∈ Σ∗ is in the unknown language L. These
queries are employed for building hypothesis automata.

Equivalence queries test whether an intermediate hypothesis language LH equals L. If
so, an equivalence query signals success. Otherwise, it will return a counterexample,
i.e., a word w ∈ Σ∗ from the symmetric difference of LH and L.

The key idea of active learning algorithms, the most prominent example being Angluin’s
L∗ algorithm, is to approximate the Nerode congruence ≡L by some equivalence relation
≡H such that ≡L (not strictly) refines ≡H. This approximation is achieved by identifying
prefixes u, which serve as representatives of the classes of ≡H, and suffixes v, which are used
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Figure 1: Schematic view of active learning setups in practice using a mapper.

to prove inequalities of the respective residuals, separating classes. Throughout the course
of the learning process, the sets of both prefixes and suffixes grow monotonically, allowing
for an increasingly fine identification of representative prefixes.

Having identified (some) classes of ≡L, a hypothesis H is constructed in a fashion re-
sembling the construction of the canonical DFA (cf. Section 2.1). Of course, some further
constraints must be met in order to ensure a well-defined construction. For a more detailed
description, also comprising the technical details of organizing prefixes, suffixes and the
information gathered from membership queries, we refer the reader to Angluin (1987).

As sketched above, H is subjected to an equivalence query, which either signals success
(in which case learning terminates) or yields a counterexample. This counterexample serves
as a witness that the approximation of ≡L is too coarse, triggering a refinement of ≡H (and
thus H). This alternation of hypothesis construction and hypothesis validation is repeated
until an equivalence query finally signals success. Convergence is guaranteed as ≡H is
refined with each equivalence query, but always remains a (non-strict) coarsening of ≡L.

Extension to richer automaton models. The procedure described above relies cru-
cially on the Nerode congruence, which is tied to regular languages and thus finite-state
acceptors (e.g., DFAs). However, a more universal idea can be identified, allowing to adapt
active learning algorithms to richer automaton models. Assuming that a minimal (canoni-
cal) model of the target system exists, a congruence relation on words has to be established,
such that the classes of this equivalence relation correspond to the states in the canonical
model. Defining this equivalence relation is one of the central challenges when adapting
active learning to richer formalisms.

2.3. Active learning in practice

In order to use active learning for inferring models of actual systems in practice, an active
learning algorithm has to be able to interact with these systems. While this interaction
comes with a number of problems (e.g., how to reset such systems etc.), we will here put
an emphasis on how to deal with data.

Usually the inputs exposed by some system will be an API, e.g., a set of methods with
data parameters or a set of protocol messages with data parts. Since learning algorithms are
formulated at a more abstract level of uninterpreted alphabet symbols, means are needed to
bridge this gap. Usually, this is done by a so-called mapper (cf. Jonsson, 2011), a component
that is placed between the learning algorithm and the actual system under learning. A
mapper translates membership queries of the learning algorithm into sequences of method
invocations on the SUL (System Under Learning), and transforms the values returned from
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these method calls into a format the learning algorithm can handle, e.g., into acceptance or
rejection in the case of inferring regular languages.

More formally, a mapper can be understood as an abstraction as is shown in Figure 1:
While the learning algorithm works at an abstract level, using inputs ΣL and outputs ΩL

(e.g., {+,−} in the case of regular languages), the SUL has concrete inputs ΣS and outputs
ΩS. A mapper, essentially a set of two functions α and γ, translates between these alphabets.
The input-concretization γ maps words over ΣL to words over ΣS. The output-abstraction
α maps words over ΩS to words over ΩL.

This general description of mappers allows for complex, stateful abstractions and con-
cretizations. In this paper, however, we will restrict our attention to stateless mappers that
map an element from ΣL always to the same concrete element in ΣS . Approaches based on
more complex mappers are briefly discussed as related work in Section 4.

2.4. Running example

As our key concern is the treatment of data in active learning, we will focus on an application
in which data plays a central role: learning behavioral models of data structures. Concretely,
we chose a stack with a capacity of 3 as our running example, which, assumedly, exposes the
following (Java) API: boolean push(Object) pushes a (non-null) object onto the stack,
returning true if the operation was successful and false if the stack is full. Object pop()

removes and returns the topmost object, returning null if the stack was empty.
Using a restricted data domain D = N instead of allowing any Object as data pa-

rameter, the set ΣS of inputs to the stack can be described as the union of the two sets
{push(p) | p ∈ N} and {pop()}. Accordingly, the set of concrete outputs ΩS is the union of
N and {true, false, null}.

3. From DFAs to Interface Programs

In this Section we will use the above example to illustrate the models obtained by different
approaches for inferring models of black-box systems. Starting from active learning of
regular languages, we will review Mealy Machines as a model that includes output in models,
(automated) alphabet abstraction as a means for dealing with infinite sets of inputs, and
finally present Register Mealy Machines as a model capturing the influence of data on the
behavior explicitly. For each of these approaches, we will focus on the necessary mapper,
the obtained models, and their features, rather than detailing the corresponding learning
algorithms, which for all cases can be considered variants and extensions of the partition-
refinement based approach sketched roughly in Section 2.

3.1. DFAs

Active automata learning, in particular the L∗ algorithm (Angluin, 1987), in the first place
was designed for inferring regular languages, described as DFAs. The stack API presented
in Section 2.4, in contrast, accepts a (virtually) arbitrary number of distinct method invo-
cations, with corresponding output, and therefore exceeds the scope of regular languages.

The problem of infinite input alphabets can be tackled by pruning the data domain
D to some small, finite set. In our example, this will also lead to a finite set of different
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Figure 2: DFA for stack with a capacity of 3. Accepting locations marked by double circles.

system outputs (return values), which however still exceed the DFA scope of acceptance
and rejection only. A natural approach is to aim at capturing whether method invocations
are error-free or not. In this case, the concrete data values are of no importance, hence
ΣL = {push,pop} is a natural choice: the mapper then could translate push to push(1)

and pop to an invocation of pop(). The output alphabet is fixed to ΩL = {+,−} by the
DFA formalism. As the model should tell apart successful and erroneous inputs, it maps the
output to − if the return value of the last invocation is false or null, and to + otherwise.

The resulting model is shown in Figure 2. The model has four accepting states, one
per number of elements in the stack. Additionally, there are two non-accepting states, l4
and l5, one representing the null that is obtained when performing a pop on the empty
stack and the other representing the false that is returned when trying to push an element
onto a full stack. Pruning the non-accepting states (and all their associated transitions)
yields a model in which the set of paths corresponds to all error-free input sequences. In
essence, the model states that in any error-free sequence of operations, the number of push
operations (1) may not be lower than the number of pop operations, but (2) the difference
of those numbers must not exceed 3.

While information on error-free usage patterns has its use for some applications (e.g.,
computing safe interfaces for components), it fails to capture the central aspect of a container
data structure: how the stored data is organized. For example a LIFO (queue) organization
would result in the exact same model, which is highly unsatisfactory. This calls for extending
learning to models which are capable of distinguishing a larger set of possible outputs.

3.2. Active learning for Mealy Machines

In order to make output visible in the inferred model, the formalism has to be extended
slightly. In particular, the learning algorithm has to support more outputs than + and −.
Additionally, it would be more natural to model output along transitions (as input), instead
of associating it with the states, since in most systems an output occurs after every input.
Consider, e.g., the return values of methods in our running example.

Contenting ourselves with a finite set of outputs, Mealy Machines are an adequate
formalism for this purpose. A Mealy Machine M has states Q, and initial state q0, a finite
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input alphabet Σ and a transition function δ just like a DFA (cf. Definition 1), but instead
of final states F it has a finite output alphabet Ω and an output function λ : Q × Σ → Ω.
When in state q an input symbol a ∈ Σ is read, it moves to state q′ = δ(q, a) and outputs an

output symbol o = λ(q, a). We write q
a/o
=⇒ q′ to express this. Extending this to sequences

wI = a1 · · · an ∈ Σ∗ of input symbols (resulting in an output string wO = o1 · · · on ∈ Ω∗),

we denote this by q
wI/wO

=⇒ q′.
The semantics of a Mealy Machine cannot be described as a set of words, it rather is a

mapping from words of input symbols to words of outputs. Let JMK : Σ∗ → Ω∗ be defined

by JMK(wI) = wO where q0
wI/wO

=⇒ q for some q ∈ Q. For adapting the concepts of residuals
and Nerode congruence, we will consider the simpler function P : Σ+ → Ω, which is defined
as P (wa) = λ(δ(q0, w), a), i.e., maps to the last symbol of JMK. Because the output string
of a Mealy Machine grows monotonically, this is no loss in information compared to JMK.

Analogously to DFAs, we define the residual of P wrt. a word u ∈ Σ∗ as the mapping
u−1P : Σ+ → Ω, u−1P (v) = P (uv). Consequently, two words u, u′ are said to be equivalent
wrt. P , denoted by u ≡P u′, iff their residuals are equal, i.e.,

u ≡P u′ :⇔ u−1P (v) = u′
−1

P (v) ∀v ∈ Σ+.

Adapting L∗ to Mealy Machine learning is achieved by approximating ≡P the same way
as for ≡L in case of a regular language L (Margaria et al., 2004). For the technical details
of a Nerode-relation for Mealy Machines, we refer the reader to Steffen et al. (2011).

Being able to distinguish data values in the output, we consider – compared to the
DFA case – a refined abstraction on the input alphabet, using {push(1),push(2),pop()}
as inputs, where push(1) and push(2) are mapped to method invocations push(1) and
push(2) respectively by the mapper. The set of abstract outputs is {1, 2, true, false, null},
which is a one-to-one mapping from the concrete outputs 1, 2, true, false, and null. This
output abstraction is technically incomplete, as it is not defined for N \ {1, 2}. As only
values that have previously been pushed onto the stack can be returned, this will not cause
any problems here.

The resulting Mealy Machine model is shown partly in Figure 3. (The actual model
would be twice as big. We omitted the part after an initial push(2), which is symmetric
to the shown part of the model). In the Mealy Machine model, the effect of different data
values becomes visible. However, the causal relation between specific data values in inputs
and in outputs is only implicitly captured, i.e., encoded in the states of the Mealy Machine:
There is one state per possible combination of 1s and 2s on the stack.

Still, this is not satisfactory: the organization of data values is reflected in a purely
syntactical way. Compared to the DFA in Figure 2, whose size is linear in the capacity of
the stack, we now have a model of exponential size, also leading to the learning process
being much more expensive.1 On top of that, considerable manual effort and domain
knowledge is required for defining the abstraction, as it required us to know beforehand

1. Since all data values are treated symmetrically by the target system (in this particular case), one can
employ symmetry reduction techniques, i.e., transform the queries by application of a normalizing per-
mutation on the effective data domain. This was shown to bear a great optimization potential in terms
of reducing the number of membership queries (see, e.g., Margaria et al., 2005). However, the flaws of
the produced models still remain.
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Figure 3: Mealy Machine for stack with a capacity of 3 and data domain D = {1, 2}.

that, when limiting the push invocations to push(1) and push(2), we would not have to
deal with output values other than 1 and 2. In the following section, we will discuss how
this disadvantage can be overcome.

3.3. Automated alphabet abstraction refinement

In the previous section we showed how to obtain a model for the stack by restricting the input
alphabet to a small finite subset. In most real scenarios, however, it is not known a priori
which inputs are representative. We can circumvent this problem by using the complete
countable set of inputs together with a more powerful output abstraction, abstracting the
infinite set of outputs to a finite one – for a stack, a finite number of outputs will always
lead to a finite model.

Technically, an abstraction on the input alphabet can be thought of as an equivalence
relation: two concrete inputs are equivalent iff they are mapped to the same abstract symbol.
Given a finite abstraction on the output symbols, this should be the case if they lead to the
same successor state while producing the same (abstract) output. In learning, however, we
cannot reason about states and transitions of a model, because the aim is to produce this
model in the first place. We thus introduce a relation on concrete input symbols, which is
quite similar to the Nerode congruence.

Definition 3 (Equivalent inputs) Two inputs a, a′ ∈ Σ are equivalent if for all u, v ∈ Σ∗

JMK(uav) = JMK(ua′v). �

This relation is an equivalence relation , which allows us to extend the partition-refinement
based approach used to infer states to alphabet symbols as well. Howar et al. (2011)
present (Automated) Alphabet Abstraction Refinement (AAR), a technique for extending
active learning algorithms to also infer optimal abstractions of the concrete input alphabet
without changing the assumed MAT model: counterexamples now serve for either refining
the state set or the alphabet abstraction (or both). Assuming the mapper provides a finite
abstraction on the system outputs, the algorithm requires nothing more than an initial
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abstraction on the input alphabet (which may be arbitrarily coarse, e.g., consisting of a
single representative symbol only). The full formal description of the algorithm, along with
proofs, is provided in the above paper.

Returning our focus to the running example, a possible way of defining a (complete)
abstraction on the non-null output values i ∈ N would be to map i to 1 when i is odd, and
to 2 if i is even. Using this abstraction, we get in principle the same model as displayed in
Figure 3, without the requirement of providing both input and output abstractions.

A subtle difference between the models is that in AAR, push(1) and push(2) serve as
representatives for an infinite class of input symbols (push(i) with odd/even arguments,
respectively), while in the Mealy Machine case they are – apart from pop() – the only
elements of the chosen set of inputs. While having reduced the required manual effort, the
model still does not semantically capture the data flow in the system.

3.4. Learning Register Mealy Machines

Looking at the representative input symbols in the examples presented so far, these consisted
of the basic operations (push and pop), along with – in the case of push – an argument such
as 1 or 2. To the learning algorithm, however, push(1) appeared as an atomic symbol with
no further structure, which is inadequate if data is to be handled by a learning algorithm
directly.

We therefore now assume that the input symbols in Σ are parameterized, each with an
associated arity. For a parameterized input a ∈ Σ, we write a(p1, . . . , pk) to express that the
arity of a is k. The vector p̄ = p1, . . . , pk contains the formal parameters of a. A symbol a
can be instantiated with data values d̄ = d1, . . . , dk ∈ D, forming the concrete input symbol
a(d̄). The set of all concrete input symbols is denoted by ΣD. A sequence of concrete input
symbols is called a data word, and we denote the set of all non-empty data words by W+

Σ,D.
We transfer this concept also to output symbols, where a finite set of parameterized output
symbols is assumed.

The key assumption of the approach we present in the following is that the system is
data-independent: The concrete data values are not inspected as such, but merely their
relationship to other data values (i.e., whether they are equal or not) is examined. This
assumption holds for a large class of practically relevant systems, for example communica-
tion protocols, the behavior of which generally is not influenced by the mere payload of the
messages exchanged.

Howar et al. (2012a) develop a model suitable for all these aspects, called Register Mealy
Machines (RMMs). They are an enhancement of Register Automata (Cassel et al., 2011),
which equip the structural skeleton of a DFA with a finite set of registers, serving as ac-
ceptors for languages of data words. RMMs, in addition, also comprise (parameterized)
output symbols. Data values occurring in input symbols can be stored in these registers
and compared against the stored values. As a consequence, transitions in an RMM are more
complex, consisting not only of a (parameterized) input symbol, but also a guard (a Boolean
expression over equalities and inequalities between registers and formal parameters) and a
set of assignments (specifying the register contents in the successor state). Outputs are
specified by symbolic outputs, i.e., expressions of form o(r1, . . . , rk), where o ∈ Ω is a pa-

203



Steffen Howar Isberner

rameterized output and ri, 1 ≤ i ≤ k are references to either register or actual parameter
values.

Since a picture is worth a thousand words, we refer the reader at this point to Figure 4,
which is the RMM model of our running example. Transitions are annotated with labels

of form a(p̄) | g
σ

/

o(r̄), where g is the guard and σ the set of assignments. For the sake of

completeness, we give a formal definition of this model.

Definition 4 (Register Mealy Machine) A Register Mealy Machine (RMM) is a tuple
M = (L, l0,Σ,Ω,X,Γ), where

• L is a finite set of locations,2

• l0 ∈ L is the initial location,

• Σ is a finite set of parameterized inputs,

• Ω is a finite set of parameterized outputs,

• X is a finite set of registers,

• Γ is a finite set of transitions, each of which is of form 〈l, a(p̄), g, o(r̄), σ, l′〉, where l

is the source location, l′ is the target location, a(p̄) is a symbolic input, g is a guard,
o(r̄) is a symbolic output, and σ is an assignment. �

We content us with briefly sketching the semantics of an RMM: maintaining the current
control location l ∈ L and a valuation (a partial mapping from X to D), upon reading a
concrete input symbol a(d̄) the transition is selected, which (1) has a matching symbolic
input a(p̄) and (2) has a guard which is satisfied by ν and d̄ (i.e., it becomes true by replacing
all references to registers and parameters by their actual values). The RMM outputs the
concrete output symbol o(d̄′), which is constructed from the transition’s symbolic output
o(r̄) (again by replacing all references to registers and parameters by their actual values).
The new control location is the successor of this transition, and ν is updated by executing
all assignment statements in parallel.

The initial control location is l0, and the initial valuation is the empty valuation ∅. This,
along with the fact that neither comparisons to nor assignments from constant values are
permitted, reflects the restriction of data independence.

Similar to a Mealy Machine, a system modeled by an RMM M realizes a function
P : W+

Σ,D → ΩD. The concept of residuals can be adapted from the Mealy Machine formal-
ism without further changes, however, an adequate adaption of the Nerode congruence is
challenging. The input words push(1) and push(2), for instance, have different residuals,
as the output of a subsequent pop() differs. The solution is to allow a transformation
which reconciles the distinctness of data values, while not breaking or establishing any rela-
tionships between data values which might be important. As permutations respect exactly
these kind of relationships, they are a natural choice for this. We thus define data words
u, u′ to be equivalent, u ≡P u′, iff

u−1P (π(v)) = π
(

u′
−1

P (v)
)

∀v ∈ W+
Σ,D

2. In contrast to DFAs and Mealy Machines, these are not states, as the state also comprises the values of
the registers.
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Figure 4: RMM for a stack with a capacity of 3.

for some fixed permutation π on D. Again, the key part of work in inferring RMMs is to
approximate the relation ≡P by a finite number of representatives. Apart from this, some
more technical modifications to the learning algorithm are required, which are detailed in
Howar et al. (2012b) and in Howar et al. (2012a). The algorithm requires solely the input
and output alphabets as well as the teacher – locations, registers, guards and assignments
are inferred fully automatically.

The RMM model for our running example is depicted in Figure 4. (Parameterized)
input symbols are now push(p1) and pop(), and the output consists of X (representing
true), × (false), null (null) and o(p1) (wrapping a non-null data value). This model
now faithfully captures the causal relationship between data values in inputs and outputs by
register assignments and symbolic outputs instead of representative symbols. It also differs
in a key aspect from the previous approaches: Finiteness of the DFA or Mealy Machine
models of the stack were achieved by restricting the set of inputs and/or outputs to a finite
set of “representative” symbols, merely sufficient to capture the behavioral skeleton and
simple forms of some data dependencies. The RMM model, in contrast, is not only an
intuitive representation from a human perspective, but also has executable semantics: if
executed corresponding to the semantics described above, the model in Figure 4 could in
fact be used as an implementation for a stack with a capacity of 3.

4. Related Work

Active automata learning with membership queries and equivalence queries was first pre-
sented by Angluin (1987). It has been adapted to Mealy Machines by Niese (2003) (see
also Margaria et al., 2004). A number of variants and optimizations have been presented
for learning DFAs as well as for learning Mealy Machines; Steffen et al. (2011) contains a
survey.

First case studies on real systems applied active learning to infer models of CTI sys-
tems (Hagerer et al., 2001, 2002), which were then used to better organize test suites. In
these case studies DFA learning was used – input/output behavior was encoded as a lan-
guage over the cross product of the input and output alphabet. Data was not handled at
all, as described in Section 3.1: the learning algorithm did work on an abstract, entirely
data-unaware alphabet.

However, in these early works the gap between active learning and real system interfaces
was not a primary focus. Mappers have become the object of research in their own right
only quite recently (see Jonsson, 2011).
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Attempts to capture the influence of data parameters can be grouped into three cate-
gories. First, the approaches that use a Mealy Machine learning algorithm working on un-
interpreted alphabet symbols in combination with a sophisticated (stateful) mapper, taking
care of data values. This approach is taken by many recent case studies, e.g., by Raffelt et al.
(2009), by Aarts et al. (2010a), by Aarts et al. (2010b), by Shahbaz et al. (2011), and by
Bauer et al. (2012). For the case of I/O-automata Aarts and Vaandrager (2010) show how
the mapper can be combined with the inferred Mealy Machine model to become an I/O-
automaton. One drawback of this class of approaches is the domain knowledge and effort
that is needed to construct a mapper prior to learning.

Second, there are the approaches that infer Mealy Machine models of systems using small
explicit data domains and from these models construct models capturing data aspects in
a post-processing step. Using this approach, Berg et al. (2008) present a technique for
inferring symbolic Mealy Machines, i.e., automata with guarded transitions and state-local
sets of registers. In (Lorenzoli et al., 2008) another variant of this two-step approach is
presented in combination with passive learning. Approaches in this class suffer from huge
concrete models that result already from using small finite data domains as can be seen in
Figure 3, where we used only two data values.

Third, active automata learning has been extended to systems with parameterized inputs
and guarded transitions in a number of works. Shahbaz et al. (2007a) and Shahbaz et al.
(2007b) take a set-based approach to inferring and representing guards (i.e., symbol in-
stances with concrete data values are grouped into sets based on their behavior). Berg et al.
(2006) combine ideas for inferring logical formulas with active automata learning. In these
cases, the underlying automata are still Mealy Machines with a finite state space for which
the classic Nerode equivalence remains valid.

The other approaches in this class extend active automata learning to systems with non-
regular state spaces. Grinchtein et al. (2010) present a learning algorithm for a restricted
class of timed automata, capable of inferring clock guards, and Howar et al. (2012b) extend
active learning to register automata (Cassel et al., 2011), capable of storing, comparing,
and re-using data values. Howar et al. (2012a) extend the latter approach to distinguishing
input and output.

5. Conclusions and Perspectives

This paper revisited the development of active learning in the last decade under the per-
spective of the treatment of data, a key problem to achieve practicality.

As a running example, we have chosen a data-centric software component – an imple-
mentation of a bounded stack – to detail the improvements, regarding both the practical
applicability and the expressivity of the respective modeling formalism: with DFAs, the
automaton model initially supported by automata learning algorithms, only basic struc-
tural invocation patterns can be captured. The relation between data values stored in and
retrieved from the data structure cannot be expressed in this limited formalism. A ma-
jor improvement is the adaption of the L∗ algorithm to Mealy Machines, which allows for
employing automata learning to a large class of reactive systems. Data over large/infinite
domains, however, can not be treated. AAR has proved to overcome this problem to some
extent by fully automatically inferring an optimal alphabet abstraction alongside the clas-
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sical learning process. This is a big aid concerning scalability, but it still does not allow to
represent data flow explicitly.

The generalization of automata learning to RMMs has been a breakthrough. It makes it
possible to treat (data-independent) flow of data explicitly, while at the same time leading
to extremely concise and intuitive models; sometimes even surprisingly fast: an RMM for
a nested stack of dimensions four by four (i.e., with an overall capacity of 16) and with
781 locations could be learned in only 20 seconds. A corresponding Mealy Machine model
would have to be inferred using a data domain of at least 17 data values (to be stored in
the 16 registers) in order to definitively capture all relevant relations between data values
in inputs and outputs. Such a model would have considerably more than 1716 states, which
is far beyond tractability.

However, it is not scalability that is most characteristic of RMMs. It is there similarity
to programs. They have actions, assignments, and conditional branching, even though in
a restricted form: actions are uninterpreted, conditionals are restricted to (in)equality, and
assignments are restricted to parameters and variables. This is already sufficient to capture
what we call interface programs, which are particularly suited for modeling interesting
classes of protocols.

The named restrictions on the other hand mark new avenues for future research: to
which kinds of actions or operations in combinations with which kind of conditionals can
the ideas of active learning be extended? A first step in this direction is taken in Cassel et al.
(2012), where a generalized Nerode-relation and a canonical automaton model are presented,
capturing “richer” predicates in guards.

Very likely, potential generalizations will still be quite restrictive, but we are convinced
that there are numerous other interesting application-specific extensions that will enable
automata learning to position itself as a powerful tool for dealing with legacy and third party
software, or for helping to control and manage the inevitable change of custom software.
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