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A Self-normalized Martingale Tail Inequality

The self-normalized martingale tail inequality that we present here is the scalar-valued version of the more general
vector-valued results obtained by Abbasi-Yadkori et al. (2011b,a). We include the proof for completeness.

Theorem 7 (Self-normalized bound for martingales). Let {Ft}∞t=1 be a filtration. Let τ be a stopping time w.r.t.
to the filtration {Ft+1}∞t=1 i.e. the event {τ ≤ t} belongs to Ft+1. Let {Zt}∞t=1 be a sequence of real-valued
variables such that Zt is Ft-measurable. Let {ηt}∞t=1 be a sequence of real-valued random variables such that ηt
is Ft+1-measurable and is conditionally R-sub-Gaussian. Let V > 0 be deterministic. Then, for any δ > 0, with
probability at least 1− δ,
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We claim that {Mλ
t }∞t=1 is an {Ft+1}∞t=1-adapted supermartingale. That Mλ
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showing that {Mt}∞t=1 is indeed a supermartingale.

Next we show that Mλ
τ is always well-defined and E[Mλ

τ ] ≤ 1. First define M̃ = Mλ
τ and note that M̃(ω) =
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Let F∞ be the σ-algebra generated by {Ft}∞t=1 i.e. the tail σ-algebra. Let Λ be a zero-mean Gaussian random
variable with variance 1/V independent of F∞. Define Mt = E[MΛ

t | F∞]. Clearly, we still have E[Mτ ] =
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Let us calculate Mt. We will need the density λ which is f(λ) = 1√
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where we have used that
∫∞
−∞ exp(aλ− bλ2) = exp(a2/(4b))

√
π/b.
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To finish the proof, we use Markov’s inequality and the fact that E[Mτ ] ≤ 1:
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The theorem can be “bootstrapped” to a “stronger” statement (or at least one, that looks stronger at the first
sight) that holds uniformly for all time steps t as opposed to only a particular (stopping) time τ . The idea of
the proof goes back at least to Freedman (1975).

Corollary 8 (Uniform Bound). Under the same assumptions as the previous theorem, for any δ > 0, with
probability at least 1− δ, for all n ≥ 0,∣∣∣∣∣
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Proof. Define the “bad” event
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We are interested in bounding the probability that
⋃
t≥0Bt(δ) happens. Define τ(ω) = min{t ≥ 0 : ω ∈ Bt(δ)},

with the convention that min ∅ =∞. Then, τ is a stopping time. Further,⋃
t≥0

Bt(δ) = {ω : τ(ω) <∞}.

Thus, by Theorem 7 it holds that
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B Some Useful Tricks

Proposition 9 (Square-Root Trick). Let a, b ≥ 0. If z2 ≤ a+ bz then z ≤ b+
√
a.
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Proof of the Proposition 9. Let q(x) = x2− bx−a. The condition z2 ≤ a+ bz can be expressed as q(z) ≤ 0. The
quadratic polynomial q(x) has two roots
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2
.
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Proposition 10 (Logarithmic Trick). Let c ≥ 1, f > 0, δ ∈ (0, 1/4]. If z ≥ 1 and z ≤ c + f
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Proof of the Proposition 10. Let g(x) = x − c − f
√

ln(x/δ) for any x ≥ 1. The condition z ≤ c + f
√

ln(z/δ)
can be expressed as g(z) ≤ 0. For large enough x, the function g(x) is increasing. This is easy to see, since
g′(x) = 1 − f

2x
√

ln(x/δ)
. Namely, it is not hard see g(x) is increasing for x ≥ max{1, f/2} since for any such x,

g′(x) is positive.

Clearly, c+ f

√
2 ln

(
c+f
δ

)
≥ max{1, f/2} since c ≥ 1 and δ ∈ (0, 1/4]. Therefore, it suffices to show that

g

(
c+ f

√
2 ln

(
c+ f

δ

))
≥ 0 .

This is verified by the following calculation
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where have defined A = (c+ f)/δ and the last inequality follows from that A2 ≥ A
√

2 lnA for any A > 0.

C Proof of Theorem 3

In this section we will need the following notation. For a given positive definite matrix A ∈ Rd×d we denote
by 〈x, y〉A = x>Ay the inner product between two vectors x, y ∈ Rd induced by A. We denote by ‖x‖A =√
〈x, x〉A =

√
x>Ax the corresponding norm.

The following lemma is a from Dani et al. (2008). We reproduce the proof for completeness.
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Lemma 11 (Elliptical Potential). Let x1, x2, . . . , xn ∈ Rd and let Vt = I +
∑t
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>
s xs for t = 0, 1, 2, . . . , n.
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Proof of Lemma 11 . We use the inequality x ≤ 2 ln(1 + x) valid for all x ∈ [0, 1]:
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In the above calculation we have used that det(I+ zz>) = 1 +‖z‖22 since all but one eigenvalue of I+ zz> equals
to 1 and the remaining eigenvalue is 1 + ‖z‖22 with associated eigenvector z.

To prove the second part, consider the eigenvalues α1, α2, . . . , αd of Vn. Since Vn is positive definite, the eigen-
values are positive. Recall that det(Vn) =

∏d
i=1 αi. The bound on ‖xt‖ ≤ X implies a bound on the trace of
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from which the second inequality follows by taking logarithm and multiplying by d.

Proof of Theorem 3. Consider the event A when θ∗ ∈
⋂∞
t=0 Ct. By Corollary 2, the event A occurs with proba-

bility at least 1− δ.
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Ŷs −

〈
θ̂t, Xs

〉)2

≤ βt−1(δ)

}
.



Online-to-Confidence-Set Conversions and Application to Sparse Stochastic Bandits

The ellipsoid is contained in a larger ellipsoid

Ct−1 ⊆
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First, we bound the instantaneous regret using that (Xt, θ̃t) = argmax(x,θ)∈Dt×Ct−1
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where the last inequality follows from Lemma 11.

Proof of Theorem 4. Summing over all t we upper bound regret
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where the last inequality follows from the fact that either 〈x∗ −Xt, θ∗〉 = 0 or 〈x∗ −Xt, θ∗〉 > ∆. Then we take
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similar steps as in the proof of Theorem 3 to obtain
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finishing the proof of the problem dependent bound.




