A Self-normalized Martingale Tail Inequality

The self-normalized martingale tail inequality that we present here is the scalar-valued version of the more general vector-valued results obtained by Abbasi-Yadkori et al. (2011b,a). We include the proof for completeness.
Theorem 7 (Self-normalized bound for martingales). Let $\left\{F_{t}\right\}_{t=1}^{\infty}$ be a filtration. Let τ be a stopping time w.r.t. to the filtration $\left\{F_{t+1}\right\}_{t=1}^{\infty}$ i.e. the event $\{\tau \leq t\}$ belongs to F_{t+1}. Let $\left\{Z_{t}\right\}_{t=1}^{\infty}$ be a sequence of real-valued variables such that Z_{t} is F_{t}-measurable. Let $\left\{\eta_{t}\right\}_{t=1}^{\infty}$ be a sequence of real-valued random variables such that η_{t} is F_{t+1}-measurable and is conditionally R-sub-Gaussian. Let $V>0$ be deterministic. Then, for any $\delta>0$, with probability at least $1-\delta$,

$$
\frac{\left(\sum_{t=1}^{\tau} \eta_{t} Z_{t}\right)^{2}}{V+\sum_{t=1}^{\tau} Z_{t}^{2}} \leq 2 R^{2} \ln \left(\frac{\sqrt{V+\sum_{t=1}^{\tau} Z_{t}^{2}}}{\delta \sqrt{V}}\right)
$$

Proof. Pick $\lambda \in \mathbb{R}$ and let

$$
\begin{aligned}
D_{t}^{\lambda} & =\exp \left(\frac{\eta_{t} \lambda Z_{t}}{R}-\frac{1}{2} \lambda^{2} Z_{t}^{2}\right) \\
S_{t} & =\sum_{s=1}^{t} \eta_{s} \lambda Z_{s} \\
M_{t}^{\lambda} & =\exp \left(\frac{\lambda S_{t}}{R}-\frac{1}{2} \lambda^{2} \sum_{s=1}^{t} Z_{t}^{2}\right)
\end{aligned}
$$

We claim that $\left\{M_{t}^{\lambda}\right\}_{t=1}^{\infty}$ is an $\left\{F_{t+1}\right\}_{t=1}^{\infty}$-adapted supermartingale. That $M_{t}^{\lambda} \in F_{t+1}$ for $t=1,2, \ldots$ is clear from the definitions. By sub-Gaussianity, $\mathbf{E}\left[D_{t}^{\lambda} \mid F_{t}\right] \leq 1$. Further,

$$
\begin{aligned}
\mathbf{E}\left[M_{t}^{\lambda} \mid F_{t}\right] & =\mathbf{E}\left[M_{t-1}^{\lambda} D_{t}^{\lambda} \mid F_{t}\right] \\
& =M_{t-1}^{\lambda} \mathbf{E}\left[D_{t}^{\lambda} \mid F_{t}\right] \leq M_{t-1}^{\lambda}
\end{aligned}
$$

showing that $\left\{M_{t}\right\}_{t=1}^{\infty}$ is indeed a supermartingale.
Next we show that M_{τ}^{λ} is always well-defined and $\mathbf{E}\left[M_{\tau}^{\lambda}\right] \leq 1$. First define $\tilde{M}=M_{\tau}^{\lambda}$ and note that $\tilde{M}(\omega)=$ $M_{\tau(\omega)}^{\lambda}(\omega)$. Thus, when $\tau(\omega)=\infty$, we need to argue about $M_{\infty}^{\lambda}(\omega)$. By the convergence theorem for nonnegative supermartingales, $\lim _{t \rightarrow \infty} M_{t}^{\lambda}(\omega)$ is well-defined, which means M_{τ}^{λ} is well-defined, independently of whether $\tau<\infty$ holds or not. Now let $Q_{t}^{\lambda}=M_{\min \{\tau, t\}}^{\lambda}$ be a stopped version of M_{t}^{λ}. We proceed by using Fatou's Lemma to show that $\mathbf{E}\left[M_{\tau}^{\lambda}\right]=\mathbf{E}\left[\liminf _{t \rightarrow \infty} Q_{t}^{\lambda}\right] \leq \liminf _{t \rightarrow \infty} \mathbf{E}\left[Q_{t}^{\lambda}\right] \leq 1$.

Let F_{∞} be the σ-algebra generated by $\left\{F_{t}\right\}_{t=1}^{\infty}$ i.e. the tail σ-algebra. Let Λ be a zero-mean Gaussian random variable with variance $1 / V$ independent of F_{∞}. Define $M_{t}=\mathbf{E}\left[M_{t}^{\Lambda} \mid F_{\infty}\right]$. Clearly, we still have $\mathbf{E}\left[M_{\tau}\right]=$ $\mathbf{E}\left[M_{\tau}^{\Lambda}\right]=\mathbf{E}\left[\mathbf{E}\left[M_{\tau}^{\Lambda}\right] \mid \Lambda\right] \leq \mathbf{E}[1 \mid \Lambda] \leq 1$.
Let us calculate M_{t}. We will need the density λ which is $f(\lambda)=\frac{1}{\sqrt{2 \pi / V}} e^{-V \lambda^{2} / 2}$. Now, it is easy to write M_{t} explicitly

$$
\begin{aligned}
M_{t} & =\mathbf{E}\left[M_{t}^{\Lambda} \mid F_{\infty}\right] \\
& =\int_{-\infty}^{\infty} M_{t}^{\lambda} f(\lambda) d \lambda \\
& =\sqrt{\frac{V}{2 \pi}} \int_{\infty}^{\infty} \exp \left(\frac{\lambda S_{t}}{R}-\frac{\lambda^{2}}{2} \sum_{s=1}^{t} Z_{t}^{2}\right) e^{-V \lambda^{2} / 2} d \lambda \\
& =\exp \left(\frac{S_{t}^{2}}{2 R^{2}\left(V+\sum_{s=1}^{t} Z_{t}^{2}\right)}\right) \sqrt{\frac{V}{V+\sum_{s=1}^{t} Z_{t}^{2}}}
\end{aligned}
$$

where we have used that $\int_{-\infty}^{\infty} \exp \left(a \lambda-b \lambda^{2}\right)=\exp \left(a^{2} /(4 b)\right) \sqrt{\pi / b}$.

To finish the proof, we use Markov's inequality and the fact that $\mathbf{E}\left[M_{\tau}\right] \leq 1$:

$$
\begin{aligned}
& \operatorname{Pr}\left[\frac{\left(\sum_{t=1}^{\tau} \eta_{t} Z_{t}\right)^{2}}{V+\sum_{t=1}^{\tau} Z_{t}^{2}} \geq 2 R^{2} \ln \left(\frac{\sqrt{V+\sum_{t=1} Z_{t}^{2}}}{\delta \sqrt{V}}\right)\right] \\
& =\operatorname{Pr}\left[\frac{S_{\tau}^{2}}{2 R^{2}\left(V+\sum_{t=1}^{\tau} Z_{t}^{2}\right)} \geq \ln \left(\frac{\sqrt{V+\sum_{t=1} Z_{t}^{2}}}{\delta \sqrt{V}}\right)\right] \\
& =\operatorname{Pr}\left[\exp \left(\frac{S_{\tau}^{2}}{2 R^{2}\left(V+\sum_{t=1}^{\tau} Z_{t}^{2}\right)}\right) \geq \frac{\sqrt{V+\sum_{t=1} Z_{t}^{2}}}{\delta \sqrt{V}}\right] \\
& =\operatorname{Pr}\left[M_{\tau} \geq \frac{1}{\delta}\right] \\
& \leq \delta .
\end{aligned}
$$

The theorem can be "bootstrapped" to a "stronger" statement (or at least one, that looks stronger at the first sight) that holds uniformly for all time steps t as opposed to only a particular (stopping) time τ. The idea of the proof goes back at least to Freedman (1975).
Corollary 8 (Uniform Bound). Under the same assumptions as the previous theorem, for any $\delta>0$, with probability at least $1-\delta$, for all $n \geq 0$,

$$
\left|\sum_{t=1}^{n} \eta_{t} Z_{t}\right| \leq R \sqrt{2\left(V+\sum_{t=1}^{n} Z_{t}^{2}\right) \ln \left(\frac{\sqrt{V+\sum_{t=1}^{n} Z_{t}^{2}}}{\delta \sqrt{V}}\right)}
$$

Proof. Define the "bad" event

$$
B_{t}(\delta)=\left\{\omega \in \Omega: \frac{\left(\sum_{s=1}^{t} \eta_{s} Z_{s}\right)^{2}}{V+\sum_{s=1}^{t} Z_{s}^{2}}>2 R^{2} \ln \left(\frac{\sqrt{V+\sum_{s=1}^{t} Z_{s}^{2}}}{\delta \sqrt{V}}\right)\right\}
$$

We are interested in bounding the probability that $\bigcup_{t \geq 0} B_{t}(\delta)$ happens. Define $\tau(\omega)=\min \left\{t \geq 0: \omega \in B_{t}(\delta)\right\}$, with the convention that $\min \emptyset=\infty$. Then, τ is a stopping time. Further,

$$
\bigcup_{t \geq 0} B_{t}(\delta)=\{\omega: \tau(\omega)<\infty\}
$$

Thus, by Theorem 7 it holds that

$$
\begin{aligned}
\operatorname{Pr}\left[\bigcup_{t \geq 0} B_{t}(\delta)\right] & =\operatorname{Pr}[\tau<\infty] \\
& =\operatorname{Pr}\left[\frac{\left(\sum_{t=1}^{\tau} \eta_{t} Z_{t}\right)^{2}}{V+\sum_{t=1}^{\tau} Z_{t}^{2}}>2 R^{2} \ln \left(\frac{\sqrt{V+\sum_{t=1} Z_{t}^{2}}}{\delta \sqrt{V}}\right) \text { and } \tau<\infty\right] \\
& =\operatorname{Pr}\left[\frac{\left(\sum_{t=1}^{\tau} \eta_{t} Z_{t}\right)^{2}}{V+\sum_{t=1}^{\tau} Z_{t}^{2}}>2 R^{2} \ln \left(\frac{\sqrt{V+\sum_{t=1} Z_{t}^{2}}}{\delta \sqrt{V}}\right)\right] \\
& \leq \delta
\end{aligned}
$$

B Some Useful Tricks

Proposition 9 (Square-Root Trick). Let $a, b \geq 0$. If $z^{2} \leq a+b z$ then $z \leq b+\sqrt{a}$.

Proof of the Proposition 9. Let $q(x)=x^{2}-b x-a$. The condition $z^{2} \leq a+b z$ can be expressed as $q(z) \leq 0$. The quadratic polynomial $q(x)$ has two roots

$$
x_{1,2}=\frac{b \pm \sqrt{b^{2}+4 a}}{2}
$$

The condition $q(z) \leq 0$ implies that $z \leq \max \left\{x_{1}, x_{2}\right\}$. Therefore,

$$
z \leq \max \left\{x_{1}, x_{2}\right\}=\frac{b+\sqrt{b^{2}+4 a}}{2} \leq b+\sqrt{a}
$$

where we have used that $\sqrt{u+v} \leq \sqrt{u}+\sqrt{v}$ holds for any $u, v \geq 0$.
Proposition 10 (Logarithmic Trick). Let $c \geq 1, f>0, \delta \in(0,1 / 4]$. If $z \geq 1$ and $z \leq c+f \sqrt{\ln (z / \delta)}$ then $z \leq c+f \sqrt{2 \ln \left(\frac{c+f}{\delta}\right)}$.

Proof of the Proposition 10. Let $g(x)=x-c-f \sqrt{\ln (x / \delta)}$ for any $x \geq 1$. The condition $z \leq c+f \sqrt{\ln (z / \delta)}$ can be expressed as $g(z) \leq 0$. For large enough x, the function $g(x)$ is increasing. This is easy to see, since $g^{\prime}(x)=1-\frac{f}{2 x \sqrt{\ln (x / \delta)}}$. Namely, it is not hard see $g(x)$ is increasing for $x \geq \max \{1, f / 2\}$ since for any such x, $g^{\prime}(x)$ is positive.

Clearly, $c+f \sqrt{2 \ln \left(\frac{c+f}{\delta}\right)} \geq \max \{1, f / 2\}$ since $c \geq 1$ and $\delta \in(0,1 / 4]$. Therefore, it suffices to show that

$$
g\left(c+f \sqrt{2 \ln \left(\frac{c+f}{\delta}\right)}\right) \geq 0
$$

This is verified by the following calculation

$$
\begin{aligned}
g\left(c+f \sqrt{2 \ln \left(\frac{c+f}{\delta}\right)}\right) & =c+f \sqrt{2 \ln \left(\frac{c+f}{\delta}\right)}-c-f \sqrt{\ln \left(\frac{c+f \sqrt{2 \ln ((c+f) / \delta)}}{\delta}\right)} \\
& =f \sqrt{2 \ln \left(\frac{c+f}{\delta}\right)}-f \sqrt{\ln \left(\frac{c+f \sqrt{2 \ln ((c+f) / \delta)}}{\delta}\right)} \\
& =f \sqrt{\ln \left(\frac{c+f}{\delta}\right)^{2}}-f \sqrt{\ln \left(\frac{c+f \sqrt{2 \ln ((c+f) / \delta)}}{\delta}\right)} \\
& \geq f \sqrt{\ln \left(\frac{c+f}{\delta}\right)^{2}}-f \sqrt{\ln \left(\frac{(c+f) \sqrt{2 \ln ((c+f) / \delta)}}{\delta}\right)} \\
& =f \sqrt{\ln \left(A^{2}\right)}-f \sqrt{\ln (A \sqrt{2 \ln A})} \\
& \geq 0,
\end{aligned}
$$

where have defined $A=(c+f) / \delta$ and the last inequality follows from that $A^{2} \geq A \sqrt{2 \ln A}$ for any $A>0$.

C Proof of Theorem 3

In this section we will need the following notation. For a given positive definite matrix $A \in \mathbb{R}^{d \times d}$ we denote by $\langle x, y\rangle_{A}=x^{\top} A y$ the inner product between two vectors $x, y \in \mathbb{R}^{d}$ induced by A. We denote by $\|x\|_{A}=$ $\sqrt{\langle x, x\rangle_{A}}=\sqrt{x^{\top} A x}$ the corresponding norm.
The following lemma is a from Dani et al. (2008). We reproduce the proof for completeness.

Lemma 11 (Elliptical Potential). Let $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}^{d}$ and let $V_{t}=I+\sum_{s=1}^{t} x_{s}^{\top} x_{s}$ for $t=0,1,2, \ldots, n$. Then it holds that

$$
\sum_{t=1}^{n} \min \left\{1,\left\|x_{t}\right\|_{V_{t-1}^{-1}}^{2}\right\} \leq 2 \ln \left(\operatorname{det}\left(V_{n}\right)\right)
$$

Furthermore, if $\left\|x_{t}\right\|_{2} \leq X$ for all $t=1,2, \ldots, n$ then

$$
\ln \left(\operatorname{det}\left(V_{n}\right)\right) \leq d \ln \left(1+\frac{n X^{2}}{d}\right)
$$

Proof of Lemma 11. We use the inequality $x \leq 2 \ln (1+x)$ valid for all $x \in[0,1]$:

$$
\sum_{t=1}^{n} \min \left\{1,\left\|x_{t}\right\|_{V_{t-1}^{-1}}^{2}\right\} \leq \sum_{t=1}^{n} 2 \ln \left(1+\left\|x_{t}\right\|_{V_{t-1}^{-1}}^{2}\right)=2 \ln \left(\prod_{t=1}^{n}\left(1+\left\|x_{t}\right\|_{V_{t-1}^{-1}}^{2}\right)\right)
$$

We now show that $\operatorname{det}\left(V_{n}\right)=\prod_{t=1}^{n}\left(1+\left\|x_{t}\right\|_{V_{t-1}^{-1}}^{2}\right)$:

$$
\begin{aligned}
\operatorname{det}\left(V_{n}\right) & =\operatorname{det}\left(V_{n-1}+x_{n} x_{n}^{\top}\right) \\
& =\operatorname{det}\left(V_{n-1}\left(I+\left(V_{n-1}^{-1 / 2} x_{n}\right)\left(V_{n-1}^{-1 / 2} x_{n}\right)^{\top}\right)\right. \\
& =\operatorname{det}\left(V_{n-1}\right) \operatorname{det}\left(I+\left(V_{n-1}^{-1 / 2} x_{n}\right)\left(V_{n}^{-1 / 2} x_{n}\right)^{\top}\right) \\
& =\operatorname{det}\left(V_{n-1}\right) \cdot\left(1+\left\|x_{n}\right\|_{V_{n-1}^{-1}}^{2}\right) \\
& =\cdots
\end{aligned}
$$

$$
=\prod_{t=1}^{n}\left(1+\left\|x_{t}\right\|_{V_{t-1}^{-1}}^{2}\right)
$$

In the above calculation we have used that $\operatorname{det}\left(I+z z^{\top}\right)=1+\|z\|_{2}^{2}$ since all but one eigenvalue of $I+z z^{\top}$ equals to 1 and the remaining eigenvalue is $1+\|z\|_{2}^{2}$ with associated eigenvector z.
To prove the second part, consider the eigenvalues $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}$ of V_{n}. Since V_{n} is positive definite, the eigenvalues are positive. Recall that $\operatorname{det}\left(V_{n}\right)=\prod_{i=1}^{d} \alpha_{i}$. The bound on $\left\|x_{t}\right\| \leq X$ implies a bound on the trace of V_{n} :

$$
\operatorname{Trace} V_{n}=\operatorname{Trace}(I)+\sum_{t=1}^{n} \operatorname{Trace}\left(x_{t} x_{t}^{\top}\right)=d+\sum_{t=1}^{n}\left\|x_{t}\right\|_{2}^{2} \leq d+n X^{2}
$$

Recalling that $\operatorname{Trace}\left(V_{n}\right)=\sum_{i=1}^{d} \alpha_{i}$ we can apply the AM-GM inequality:

$$
\sqrt[d]{\alpha_{1} \alpha_{2} \cdots \alpha_{d}} \leq \frac{\alpha_{1}+\alpha_{2}+\cdots+\alpha_{d}}{d}=\frac{\operatorname{Trace}\left(V_{n}\right)}{d}
$$

from which the second inequality follows by taking logarithm and multiplying by d.
Proof of Theorem 3. Consider the event A when $\theta_{*} \in \bigcap_{t=0}^{\infty} C_{t}$. By Corollary 2, the event A occurs with probability at least $1-\delta$.
The set C_{t-1} is an ellipsoid underlying the covariance matrix $V_{t-1}=I+\sum_{s=1}^{t-1} X_{s}^{\top} X_{s}$ and center

$$
\widehat{\theta}_{t}=\underset{\theta \in \mathbb{R}^{d}}{\operatorname{argmin}}\left(\|\theta\|_{2}^{2}+\sum_{s=1}^{t-1}\left(\widehat{Y}_{s}-\left\langle\theta, X_{s}\right\rangle\right)^{2}\right)
$$

The ellipsoid C_{t-1} is non-empty since θ_{*} lies in it (on the event A). Therefore $\widehat{\theta}_{t} \in C_{t-1}$. We can thus express the ellipsoid as

$$
C_{t-1}=\left\{\theta \in \mathbb{R}^{d}:\left(\theta-\widehat{\theta}_{t}\right)^{\top} V_{t-1}\left(\theta-\widehat{\theta}_{t}\right)+\left\|\widehat{\theta}_{t}\right\|_{2}^{2}+\sum_{s=1}^{t-1}\left(\widehat{Y}_{s}-\left\langle\widehat{\theta}_{t}, X_{s}\right\rangle\right)^{2} \leq \beta_{t-1}(\delta)\right\}
$$

The ellipsoid is contained in a larger ellipsoid

$$
C_{t-1} \subseteq\left\{\theta \in \mathbb{R}^{d}:\left(\theta-\widehat{\theta}_{t}\right)^{\top} V_{t-1}\left(\theta-\widehat{\theta}_{t}\right) \leq \beta_{t-1}(\delta)\right\}=\left\{\theta \in \mathbb{R}^{d}:\left\|\theta-\widehat{\theta}_{t}\right\|_{V_{t-1}} \leq \sqrt{\beta_{t-1}(\delta)}\right\}
$$

First, we bound the instantaneous regret using that $\left(X_{t}, \widetilde{\theta}_{t}\right)=\operatorname{argmax}_{(x, \theta) \in D_{t} \times C_{t-1}}\langle x, \theta\rangle$:

$$
\begin{aligned}
&\left\langle x_{*}-X_{t}, \theta_{*}\right\rangle=\left\langle x_{*}, \theta_{*}\right\rangle-\left\langle X_{t}, \theta_{*}\right\rangle \\
& \leq\left\langle X_{t}, \widetilde{\theta}_{t}\right\rangle-\left\langle X_{t}, \theta_{*}\right\rangle \\
&=\left\langle X_{t}, \widetilde{\theta}_{t}-\theta_{*}\right\rangle \\
&=\left\langle X_{t}, \widetilde{\theta}_{t}-\widehat{\theta}_{t}\right\rangle-\left\langle X_{t}, \widehat{\theta}_{t}-\theta_{*}\right\rangle \\
& \leq\left|\left\langle X_{t}, \widetilde{\theta}_{t}-\widehat{\theta}_{t}\right\rangle\right|+\left|\left\langle X_{t}, \widehat{\theta}_{t}-\theta_{*}\right\rangle\right| \\
& \leq\left\|X_{t}\right\|_{V_{t-1}^{-1}}\left\|\widetilde{\theta}_{t}-\widehat{\theta}_{t}\right\|_{V_{t-1}}+\left\|X_{t}\right\|_{V_{t-1}^{-1}}\left\|\widehat{\theta}_{t}-\theta_{*}\right\|_{V_{t-1}} \\
& \leq 2 \sqrt{\beta_{t-1}(\delta)} \cdot\left\|X_{t}\right\|_{V_{t-1}^{-1}} . \\
& \text { (Cauchy-Schwarz) }
\end{aligned}
$$

Since we assume that $\left|\left\langle x, \theta_{*}\right\rangle\right| \leq G$ for any $x \in D_{t}$ and any $t=1,2, \ldots, n$, we can upper bound $\left\langle x_{*}-X_{t}, \theta_{*}\right\rangle \leq$ $2 \min \left\{G, \sqrt{\beta_{t-1}(\delta)} \cdot\left\|X_{t}\right\|_{V_{t-1}^{-1}}\right\}$. Summing over all t we upper bound regret

$$
\begin{aligned}
R_{n} & =\sum_{t=1}^{n}\left\langle x^{*}-X_{t}, \theta_{*}\right\rangle \\
& \leq 2 \sum_{t=1}^{n} \min \left\{G, \sqrt{\beta_{t-1}(\delta)} \cdot\left\|X_{t}\right\|_{V_{t-1}^{-1}}\right\} \\
& \leq 2 \sum_{t=1}^{n} \sqrt{\beta_{t-1}(\delta)} \cdot \min \left\{G,\left\|X_{t}\right\|_{V_{t-1}^{-1}}\right\} \\
& \leq 2\left(\max _{0 \leq t<n} \sqrt{\beta_{t}(\delta)}\right) \sum_{t=1}^{n} \min \left\{G,\left\|X_{t}\right\|_{V_{t-1}^{-1}}\right\} \\
& \leq 2\left(\max _{0 \leq t<n} \sqrt{\beta_{t}(\delta)}\right) \max \{1, G\} \sum_{t=1}^{n} \min \left\{1,\left\|X_{t}\right\|_{\left.V_{t-1}^{-1}\right\}}\right\} \\
& \leq 2\left(\max _{0 \leq t<n} \sqrt{\beta_{t}(\delta)}\right) \max \{1, G\} \times \sqrt{n \sum_{t=1}^{n} \min \left\{1,\left\|X_{t}\right\|_{V_{t-1}^{-1}}^{2}\right\}} \\
& \leq 2 \max \{1, G\} \sqrt{2 n d \log \left(1+\frac{n X^{2}}{d}\right) \max _{0 \leq t<n} \beta_{t}(\delta)}, \quad \text { (Cauchy-Schwarz) }
\end{aligned}
$$

where the last inequality follows from Lemma 11.

Proof of Theorem 4. Summing over all t we upper bound regret

$$
R_{n}=\sum_{t=1}^{n}\left\langle x^{*}-X_{t}, \theta_{*}\right\rangle \leq \frac{1}{\Delta} \sum_{t=1}^{n}\left\langle x^{*}-X_{t}, \theta_{*}\right\rangle^{2}
$$

where the last inequality follows from the fact that either $\left\langle x^{*}-X_{t}, \theta_{*}\right\rangle=0$ or $\left\langle x^{*}-X_{t}, \theta_{*}\right\rangle>\Delta$. Then we take
similar steps as in the proof of Theorem 3 to obtain

$$
\begin{aligned}
R_{n} & \leq \frac{1}{\Delta} \sum_{t=1}^{n}\left\langle x^{*}-X_{t}, \theta_{*}\right\rangle^{2} \\
& \leq \frac{4}{\Delta}\left(\max _{0 \leq t<n} \beta_{t}(\delta)\right) \max \left\{1, G^{2}\right\} \sum_{t=1}^{n} \min \left\{1,\left\|X_{t}\right\|_{V_{t-1}^{-1}}^{2}\right\} \\
& \leq \frac{8 d}{\Delta}\left(\max _{0 \leq t<n} \beta_{t}(\delta)\right) \max \left\{1, G^{2}\right\} \log \left(1+\frac{n X^{2}}{d}\right)
\end{aligned}
$$

finishing the proof of the problem dependent bound.

