A Self-normalized Martingale Tail Inequality

The self-normalized martingale tail inequality that we present here is the scalar-valued version of the more general vector-valued results obtained by Abbasi-Yadkori et al. (2011b,a). We include the proof for completeness.

Theorem 7 (Self-normalized bound for martingales). Let \(\{F_t\}_{t=1}^\infty \) be a filtration. Let \(\tau \) be a stopping time w.r.t. to the filtration \(\{F_{t+1}\}_{t=1}^\infty \). The event \(\{\tau \leq t\} \) belongs to \(F_t \). Let \(\{Z_t\}_{t=1}^\infty \) be a sequence of real-valued variables such that \(Z_t \in F_t \)-measurable. Let \(\{\eta_t\}_{t=1}^\infty \) be a sequence of real-valued random variables such that \(\eta_t \) is \(F_{t+1} \)-measurable and is conditionally \(R \)-sub-Gaussian. Let \(V > 0 \) be deterministic. Then, for any \(\delta > 0 \), with probability at least \(1 - \delta \),

\[
\left(\frac{\sum_{i=1}^\tau \eta_i Z_i^2}{V + \sum_{i=1}^\tau Z_i^2} \right)^2 \leq 2R^2 \ln \left(\frac{\sqrt{V + \sum_{i=1}^\tau Z_i^2}}{\delta \sqrt{V}} \right).
\]

Proof. Pick \(\lambda \in \mathbb{R} \) and let

\[
D_t^\lambda = \exp \left(\frac{\eta_t \lambda Z_t}{R} - \frac{1}{2} \lambda^2 Z_t^2 \right),
S_t = \sum_{s=1}^t \eta_s \lambda Z_s,
M_t^\lambda = \exp \left(\frac{\lambda S_t}{R} - \frac{1}{2} \lambda^2 \sum_{s=1}^t Z_s^2 \right).
\]

We claim that \(\{M_t^\lambda\}_{t=1}^\infty \) is an \(\{F_t\}_{t=1}^\infty \)-adapted supermartingale. That \(M_t^\lambda \in F_{t+1} \) for \(t = 1, 2, \ldots \) is clear from the definitions. By sub-Gaussianity, \(\mathbb{E}[D_t^\lambda \mid F_t] \leq 1 \). Further,

\[
\mathbb{E}[M_t^\lambda \mid F_t] = \mathbb{E}[M_{t-1}^\lambda D_t^\lambda \mid F_t] = M_{t-1} \mathbb{E}[D_t^\lambda \mid F_t] \leq M_{t-1}^\lambda,
\]

showing that \(\{M_t\}_{t=1}^\infty \) is indeed a supermartingale.

Next we show that \(M_t^\lambda \) is always well-defined and \(\mathbb{E}[M_t^\lambda] \leq 1 \). First define \(\bar{M} = M_t^\lambda \) and note that \(\bar{M}(\omega) = M_{\tau(\omega)}^\lambda(\omega) \). Thus, when \(\tau(\omega) = \infty \), we need to argue about \(M_t^\infty(\omega) \). By the convergence theorem for nonnegative supermartingales, \(\lim_{t \to \infty} M_t^\lambda(\omega) = \text{well-defined} \). Which means \(M_t^\lambda \) is well-defined, independently of whether \(\tau < \infty \) holds or not. Now let \(Q_1^\lambda = M_{\min\{\tau, \infty\}}^\lambda \). We proceed by using Fatou’s Lemma to show that \(\mathbb{E}[M_\tau^\lambda] = \mathbb{E}[\lim_{t \to \infty} Q_t^\lambda] \leq \liminf_{t \to \infty} \mathbb{E}[Q_t^\lambda] \leq 1 \).

Let \(F_\infty \) be the \(\sigma \)-algebra generated by \(\{F_t\}_{t=1}^\infty \) i.e. the tail \(\sigma \)-algebra. Let \(\Lambda \) be a zero-mean Gaussian random variable with variance \(1/V \) independent of \(F_\infty \). Define \(M_t = \mathbb{E}[M_t^\lambda \mid F_\infty] \). Clearly, we still have \(\mathbb{E}[M_\tau] = \mathbb{E}[M_\tau^\lambda] = \mathbb{E}[\mathbb{E}[M_\tau^\lambda] \mid \Lambda] \leq \mathbb{E}[1 \mid \Lambda] \leq 1 \).

Let us calculate \(M_t \). We will need the density \(\lambda \) which is \(f(\lambda) = \frac{1}{\sqrt{2\pi V}} e^{-V\lambda^2/2} \). Now, it is easy to write \(M_t \) explicitly

\[
M_t = \mathbb{E}[M_t^\lambda \mid F_\infty] = \int_{-\infty}^\infty M_t^\lambda f(\lambda) \, d\lambda
= \sqrt{\frac{V}{2\pi}} \int_{-\infty}^\infty \exp \left(\frac{\lambda S_t}{R} - \frac{1}{2} \lambda^2 \sum_{s=1}^t Z_s^2 \right) e^{-V\lambda^2/2} \, d\lambda
= \exp \left(\frac{S_t^2}{2R^2(V + \sum_{s=1}^t Z_s^2)} \right) \sqrt{\frac{V}{V + \sum_{s=1}^t Z_s^2}},
\]

where we have used that \(\int_{-\infty}^\infty \exp(a\lambda - b\lambda^2) = \exp(a^2/(4b)) \sqrt{\pi/b} \).
To finish the proof, we use Markov’s inequality and the fact that $\mathbb{E}[M_\tau] \leq 1$:

$$\Pr\left[\frac{\left(\sum_{\tau=1}^\tau \eta_t Z_t\right)^2}{V + \sum_{t=1}^\tau Z_t^2} \geq 2R^2 \ln \left(\frac{\sqrt{V + \sum_{t=1}^\tau Z_t^2}}{\delta \sqrt{V}} \right) \right]$$

$$= \Pr\left[\frac{S_\tau^2}{2R^2(V + \sum_{t=1}^\tau Z_t^2)} \geq \ln \left(\frac{\sqrt{V + \sum_{t=1}^\tau Z_t^2}}{\delta \sqrt{V}} \right) \right]$$

$$= \Pr\left[\exp \left(\frac{S_\tau^2}{2R^2(V + \sum_{t=1}^\tau Z_t^2)} \right) \geq \sqrt{V + \sum_{t=1}^\tau Z_t^2} \right] \geq \frac{1}{\delta} \Pr\left[M_\tau \geq \frac{1}{\delta} \right] \leq \delta.$$

The theorem can be “bootstrapped” to a “stronger” statement (or at least one, that looks stronger at the first sight) that holds uniformly for all time steps t as opposed to only a particular (stopping) time τ. The idea of the proof goes back at least to Freedman (1975).

Corollary 8 (Uniform Bound). Under the same assumptions as the previous theorem, for any $\delta > 0$, with probability at least $1 - \delta$, for all $n \geq 0$,

$$\left| \sum_{t=1}^n \eta_t Z_t \right| \leq R \sqrt{2 \left(V + \sum_{t=1}^n Z_t^2 \right) \ln \left(\frac{\sqrt{V + \sum_{t=1}^n Z_t^2}}{\delta \sqrt{V}} \right)}.$$

Proof. Define the “bad” event

$$B_t(\delta) = \left\{ \omega \in \Omega : \frac{\left(\sum_{s=1}^t \eta_s Z_s\right)^2}{V + \sum_{s=1}^t Z_s^2} > 2R^2 \ln \left(\frac{\sqrt{V + \sum_{s=1}^t Z_s^2}}{\delta \sqrt{V}} \right) \right\}.$$

We are interested in bounding the probability that $\bigcup_{t \geq 0} B_t(\delta)$ happens. Define $\tau(\omega) = \min\{t \geq 0 : \omega \in B_t(\delta)\}$, with the convention that $\min\emptyset = \infty$. Then, τ is a stopping time. Further,

$$\bigcup_{t \geq 0} B_t(\delta) = \{\omega : \tau(\omega) < \infty\}.$$

Thus, by Theorem 7 it holds that

$$\Pr\left[\bigcup_{t \geq 0} B_t(\delta) \right] = \Pr[\tau < \infty]$$

$$= \Pr\left[\frac{\left(\sum_{\tau=1}^\tau \eta_t Z_t\right)^2}{V + \sum_{t=1}^\tau Z_t^2} > 2R^2 \ln \left(\frac{\sqrt{V + \sum_{t=1}^\tau Z_t^2}}{\delta \sqrt{V}} \right) \text{ and } \tau < \infty \right]$$

$$= \Pr\left[\frac{S_\tau^2}{2R^2(V + \sum_{t=1}^\tau Z_t^2)} \geq \ln \left(\frac{\sqrt{V + \sum_{t=1}^\tau Z_t^2}}{\delta \sqrt{V}} \right) \right] \leq \delta.$$

\[\square\]

B Some Useful Tricks

Proposition 9 (Square-Root Trick). Let $a, b \geq 0$. If $z^2 \leq a + bz$ then $z \leq b + \sqrt{a}$.

Proof of the Proposition 9. Let \(q(x) = x^2 - bx - a \). The condition \(z^2 \leq a + bz \) can be expressed as \(q(z) \leq 0 \). The quadratic polynomial \(q(x) \) has two roots

\[
x_{1,2} = \frac{b \pm \sqrt{b^2 + 4a}}{2}.
\]

The condition \(q(z) \leq 0 \) implies that \(z \leq \max\{x_1, x_2\} \). Therefore,

\[
z \leq \max\{x_1, x_2\} = \frac{b + \sqrt{b^2 + 4a}}{2} \leq b + \sqrt{a},
\]

where we have used that \(\sqrt{u+v} \leq \sqrt{u} + \sqrt{v} \) holds for any \(u, v \geq 0 \).

\[\square \]

Proposition 10 (Logarithmic Trick). Let \(c \geq 1, f > 0, \delta \in (0, 1/4] \). If \(z \geq 1 \) and \(z \leq c + f \sqrt{\ln(z/\delta)} \) then

\[
z \leq c + f \sqrt{2 \ln \left(\frac{c + f}{\delta} \right)}.
\]

Proof of the Proposition 10. Let \(g(x) = x - c - f \sqrt{\ln(x/\delta)} \) for any \(x \geq 1 \). The condition \(z \leq c + f \sqrt{\ln(z/\delta)} \) can be expressed as \(g(z) \leq 0 \). For large enough \(x \), the function \(g(x) \) is increasing. This is easy to see, since \(g'(x) = 1 - \frac{f}{2x \sqrt{\ln(x/\delta)}} \). Namely, it is not hard see \(g(x) \) is increasing for \(x \geq \max\{1, f/2\} \) since for any such \(x \), \(g'(x) \) is positive.

Clearly, \(c + f \sqrt{2 \ln \left(\frac{c + f}{\delta} \right)} \geq \max\{1, f/2\} \) since \(c \geq 1 \) and \(\delta \in (0, 1/4] \). Therefore, it suffices to show that

\[
g \left(c + f \sqrt{2 \ln \left(\frac{c + f}{\delta} \right)} \right) \geq 0.
\]

This is verified by the following calculation

\[
g \left(c + f \sqrt{2 \ln \left(\frac{c + f}{\delta} \right)} \right) = c + f \sqrt{2 \ln \left(\frac{c + f}{\delta} \right)} - c - f \sqrt{\ln \left(\frac{c + f \sqrt{2 \ln ((c + f)/\delta)}}{\delta} \right)}
\]

\[
= f \sqrt{2 \ln \left(\frac{c + f}{\delta} \right)} - f \sqrt{\ln \left(\frac{c + f \sqrt{2 \ln ((c + f)/\delta)}}{\delta} \right)}
\]

\[
\geq f \sqrt{\ln \left(\frac{c + f}{\delta} \right)} - f \sqrt{\ln \left(\frac{(c + f) \sqrt{2 \ln ((c + f)/\delta)}}{\delta} \right)}
\]

\[
= f \sqrt{\ln (A^2)} - f \sqrt{\ln (A \sqrt{2 \ln A})}
\]

\[
\geq 0,
\]

where have defined \(A = (c + f)/\delta \) and the last inequality follows from that \(A^2 \geq A \sqrt{2 \ln A} \) for any \(A > 0 \).

\[\square \]

C Proof of Theorem 3

In this section we will need the following notation. For a given positive definite matrix \(A \in \mathbb{R}^{d \times d} \) we denote by \(\langle x, y \rangle_A = x^\top A y \) the inner product between two vectors \(x, y \in \mathbb{R}^d \) induced by \(A \). We denote by \(\|x\|_A = \sqrt{\langle x, x \rangle_A} = \sqrt{x^\top A x} \) the corresponding norm.

The following lemma is a from Dani et al. (2008). We reproduce the proof for completeness.
Lemma 11 (Elliptical Potential). Let \(x_1, x_2, \ldots, x_n \in \mathbb{R}^d \) and let \(V_t = I + \sum_{s=1}^{t} x_s^\top x_s \) for \(t = 0, 1, 2, \ldots, n \). Then it holds that
\[
\sum_{t=1}^{n} \min \left\{ 1, \|x_t\|_{V_{t-1}}^2 \right\} \leq 2 \ln(\det(V_n)).
\]
Furthermore, if \(\|x_t\|_2 \leq X \) for all \(t = 1, 2, \ldots, n \) then
\[
\ln(\det(V_n)) \leq d \ln \left(1 + \frac{nX^2}{d} \right).
\]

Proof of Lemma 11. We use the inequality \(x \leq 2 \ln(1 + x) \) valid for all \(x \in [0, 1] \):
\[
\sum_{t=1}^{n} \min \left\{ 1, \|x_t\|_{V_{t-1}}^2 \right\} \leq \sum_{t=1}^{n} 2 \ln \left(1 + \|x_t\|_{V_{t-1}}^2 \right) = 2 \ln \left(\prod_{t=1}^{n} \left(1 + \|x_t\|_{V_{t-1}}^2 \right) \right).
\]
We now show that \(\det(V_n) = \prod_{t=1}^{n} (1 + \|x_t\|_{V_{t-1}}^2) \):
\[
\det(V_n) = \det(V_{n-1} + x_n x_n^\top) \\
= \det \left(V_{n-1} (I + (V_{n-1}^{-1/2} x_n) (V_{n-1}^{-1/2} x_n)^\top) \right) \\
= \det(V_{n-1}) \det \left(I + (V_{n-1}^{-1/2} x_n) (V_{n-1}^{-1/2} x_n)^\top \right) \\
= \det(V_{n-1}) \cdot \left(1 + \|x_n\|_{V_{n-1}}^2 \right) \\
= \cdots \\
= \prod_{t=1}^{n} \left(1 + \|x_t\|_{V_{t-1}}^2 \right).
\]
(since \(V_0 = I \))

In the above calculation we have used that \(\det(I + zz^\top) = 1 + \|z\|^2 \) since all but one eigenvalue of \(I + zz^\top \) equals to 1 and the remaining eigenvalue is \(1 + \|z\|^2 \) with associated eigenvector \(z \).

To prove the second part, consider the eigenvalues \(\alpha_1, \alpha_2, \ldots, \alpha_d \) of \(V_n \). Since \(V_n \) is positive definite, the eigenvalues are positive. Recall that \(\det(V_n) = \prod_{i=1}^{d} \alpha_i \). The bound on \(\|x_t\| \leq X \) implies a bound on the trace of \(V_n \):
\[
\text{Trace}(V_n) = \text{Trace}(I) + \sum_{t=1}^{n} \text{Trace}(x_t x_t^\top) = d + \sum_{t=1}^{n} \|x_t\|_2^2 \leq d + nX^2.
\]
Recalling that \(\text{Trace}(V_n) = \sum_{i=1}^{d} \alpha_i \), we can apply the AM-GM inequality:
\[
\sqrt[d]{\alpha_1 \alpha_2 \cdots \alpha_d} \leq \frac{\alpha_1 + \alpha_2 + \cdots + \alpha_d}{d} = \frac{\text{Trace}(V_n)}{d},
\]
from which the second inequality follows by taking logarithm and multiplying by \(d \).

Proof of Theorem 3. Consider the event \(A \) when \(\theta_* \in \bigcap_{t=0}^{\infty} C_t \). By Corollary 2, the event \(A \) occurs with probability at least \(1 - \delta \).

The set \(C_{t-1} \) is an ellipsoid underlying the covariance matrix \(V_{t-1} = I + \sum_{s=1}^{t-1} X_s^\top X_s \) and center
\[
\hat{\theta}_t = \arg\min_{\theta \in \mathbb{R}^d} \left(\|\theta\|_2^2 + \sum_{s=1}^{t-1} (\hat{Y}_s - \langle \theta, X_s \rangle)^2 \right).
\]

The ellipsoid \(C_{t-1} \) is non-empty since \(\theta_* \) lies in it (on the event \(A \)). Therefore \(\hat{\theta}_t \in C_{t-1} \). We can thus express the ellipsoid as
\[
C_{t-1} = \left\{ \theta \in \mathbb{R}^d : (\theta - \hat{\theta}_t)^\top V_{t-1} (\theta - \hat{\theta}_t) + \|\hat{\theta}_t\|_2^2 + \sum_{s=1}^{t-1} (\hat{Y}_s - \langle \hat{\theta}_t, X_s \rangle)^2 \leq \beta_{t-1}(\delta) \right\}.
\]
The ellipsoid is contained in a larger ellipsoid

$$C_{t-1} \subseteq \{ \theta \in \mathbb{R}^d : (\theta - \hat{\theta}_t) \cdot V_{t-1} (\theta - \hat{\theta}_t) \leq \beta_{t-1} (\delta) \} = \{ \theta \in \mathbb{R}^d : \| \theta - \hat{\theta}_t \|_{V_{t-1}} \leq \sqrt{\beta_{t-1} (\delta)} \}.$$

First, we bound the instantaneous regret using that $$(X_t, \hat{\theta}_t) = \arg \max_{(x, \theta) \in D_t \times C_{t-1}} \langle x, \theta \rangle$$:

$$\langle x^* - X_t, \theta_* \rangle = \langle x^*, \theta_* \rangle - \langle X_t, \theta_* \rangle$$

$$\leq \langle X_t, \hat{\theta}_t \rangle - \langle X_t, \theta_* \rangle$$

$$= \langle X_t, \hat{\theta}_t - \theta_* \rangle$$

$$= \langle X_t, \hat{\theta}_t - \hat{\theta}_t \rangle - \langle X_t, \hat{\theta}_t - \theta_* \rangle$$

$$\leq \| X_t \|_{V_{t-1}} \| \hat{\theta}_t - \hat{\theta}_t \|_{V_{t-1}} + \| X_t \|_{V_{t-1}} \| \hat{\theta}_t - \theta_* \|_{V_{t-1}}$$ (Cauchy-Schwarz)

$$\leq 2 \sqrt{\beta_{t-1} (\delta)} \cdot \| X_t \|_{V_{t-1}}.$$ (because $\hat{\theta}_t, \theta_* \in C_{t-1}$)

Since we assume that $\| (x, \theta_*) \| \leq G$ for any $x \in D_t$ and any $t = 1, 2, \ldots, n$, we can upper bound $\langle x^* - X_t, \theta_* \rangle \leq 2 \min \{ G, \sqrt{\beta_{t-1} (\delta)} \cdot \| X_t \|_{V_{t-1}} \}$. Summing over all t we upper bound regret

$$R_n = \sum_{t=1}^n \langle x^* - X_t, \theta_* \rangle$$

$$\leq 2 \sum_{t=1}^n \min \{ G, \sqrt{\beta_{t-1} (\delta)} \cdot \| X_t \|_{V_{t-1}} \}$$

$$\leq 2 \sum_{t=1}^n \sqrt{\beta_{t-1} (\delta)} \cdot \min \{ G, \| X_t \|_{V_{t-1}} \}$$ (since $\beta_{t-1} (\delta) \geq 1$)

$$\leq 2 \left(\max_{0 \leq t < n} \sqrt{\beta_t (\delta)} \right) \sum_{t=1}^n \min \{ G, \| X_t \|_{V_{t-1}} \}$$

$$\leq 2 \left(\max_{0 \leq t < n} \sqrt{\beta_t (\delta)} \right) \max \{ 1, G \} \sum_{t=1}^n \min \{ 1, \| X_t \|_{V_{t-1}} \}$$

$$\leq 2 \left(\max_{0 \leq t < n} \sqrt{\beta_t (\delta)} \right) \max \{ 1, G \} \times \sqrt{ n \sum_{t=1}^n \min \left\{ 1, \| X_t \|_{V_{t-1}}^2 \right\} }$$ (Cauchy-Schwarz)

$$\leq 2 \max \{ 1, G \} \sqrt{2nd \log \left(1 + \frac{nX^2}{d} \right) \max_{0 \leq t < n} \beta_t (\delta)}$$

where the last inequality follows from Lemma 11.

Proof of Theorem 4. Summing over all t we upper bound regret

$$R_n = \sum_{t=1}^n \langle x^* - X_t, \theta_* \rangle \leq \frac{1}{\Delta} \sum_{t=1}^n \langle x^* - X_t, \theta_* \rangle^2,$$

where the last inequality follows from the fact that either $\langle x^* - X_t, \theta_* \rangle = 0$ or $\langle x^* - X_t, \theta_* \rangle > \Delta$. Then we take
similar steps as in the proof of Theorem 3 to obtain

\[R_n \leq \frac{1}{\Delta} \sum_{t=1}^{n} (x^* - X_t, \theta_*)^2 \]

\[\leq \frac{4}{\Delta} \left(\max_{0 \leq t < n} \beta_t(\delta) \right) \max \{ 1, G^2 \} \sum_{t=1}^{n} \min \left\{ 1, \|X_t\|_{\mathbb{V}_t}^2 \right\} \]

\[\leq \frac{8d}{\Delta} \left(\max_{0 \leq t < n} \beta_t(\delta) \right) \max \{ 1, G^2 \} \log \left(1 + \frac{nX^2}{d} \right), \]

finishing the proof of the problem dependent bound. \qed