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Abstract

Patient-specific algorithms to detect adverse
clinical events during long-term physiologi-
cal monitoring substantially improve perfor-
mance relative to patient-nonspecific ones.
However, these algorithms often rely on the
availability of expert hand-labeled data for
training, which severely restricts the scal-
ability of personalized monitoring within a
real-world setting. While active learning of-
fers a natural framework to address this is-
sue, the relative merits of different active
learning methodologies have not been ex-
tensively studied in the setting of develop-
ing clinically useful detectors for infrequent
time-series events. In this paper, we iden-
tify a core set of principles that are relative
to the specific goal of personalized long-term
physiological monitoring. We describe and
compare different approaches for initializa-
tion, batch selection and termination within
the active learning process. We position this
work in the context of epileptic seizure onset
detection. When evaluated on a database of
scalp EEG recordings from 23 epileptic pa-
tients, we show that a combined distance-
and diversity-based measure to determine the
data to be queried, max-min clustering for
identification of the initialization set, and
a comparison of consecutive support vector
sets to guide termination results in an active
learning-based detector that can achieve sim-
ilar performance to a patient-specific detector
while requiring two orders of magnitude fewer
labeled examples for training.
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1 Introduction

The trend of personalizing or individualizing medicine
has attracted much attention in recent years. In the
context of clinical monitoring, patient-specific detec-
tion offers substantial improvements in accuracy and
latency over general-purpose detectors [1, 2]. Patient-
specific methods are acutely trainable for predicting
adverse outcomes, and are especially useful when deal-
ing with a highly variable population where analyses
are not readily applicable across different individuals.
Unfortunately, patient-specificity comes at a cost: the
process of training algorithms requires large amounts
of continuous data to be collected and reviewed to
identify examples of normal and abnormal activity.
This represents a stereotypical “chicken-and-egg” sce-
nario where the development of highly accurate detec-
tors and the extraction of normal and abnormal physi-
ological activity for training are inter-dependent tasks.
Usually, the identification of such activity is carried
out by a human expert. This process is impractical
due to excessive demands on human time and skills,
which inhibits scaling up personalization-based detec-
tion approaches to large patient populations.

Active learning offers a natural framework to address
this challenge. In the context of our clinical applica-
tion, the basic idea underlying active learning is to
avoid the need to label all of a large volume of long-
term data by instead automatically identifying a small
subset that sufficiently characterizes all interesting ac-
tivity and can be feasibility labeled by human experts
for training. There is a growing body of machine learn-
ing research that studies the closed-loop phenomenon
of a learner selecting what data should be used for
training. The learner attempts to select segments of
data that are likely to be the most informative to train
on. These selected examples are annotated by an or-
acle (e.g., a human expert) with some cost associated
with each query, and added to the training material
of the classifier. This cycle repeats until a stopping
criterion is met. The promise of active learning is that
when the examples to be labeled are selected prop-
erly, the data and computation requirements for some
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problems can decrease dramatically [3, 4].

Active learning has been explored in a wide range of
applications, including image retrieval [5], text clas-
sification [6], and econometrics [7]. It has also been
applied in earlier work to medical problems, most no-
tably to cancer classification [8], drug discovery [9],
and medical image classification [10]. Most of this ex-
isting work on active learning in medicine has centered
on biochemical and imaging datasets, and on applica-
tions where the goal is to reduce the amount of train-
ing data, but not to directly address the goal of per-
sonalization. In contrast to these efforts, we consider
the problem of using active learning to develop per-
sonalized decision-support tools for infrequent events
in a scalable manner, from information in long-term
physiological time-series. We focus, in particular, on
the question of determining the relative merits of dif-
ferent active learning methodologies for the specific
challenges of personalized monitoring. As part of this
work, we explore the use of active learning more com-
prehensively than in earlier clinical applications, pre-
senting and evaluating a number of different orthogo-
nal approaches for each of the three major stages as-
sociated with active learning (i.e. initialization, batch
selection and termination).

We position our work within the context of an impor-
tant clinical problem: epileptic seizure detection using
electroencephalogram (EEG) data. A device capable
of quickly reacting to a seizure is beneficial in several
ways: for the localization of epileptogenic focus via ic-
tal SPECT [11], to trigger neural stimulation devices
[12, 13], and to prompt individuals to seek safety or
administer a fast-acting anticonvulsant. The charac-
teristics of seizure EEG, however, vary significantly
across patients, and create the need for detectors that
can adapt to an individual patient’s seizure charac-
teristics. While patient-specific seizure detection has
been shown to outperform non-patient-specific classi-
fiers [14], a notable limitation of existing approaches
is their reliance on a human expert to divide records
of the brain’s electrical activity into seizure and non-
seizure classes. These labels are necessary to train
algorithms for patient-specific seizure detection, but
prevent the personalized approach from being scalable.
Finding a way to reduce the amount of human labeling
per patient while retaining patient specificity can be
invaluable.

2 Materials and Methods

2.1 Patient-Specific Detector (PatSpec)

We used the patient-specific detector (PatSpec) pre-
sented by Shoeb et al. [1] in our investigations. The
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detection system begins by segmenting a patient’s
EEG data into 2-second epochs (with 1-second over-
lap). Five sub-band signals spanning frequencies from
0.5 to 25 Hz. are then extracted from each epoch using
an iterated filter-bank structure. The high- and low-
pass filters in the filter-bank are based on the fourth
member of the Daubechies wavelet family (db4) [15].
For the epoch centered at time t, the total energies in
the five sub-band signals for each channel are concate-
nated to form a feature vector ;.

Each epoch at every time t in the training dataset is
assigned a label y; € {—1, 41} based on expert anno-
tations of when seizures occur. The feature vectors x;
and labels y; for t = 1,..., N are then used to train
a support vector machine (SVM) classifier [16]. In its
primal form, the SVM problem for a linear kernel can
be described as:

1 n
min{inw +C Z &}

t=1
subject to:
ye(wha, +0) >1-6;6 >0

The dual form of the SVM problem is given by:
max{zl ai—g Z G 0GY YT T4}
i= 0.

subject to

0<q §C§Zaiyi:0
i=1

For problems where the data is not linearly separa-
ble, the dot product xZij can be replaced by a kernel
that projects the examples into a higher-dimensional
feature space induced by a kernel. In 2this work, the
Gaussian kernel (K (z;,z;) =e S h ) is used con-
sistent with the approach of Shoeb et al. The learned
SVM boundary can then be used to classify future
unlabeled examples by determining which side of the
boundary the example is located. PatSpec declares
a seizure during testing when three consecutive EEG
epochs are labeled as seizures by the SVM classifier.

2.2 Patient-Nonspecific Detector
(PatNonspec)

We also investigated a commercially available patient-
nonspecific detector which implements the Reveal de-
tection algorithm [17]. Reveal decomposes 2-second
EEG epochs from each input channel into time-
frequency atoms using a matching pursuit algorithm
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[18]]. It then employs neural network rules to deter-
mine whether features derived from the atoms of a
channel are consistent with a seizure on that channel.
The thresholds for the neural network rules are deter-
mined using both archetypal seizures as well as non-
seizure epochs from patients without epilepsy. Pat-
Nonspec can be manually tuned to declare seizures
when certain duration and confidence limits are met.

2.3 Active Learning Detector

We extended PatSpec to use active learning to reduce
the amount of labeled data needed for training. At
the highest level, this process trained an initial SVM
on a small subset of labeled data, and then refined the
SVM in an iterative manner by identifying additional
data to be queried and used for model retraining. We
explored a variety of heuristics to address the different
questions associated with active learning in such a set-
ting, i.e., how to develop an initial SVM, how to choose
the points to be selectively queried and added to this
SVM, and how to terminate the querying process.

2.3.1 Initialization

We started the active learning process by training an
SVM on 6 = 4 examples of each class. Identifying
these examples is challenging, since annotating a large
volume of data to find examples of seizure activity may
require substantial human effort. Given the relative
sparseness of seizures, sampling the data in any un-
structured form is also invariably associated with the
review of many examples before a sufficient number of
seizure examples are obtained.

To address this issue, we explored the use of a one-
class SVM [19] to identify epochs that are anomalies.
Our hypothesis was that these anomalies are likely to
correspond to seizure examples. The one-class SVM
solves the following quadratic problem:

1, ., 1
min 5w + mzt:& —p
subject to:

(w-®(21)) > p— &6 >0

where v reflects the tradeoff between incorporating
outliers and minimizing the support region. We
used the distance from the one-class SVM hyperplane
to identify both highly anomalous and highly non-
anomalous EEG epochs. An intuitive strategy in this
setting (OneClassSVM) is to allow the one-class SVM
to present the most extreme outliers to an expert until
a seizure epoch is found. The neighboring epochs of
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this seizure epoch are then added to the initialization
set after querying (or the process is continued if an in-
sufficient number of seizure epochs are found). The
non-seizure examples can be identified in a similar way
by querying the most extreme non-anomalous points
found by the one-class SVM.

We also developed a second strategy (MazMin) that
uses a max-min clustering algorithm to query different
points around the feature space. Max-min clustering
proceeds by choosing an observation at random as the
first centroid ¢y, and by setting the set C of centroids
to {cl}. During the ith iteration, ¢; is chosen such
that it maximizes the minimum Euclidean distance be-
tween ¢; and observations in C. Max-min clustering is
preferable to a density-based clustering algorithm (e.g.
k-means) which would tend to select many examples
from the dense group of non-seizure data points. Once
a seizure example is found, MazMin continues choos-
ing the closest temporal neighbors to this epoch similar
to OneClassSVM until 6 seizure examples are labeled.
Non-seizure examples can be chosen analogously.

Finally, we also considered a third strategy in which
we evaluated the patient’s EEG using PatNonspec.
We queried those sections of the EEG believed to be
seizure or non-seizure activity with highest confidence
and sampled neighboring epochs in a manner similar
to OneClassSVM and MaxMin.

2.3.2 Selection

Once an initial SVM has been trained using the ini-
tialization set, the active learning process iteratively
identifies new data to be queried and added to this
model. To reduce computation, we adopted a process
where active learning added epochs in batches of 100
for retraining. We explored three different heuristics
to select new query points.

The distance heuristic (Dist) [20] queries and adds the
epochs that are nearest to the SVM’s current decision
boundary to the training set at each iteration. Intu-
itively, this corresponds to picking examples that the
learner is least confident about. More formally, for a
given example x; ¢ I. where I, corresponds to the set
of examples queried prior to the selection of the 7-th
batch, epochs are chosen to minimize:

Z ytatK(xtaxi)

€1,

where K (z,x;) corresponds to the Gaussian kernel
and «y denotes the Lagrangian multiplier for x;.

The distance heuristic may fail to consider the overlap
in information content among the instances closest to
the decision boundary. We therefore also considered
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the diversity measure (Div), which can be used to re-
duce overlap within a batch of examples [21]. This
heuristic aims to ensure that the induced hyperplanes
of selected epochs are diverse in terms of their angles
to each other in the version space. Using the relation-
ship between the hyperplanes h; and h; corresponding
to examples z; and x;:

|K (24, 2)
\/K(xlﬁxi)K(m]ﬁ xj)

epochs are chosen to minimize:

| cos(Z(hi, hj))| =

K]
;€S K(l’i,l'i)K(l'j,{Ej)

where S denotes epochs chosen earlier within the cur-
rent batch.

Finally, we also explored a weighted linear combina-
tion of the distance and diversity measures to select
epochs for labeling where epochs are chosen to itera-
tively minimize:

K (i, ;)|

Al Z yro K (e, ;)| +(1—A) max

€l

The individual influence of each requirement is ad-
justed by the parameter A. The third and final heuris-
tic we considered (Comb) weights Dist and Div equally
(i.e. A =0.5).

2.3.3 Termination

We investigated different termination criteria focused
on how the SVM support vectors (i.e. the closest ex-
amples to the hyperplane) change with the addition
of each batch of active learning data. The support
vectors are the only examples that define the decision
boundary. Consequently, when the set of support vec-
tors does not significantly change, we can infer that
the decision boundary will remain stable.

Under the assumption that the training data is sepa-
rable in the feature space, only those unlabeled exam-
ples within the margin can become support vectors,
and therefore alter the boundary. Based on this intu-
ition, we explored the criterion (Margin) proposed in
[20] that terminates the active learning process when
the closest example to the hyperplane in the most re-
cently added batch of data is no closer than any of
the previous support vectors. We also investigated a
different criterion (SVChange) that directly considers
whether the support vectors change across iterations.
SVChange terminates the active learning process when
the sets of support vectors for each class remain con-
stant for consecutive iterations.
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2.4 Experiments

We evaluated our work on the CHB-MIT Scalp EEG
Database [22]. This dataset consists of continuous
EEG data from 23 pediatric subjects at Children’s
Hospital Boston. There were 169 seizure events in the
data adjudicated by clinical experts. The onset and
end of each seizure are annotated in the dataset. The
recordings were generally divided into one hour long
files. All signals were sampled at 256 Hz with 16 bits
of precision.

For each patient, we used all of the seizure data and a
total of 10 hours of EEG data randomly chosen from
files without seizures to reduce the computational run-
time of our experiments. The decision to use all of
the seizure data and a random sample of the non-
seizure data was motivated by the preponderance of
non-seizure segments. In this case, the use of 10 hours
of randomly chosen non-seizure EEG data for each pa-
tient provided a way to adequately characterize the
patient’s non-seizure EEG signal while reducing the
size of the dataset needed to train the SVM learner.
This reduction made the runtime of the experiments
needed to assess the different active learning method-
ologies and to run experiments multiple times using
leave-one-out cross-validation to assess performance in
a statistically robust manner feasible.

We segmented the non-seizure data and all seizure
data into 2-second epochs (with 1-second overlap) to
form a pool of examples for each patient. On average,
the pool of training examples for a patient consisted
of 36,448 non-seizure epochs and 454 seizure epochs.

The following metrics were used to measure the per-
formance of the detectors we built: sensitivity (per-
cent of seizure segments correctly labeled); specificity
(percent of non-seizure segments correctly labeled); la-
tency (delay in seconds between a seizure’s electro-
graphic onset and the detector’s declaration of onset);
false positives per hour (number of false seizure dec-
larations per hour), and seizures detected (fraction of
seizures correctly declared as seizures).

To test for sensitivity, latency and missed seizures we
used a leave-one-out cross-validation test scheme for
each seizure event. An SVM boundary was learned on
a pool of data consisting of all non-seizure epochs and
all but one of the seizure events. The SVM was then
tested on the held out seizure. To test for specificity
and false positives we used a 10-fold cross-validation
scheme. The non-seizure epochs were divided into
10 equally sized groups and an SVM boundary was
trained on each distinct set of 9 groups and all seizure
epochs. Each boundary was then tested on the held-
out group. The decision to use leave-one-out cross-
validation for seizure events was due to the relatively
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sparse nature and short-lived nature of these events.
Conversely, the decision to divide the non-seizure data
into 10 equally sized group and to use leave-one-out
cross validation at the level of these groups followed
from the large volume of non-seizure data available per
patient and the variable length of inter-ictal regions
(i.e., periods of non-seizure data between seizures).

We used the LIBSVM [23] software to implement both
the one-class SVM to initialize the learners and the bi-
nary SVM for classification of the feature vectors (i.e.,
for the patient-specific detectors with and without ac-
tive learning). For the one-class SVM, we used a linear
kernel with v = 0.001. For the binary SVM, we used a
Gaussian kernel with v = 0.01 and equal class-specific
penalties. For the non-patient-specific detector, we de-
clared a seizure whenever a 15 second segment was
classified as being a seizure with a 95% confidence
level. This configuration was chosen to be consistent
with [22] where this choice of parameter produced a
low false positive rate.

3 Results

3.1 PatSpec vs. PatNonspec

PatNonspec detected 68% of the seizures with an av-
erage latency of 16.739 seconds and 2.250 false posi-
tives/hour. We found that PatNonspec detected few
seizures particularly for patients with atypical seizure
morphologies (e.g. patients 6, 12 and 21 in the CHB-
MIT database) and generated numerous false alarms
for patients with atypical non-seizure waveforms (e.g.
patients 9 and 13). PatSpec, however, detected 97%
of the seizures with a latency of 7.878 seconds and
0.235 false positives/hour. Decreasing the confidence
or the duration threshold for PatNonspec improved
latency and the number of detected seizures, but also
increased the false positive rate (which was already
significantly higher than PatSpec). These results are
in agreement with previous work showing that patient
specificity improves detection performance [1].

3.2 Active Learning Detector

3.2.1 Initialization
For each of the initialization  procedures
(OneClassSVM, MazMin, PatNonspec), we mea-

sured the maximum number of epochs queried for
any of the cross-validation folds before enough data
of both seizure and non-seizure classes was available
for training (an additional 20 = 8 points were queried
corresponding to the first 4 seizure and non-seizure
epochs). Table 1 presents the number of discarded
points for each procedure. MazMin and PatNonspec
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discarded the fewest examples on average. However,
PatNonspec failed to find any seizures for one of the
cross-validation runs for patient 21. Based on this,
and the generally comparable average performance
between MaxMin and PatNonspec, we report on the
use of MaxMin as the initialization procedure for our
active learning detector in the following experiments.

Table 1: The maximum number of examples discarded
over all runs for each patient until § = 4 seizure and
non-seizure examples were queried for the initialization
set (*PatNonspec failed to find any seizures on the
training data of one of the cross-validation runs for
patient 21).

Patient OneClassSVM  MaxMin PatNonspec
1 110 1 0
2 6 19 1
3 0 0 0
4 1 3 2
5 0 019
6 265 53 13
7 3 0 21
8 11 0 3
9 0 1 40
10 4 0 8
11 48 13 15
12 29 18 23
13 159 22 68
14 3 0 2
15 119 00
16 416 20 15
17 291 46 8
18 20 13 10
19 1 0 0
20 103 19 8
21 322 71 8*
22 7 13 10
23 5 0 2

Avg 83.6 13.6 12.0

3.2.2 Heuristic Selection

We evaluated three detectors initialized with MaxzMin:
Activepazmin—piv (an active learning detector that
uses the diversity heuristic, i.e. A = 0),
ACtZ-'UeMaxMinfDist <)\ = 1)7 and ACtZ"UeMaa:JWinfComb
(A = 0.5). We also created a control detector
(Random praznrin) that randomly chooses examples to
form its batches.

All active learning methods approached the specificity
of PatSpec rapidly, generally needing only one batch to
achieve specificity comparable to PatSpec. This result
can be explained in terms of the large number of non-
seizure epochs available for training due to the scarcity
of seizure activity (which makes it likely that even
among the first batch of 100 epochs chosen by active
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learning there are sufficient examples of non-seizure
activity to characterize such behavior). The different
approaches varied in sensitivity. Table 2 presents the
number of labeled instances needed until the aggregate
sensitivities for the four detectors were consistently
within 95% of the sensitivity achieved by PatSpec. We
first note that the number of labeled examples needed
by the detectors varied widely across patients. This
was likely due to the different patient-specific distri-
butions of seizure and non-seizure activity in the fea-
ture space for the patients. For nearly all the patients
studied, the active learning detectors converged sub-
stantially faster than Random pjqeprin to the accuracy
of PatSpec. Activeprazniin—coms performed the best,
followed closely by Activensaznrin—pist; both detec-
tors generally required two orders of magnitude less
data per patient to converge to the results obtained
when the entire pool of data was labeled and used for
training (i.e., the PatSpec results). Activensammin—Dpiv
performed the worst out of the active learners, requir-
ing an average of 22 more batches of examples than
ActivensazMin—Comb- Figure 3 compares the num-
ber of seizure examples chosen by the detectors ag-
gregated over all cross-validation runs and patients
during the learning phase. Activepqznrin—comp and
Activenrazmin—pDist €xhausted many more seizures
near the onset of the process than Activen;qeprin—Div,
which was most likely the reason for their success.
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Figure 1: Comparison of the number of seizure
epochs chosen over all cross-validation runs for all
patients by ACtiveMamMinfCJomb» ACtiUeMam]\/[infDiv
and ActiveyazMin—Dist-  ActivenraaMin—Comb and
Activensqazmin—Dist both query most seizures early on,
which likely explains their success.
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3.2.3 Stopping Criterion

Table 3 presents the maximum stopping point (i.e., the
greatest number of samples labeled by any of the cross-
validation runs) for each patient when using Margin
and SVChange. For 20 of the 23 patients, Margin ter-
minated the process earlier than SVChange. However,
Margin terminated the process significantly later than
SVChange for patient 12, causing its overall average
to be greater.

Table 3: The maximum number (percent) of examples
queried by the active learner for any cross-validation
run of each patient prior to termination.

Patient  Margin  SVChange
1 700 (2) 1400 (4)
2 500 (1) 600 (2)
3 800 (2) 900 (2)
4 800 (2) 1000 (3)
5 900 (2) 1000 (3)
6 800 (2) 900 (2)
7 500 (1) 600 (2)
8 1100 (3) 1600 (4)
9 400 (1) 600 (2)
10 600 (2) 700 (2)
11 600 (2) 1000 (3)
12 13700 (37) 8000 (22)
13 2900 (8) 2200 (6)
14 600 (2) 900 (2)
15 3400 (9) 2600 (7)
16 800 (2) 1200 (3)
17 700 (2) 1800 (5)
18 800 (2) 1200 (3)
19 500 (1) 600 (2)
20 600 (2) 1800 (5)
21 1000 (3) 1300 (4)
22 500 (1) 600 (2)
23 600 (2) 900 (2)

Avg. 1470 1452

3.2.4 Overall Performance

Table 4 compares the performance of the final ac-
tive learning detectors to PatSpec(averaged across
all patients). Also presented is the maximum num-
ber of labeled examples for any cross-validation
run summed across all patients.  The accuracy
of the detectors were nearly identical. In fact,
Activen gz Min—Comb—SV Change achieved better sensi-
tivity, specificity, latency and false positives per hour
than PatSpec, while only querying 4% the total num-
ber of examples queried by PatSpec.
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Table 2: Number of additional examples needed beyond the initialization set, to achieve 95% of the sensitivity
achieved by PatSpec. The maximum number of queries for all cross-validation runs of PatSpec are also shown.

Patient PatSpec  Randomarazmin  ActivenraeMin—Comb  ActiverazMin—Div  ActiVerazMin—Dist
1 36399 4700 (13) 200 (1 500 (1) 200 (1)
2 36151 11200 (31) 200 600 (2) 200 (1)
3 36339 2200 (6) 300 600 (2) 300 (1)
4 36326 5200 (14) 300 1600 (4) 300 (1)
5 36458 8700 (24) 300 200 (1) 300 (1)
6 36132 27400 (76) 500 9000 (25) 500 (1)
7 36237 3500 (10) 300 400 (1) 300 (1)
8 36781 11000 (30) 300 1400 (4) 400 (1)
9 36211 0 (0) 0 ( 0 (0) 0 (0)
10 36406 3300 (9) 200 400 (1) 200 (1)
11 36772 33300 (91) 200 2100 (6) 200 (1)
12 36950 12700 (34) 1000 (3) 5100 (14) 1000 (3)
13 36497 16200 (44) 500 3100 (8) 600 (2)
14 36138 20200 (56) 200 200 (1) 300 (1)
15 37932 5500 (14) 300 500 (1) 300 (1)
16 36059 32500 (90) 200 2000 (6) 200 (1)
17 36193 16600 (46) 800 6500 (18) 800 (2)
18 36272 16100 (44) 400 5400 (15) 400 (1)
19 36147 16700 (46) 200 400 (1) 200 (1)
20 36258 31700 (87) 1400 (4) 3100 (9) 1600 (4)
21 36173 33600 (93) 500 14100 (39) 600 (2)
22 36134 2500 (7) 200 600 (2) 200 (1)
23 36398 4300 (12) 100 700 (2) 200 (1)

Avg. 36407 13874 374 2544 404

Table 4: Comparison of cost and performance over all patients between PatSpec and the best-performing active
learning detectors. The performances are very similar, but the active learning detectors with the stopping criteria

use 96% fewer labeled examples than the original.

Detector Queries Sens. Spec. Latency(s) False Pos. Seizures Detected
(per hr)

PatSpec 837363 0.790 0.996  7.878 0.235 164/169

Activenraz Min—Comb— Margin 33800 0.792  0.999  7.933 0.231 164/169

Activeraz Min—Comb—SVChange 33400 0.794  0.999  7.640 0.231 164/169

3.3 Discussion

Consistent with earlier results reported in the liter-
ature, our data showed that an SVM-based patient-
specific seizure onset detection approach is superior
to commercial solutions for non-patient-specific seizure
detection. However, a detector like PatNonspec may
still be preferable in clinical settings because it re-
quires no additional annotation for training on new
patients. To address the costs associated with devel-
oping patient-specific detectors, we explored an ac-
tive learning framework. In particular, we investi-
gated solutions to the three major stages associated
with active learning: initialization, batch-selection and
termination. We presented and evaluated alterna-
tives for each stage, and found that the best results
were obtained using max-min clustering for identifica-
tion of the initialization set, a combined distance-and
diversity-based measure to determine the points to be
queried, and a comparison of support vector sets to
guide termination.
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Among the different initialization methods we eval-
uated, the one-class SVM approach proved the least
effective. We hypothesize that this is because the one-
class SVM approach relies exclusively on the seizure
epochs being the most distinct anomalies but does not
attempt to exploit diversity between these anomalies.
In cases where the assumption about seizures being
the most dissimilar epochs in the data does not hold
(e.g., due to periods of highly abnormal non-seizure
activity or due to poor separation between seizure and
non-seizure epochs), OneClassSVM may query many
points. MazMin was comparatively more effective be-
cause of its selection metric; it tended to screen a
fairly diverse group of anomalous examples that were
distributed in the feature space. We also observed
that PatNonSpec performed quite well for initializa-
tion, suggesting that generic classifiers may often em-
body useful information that can be used to seed the
development of personalized algorithms. This may be
particularly useful in situations where the presence of
large amount of noise or other artifact makes it diffi-
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cult to identify an initialization set through anomaly
detection-based approaches.

The core of our active learning framework was the
batch-selection stage, in which the major reduction
in the amount of training data needed to develop
patient-specific detectors took place. An interesting
result was that even a random selection of epochs con-
verged to 95% of the patient-specific sensitivity rel-
atively quickly, labeling roughly a third of available
examples on average. We believe that this is because
much of the non-seizure activity in a patient’s EEG
data is redundant and can be removed from train-
ing. More careful batch-selection heuristics can fur-
ther improve cost-reduction. In particular, our ex-
periments found that different heuristic selection ap-
proaches based on distance and diversity measures re-
duced the amount of expert annotation by orders of
magnitude relative to random querying of data. We
found that using the distance metric alone was quite
effective, and that combining distance and diversity to
form the batches provided the best results. The diver-
sity metric on its own was not as useful. We believe
this is because this measure spends most of its time
screening normal EEG epochs (i.e., due to the relative
paucity of seizure activity), and in particular, chooses
many examples that are distant from and therefore in-
consequential to the decision boundary. We note that
our heuristics were generally successful because of their
abilities to select informative examples very early on
in the learning process. This is encouraging given the
scarcity of seizure instances in the dataset. We believe
that active learning therefore has potential in other
clinical applications where the phenomena of interest
occur infrequently.

In order to fully benefit from batch selection, it is also
necessary to determine an effective stopping criterion
for the process. An interesting result from our ex-
periments was that our active learning detector ter-
minated with /emphSVChange actually achieved bet-
ter overall performance than /emphPatSpec. This
implies that using a small, informative subset of the
data rather than all the data not only saves costs (in
terms of human labeling and runtime for training) but
also simultaneously improves the generalization per-
formance of the learned model. We note that while
we mainly focused on stopping criteria for SVMs, sim-
ilar approaches can also be developed for other clas-
sifiers. The work presented in [24], for example, pro-
poses confidence-based stopping criteria that can be
applied to different probabilistic and non-probabilistic
classifiers.

Our study presents active learning in the context of
SVM classification. This decision is motivated by our
choice of the SVM-based patient-specific seizure onset
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detector proposed by Shoeb et al. [14, 22]. We be-
lieve, however, that the ideas presented in this study
are broadly applicable and can be easily generalied to
other learning algorithms. For example, our approach
of developing an initialization set using anomaly de-
tection (based on the insight that abnormal activity
often occurs infrequently over long periods), the focus
on choosing data to query based on its distance from
the decision hyperplane or the diversity of the query
set (based on the insight that data is informative for
querying if the classifier is either uncertain about it or
has not previously queried anything similar to it), and
the termination of the active learning process when the
model is relatively unchanged across iterations (based
on the insight that this likely implies diminishing re-
turns of the expert labeling process), are all general
principles that are relevant to multiple classification
algorithms.

Our work does have limitations. While our results on
the CHB-MIT scalp EEG database are promising, the
ideas presented here need to be evaluated on larger
patient cohorts to more completely characterize per-
formance across different patients. We also believe
that further evaluation across a wider range of datasets
and clinical applications is necessary to support our
hypothesis that active learning is broadly useful in
the development of personalized detectors. Finally,
we only experimented with a small subset of possible
heuristics for active learning. It is likely that better
methods exist that can reduce the costs of training
even further. In future work we hope to investigate
these approaches, and also attempt to apply active
learning to other clinical scenarios.

3.4 Conclusion

This paper describes an active learning framework that
can help facilitate cost-effective personalized medical
systems. We positioned this work in the context of
a concrete, high-impact application: patient-specific
seizure onset detection in continuous EEG signals.
When evaluated on scalp data from 23 pediatric pa-
tients, our method was able to reduce the amount of
data needed by the best-known existing approach for
patient-specific seizure detection by over 96%, while
achieving slightly better performance.

References

[1] Shoeb A, Edwards H, Connolly J, et al. Patient-
specific seizure onset detection. Epilepsy and Be-
havior, 5(4):483-498, 2004.

[2] Zhang Y and Szolovits P. Patient-specific learn-
ing in real time for adaptive monitoring in crit-



Guha Balakrishnan, Zeeshan Syed

[9]

[15]

[16]

ical care. Journal of Biomedical Informatics,

41(3):452-460, 2008.

Angluin D. Queries and concept learning. Ma-
chine learning, 2(4):319-342, 2008.

Baum E. Neural net algorithms that learn
in polynomial time from examples and queries.
IEEE Transactions on Neural Networks, 2(1):5—
19, 1991.

Tong S and Chang E. Support vector machine
active learning for image retrieval. Proceedings of
the ninth ACM international conference on Mul-
timedia, pages 107-118, 2001.

Tong S and Koller D. Support vector machine ac-
tive learning with applications to text classifica-
tion. The Journal of Machine Learning Research,
2:45-66, 2002.

Federov V. Theory of optimal experiments. Aca-
demic Press Inc, 1972.

Liu Y. Active learning with support vector ma-
chine applied to gene expression data for can-
cer classification. J. Chem. Inf. Comput. Sci,
44(6):1936-1941, 2004.

Warmuth M, Liao J, Ratsch G, et al. Support
vector machines for active learning in the drug

discovery process. Journal of Chemical Informa-
tion Sciences, 43(2):667-673, 2003.

David A and Lerner B. Support vector
machine-based image classification for genetic
syndrome diagnosis. Pattern Recognition Letters,
26(8):1029-1038, 2005.

Ho S, Berkovic S, Newton M, et al. Parietal lobe
epilepsy: clinical features and seizure localization
by ictal spect. Neurology, 44(12):2277-2284, 1994.

Loddenkemper T, Pan A, Neme S, et al. Deep
brain stimulation in epilepsy. Journal of Clinical
Neurophysiology, 18(6):514-532, 2001.

Schachter S and Schmidt D. Vagus Nerve Stimu-
lation. Martin Dunitz Ltd, 2001.

Shoeb A, Bourgeois B, Treves ST, et al. Impact of
patient-specificity on seizure onset detection per-
formance. Conf Proc IEEE Eng Med Biol Soc,
pages 4110-4114, 2007.

Daubechies I. Ten lectures on wavelets. Society
for Industrial Mathematics, 1992.

Vapnik V. The Naure of Statistical Learning The-
ory. Springer-Verlag, 1995.

81

[17]

[20]

[21]

Wilson S, Scheuer M, Emerson R, et al. Seizure
detection: Evaluation of the reveal algorithm.
Clinical Neurophysiology, 115:2280-2291, 2004.

Akay M. Time Frequency and Wavelets in
Biomedical Signal Processing. IEEE Press, 1998.

Scholkopf B, Platt J, Shawe-Taylor J, et al. Es-
timating the support of a high-dimensional dis-
tribution. Technical Report, Microsoft Research,
MSR-TR-99-87, 1999.

Cohn D Schohn G. Less is more: Active learning
with support vector machines. Proceedings of the
17th International Conference on Machine Learn-
1ng, pages 839-846, 2000.

Brinker K. Incorporating diversity in active learn-
ing with support vector machines. Proceedings
of the 20th International Conference on Machine
Learning, pages 59-66, 2003.

Shoeb A. Application of machine learning to
epileptic seizure onset detection and treatment.
PhD Thesis, Massachusetts Institute of Technol-
ogy, 2009.

Chang CC and Lin CJ. Libsvm: a library for
support vector machines. Software available at
hitp:/ /www.csie.ntu.edu.tw/ cjlin/libsvm, 2001.

Zhu J, Want H, Hovy E, et al. Confidence-based
stopping criteria for active learning for data an-
notation. ACM Transactions on Speech and Lan-
guage Processing, 6(3).



