Supplementary Material for Adaptive Metropolis with Online Relabeling

Notations and assumptions

By convention, vectors $x \in \mathbb{R}^{d}$ are column vectors. x^{T} is the transpose vector of x. We fix a norm $\|\cdot\|$ on vectors and will also denote by $\|\cdot\|$ the derived norm for matrices.
Let π be a probability density with respect to (w.r.t.) the Lebesgue measure on \mathcal{X} where $\mathcal{X} \subseteq \mathbb{R}^{d}$ is measurable (\mathbb{R}^{d} is endowed with its Borel σ-field). It is assumed that
(a) π in invariant under the action of \mathcal{P}, a finite group of $d \times d$ block permutation matrices.
(b) π has finite second moment.

Let \mathcal{C}_{d}^{+}be the set of the real $d \times d$ (symmetric) positive definite matrices. For any $\theta=(\mu, \Sigma) \in \mathbb{R}^{d} \times \mathcal{C}_{d}^{+}$and $x \in \mathcal{X}$, define the quadratic loss

$$
\begin{equation*}
L_{\theta}(x)=(x-\mu)^{T} \Sigma^{-1}(x-\mu) \tag{1}
\end{equation*}
$$

and the set

$$
V_{\theta}=\left\{x \in \mathcal{X}: L_{\theta}(x)=\min _{P \in \mathcal{P}} L_{\theta}(P x)\right\}
$$

Observe that for any $\theta \in \mathbb{R}^{d} \times \mathcal{C}_{d}^{+}, V_{\theta}$ is measurable.
For any $\theta \in \mathbb{R}^{d} \times \mathcal{C}_{d}^{+}$, let π_{θ} be the probability density on \mathbb{R}^{d}, defined by

$$
\pi_{\theta}(x)=Z_{\theta}^{-1} \mathbb{1}_{V_{\theta}}(x) \pi(x), \quad \text { where } \quad Z_{\theta}=\int_{V_{\theta}} \pi(x) d x
$$

Under the assumptions on π, π_{θ} has an expectation

$$
\mu_{\pi_{\theta}}=\int x \pi_{\theta}(x) d x
$$

and a covariance matrix

$$
\Sigma_{\pi_{\theta}}=\int\left(x-\mu_{\pi_{\theta}}\right)\left(x-\mu_{\pi_{\theta}}\right)^{T} \pi_{\theta}(x) d x
$$

Define the function $w: \mathbb{R}^{d} \times \mathcal{C}_{d}^{+} \rightarrow \mathbb{R}$ by

$$
w(\theta)=-\int \log \mathcal{N}(x \mid \theta) \pi_{\theta}(x) d x
$$

Finally, denote by \mathcal{M}_{d} the set of $d \times d$ real matrices. Define the function $h: \mathbb{R}^{d} \times \mathcal{C}_{d}^{+} \rightarrow \mathbb{R}^{d} \times \mathcal{M}_{d}$ by

$$
\begin{equation*}
h(\theta)=\left(\left(\mu_{\pi_{\theta}}-\mu\right), \Sigma_{\pi_{\theta}}-\Sigma+\left(\mu_{\pi_{\theta}}-\mu\right)\left(\mu_{\pi_{\theta}}-\mu\right)^{T}\right) . \tag{2}
\end{equation*}
$$

The set $\mathbb{R}^{d} \times \mathcal{M}_{d}$ is endowed with the scalar product given by

$$
x=\left(\mu_{1}, M_{1}\right), y=\left(\mu_{2}, M_{2}\right) \in \mathbb{R}^{d} \times \mathcal{M}_{d}, \quad\langle x, y\rangle=\mu_{1}^{T} \mu_{2}+\operatorname{Trace}\left(M_{1}^{T} M_{2}\right) .
$$

1 Main result

We first prove that w is positive on the set Θ defined by

$$
\begin{equation*}
\Theta=\left\{\theta=(\mu, \Sigma) \in \mathbb{R}^{d} \times \mathcal{C}_{d}^{+}: \forall P \in \mathcal{P}, P^{T} \Sigma P \neq \Sigma \text { or } \mu \neq P \mu\right\} \tag{3}
\end{equation*}
$$

and for any $\theta \in \Theta, w(\theta)$ is, up to a constant, the Kullback-Leibler divergence between π_{θ} and the Gaussian distribution $\mathcal{N}(\cdot \mid \theta)$.
Proposition 1. For any $\theta \in \Theta$,

$$
w(\theta)=\int \log \frac{\pi_{\theta}(x)}{\mathcal{N}(x \mid \theta)} \pi_{\theta}(x) d x-\left(\log |\mathcal{P}|+\int \log \pi(x) \pi(x) d x\right)
$$

where $|\mathcal{P}|$ denotes the cardinal of \mathcal{P}.
Proposition 2 shows that for any $\theta \in \Theta, w$ is similar to a distortion measure in vector quantization [1].
Proposition 2. For any $\theta \in \Theta$,

$$
w(\theta)=\frac{1}{2} \ln \operatorname{det}(\Sigma)+\frac{1}{2} \int \min _{P \in \mathcal{P}} L_{\left(P \mu, P \Sigma P^{T}\right)}(x) \pi(x) d x
$$

Finally, Proposition 3 and Corollary 1 show that on Θ, w is a natural Lyapunov function for the mean field h given by (2).
Proposition 3. The function w is continuously differentiable on Θ and for any $\theta \in \Theta$,

$$
\begin{aligned}
\nabla_{\mu} w(\theta) & =-\Sigma^{-1}\left(\mu_{\pi_{\theta}}-\mu\right) \\
\nabla_{\Sigma} w(\theta) & =-\frac{1}{2} \Sigma^{-1}\left(\Sigma_{\pi_{\theta}}-\Sigma+\left(\mu_{\pi_{\theta}}-\mu\right)\left(\mu_{\pi_{\theta}}-\mu\right)^{T}\right) \Sigma^{-1}
\end{aligned}
$$

Corollary 1. For any $\theta \in \Theta$,

$$
\langle\nabla w(\theta), h(\theta)\rangle \leq 0
$$

and $\langle\nabla w(\theta), h(\theta)\rangle=0$ iff $\mu=\mu_{\pi_{\theta}}$ and $\Sigma=\Sigma_{\pi_{\theta}}$.
Corollary 1 is equivalent to Proposition 2 in the main paper.

Proofs

1.1 Proof of Proposition 1

We start by proving a lemma. Let

$$
\begin{equation*}
P V_{\theta}=\left\{P x: x \in V_{\theta}\right\} \tag{4}
\end{equation*}
$$

Lemma 1. For any $\theta \in \Theta$, the sets $\left\{P V_{\theta}, P \in \mathcal{P}\right\}$ cover \mathcal{X} and for any $P, Q \in \mathcal{P}, P \neq Q$, the Lebesgue measure of $P V_{\theta} \cap Q V_{\theta}$ is zero.

Therefore, $Z_{\theta}=|\mathcal{P}|^{-1}$ for any $\theta \in \Theta$.
Proof. Let $\theta \in \Theta$. We first prove that for any $P, Q \in \mathcal{P}$ and $P \neq Q$, the Lebesgue measure of $P V_{\theta} \cap Q V_{\theta}$ is zero. Observe that $P V_{\theta} \cap Q V_{\theta} \subseteq\left\{x: L_{\theta}\left(P^{T} x\right)=L_{\theta}\left(Q^{T} x\right)\right\}$ and $L_{\theta}\left(P^{T} x\right)=L_{\theta}\left(Q^{T} x\right)$ iff

$$
(x-P \mu)^{T} P \Sigma^{-1} P^{T}(x-P \mu)=(x-Q \mu)^{T} Q \Sigma^{-1} Q^{T}(x-Q \mu)
$$

or, equivalently,

$$
x^{T}\left(P \Sigma^{-1} P^{T}-Q \Sigma^{-1} Q^{T}\right) x-2 \mu^{T}\left(\Sigma^{-1} P^{T}-\Sigma^{-1} Q^{T}\right) x=0
$$

Then $\left\{x: L_{\theta}\left(P^{T} x\right)=L_{\theta}\left(Q^{T} x\right)\right\}$ is either a quadratic or a linear surface, and thus of Lebesgue measure zero, except if both $\Sigma^{-1}=R^{T} \Sigma^{-1} R$ and $\mu=R \mu$ with $R=Q^{T} P$. Since \mathcal{P} is a group, $R \in \mathcal{P}$ and the definition of Θ now guarantees that these two conditions never simultaneously hold when $\theta \in \Theta$.

We now prove that $\mathcal{X} \subseteq \bigcup_{P \in \mathcal{P}} P V_{\theta}$. For any $x \in \mathcal{X}$, there exists $P \in \mathcal{P}$ such that $L_{\theta}(P x)=\min _{Q \in \mathcal{P}} L_{\theta}(Q x)$. Then, $x \in P^{T} V_{\theta}$ and this concludes the proof since \mathcal{P} is a group.
Let $P \in \mathcal{P}$. Observe that since π is invariant under the action of \mathcal{P},

$$
\int_{V_{\theta}} \pi(y) d y=\int_{V_{\theta}} \pi(P y) d y=\int_{P V_{\theta}} \pi(x) d x
$$

Then, since $\operatorname{Leb}\left(P V_{\theta} \cap Q V_{\theta}\right)=0$ for any $P \neq Q$ and $\mathcal{X}=\bigcup_{P \in \mathcal{P}} P V_{\theta}$,

$$
Z_{\theta}=\int_{V_{\theta}} \pi(y) d y=\frac{1}{|\mathcal{P}|} \sum_{P \in \mathcal{P}} \int_{P V_{\theta}} \pi(x) d x=\frac{1}{|\mathcal{P}|} \int \pi(x) d x=\frac{1}{|\mathcal{P}|}
$$

Proof. (of Proposition 1) Since $\pi(P x)=\pi(x)$ for any $x \in \mathcal{X}$ and $P \in \mathcal{P}$,

$$
\int_{V_{\theta}} \log \pi(y) \pi(y) d y=\int_{V_{\theta}} \log \pi(P y) \pi(P y) d y=\int_{P V_{\theta}} \log \pi(x) \pi(x) d x
$$

Then, by Lemma 1 , for any $\theta \in \Theta$,

$$
\int_{V_{\theta}} \log \pi(y) \pi(y) d y=\frac{1}{|\mathcal{P}|} \sum_{P \in \mathcal{P}} \int_{P V_{\theta}} \log \pi(x) \pi(x) d x=\frac{1}{|\mathcal{P}|} \int \log \pi(x) \pi(x) d x
$$

Since $Z_{\theta}=1 /|\mathcal{P}|$ by Lemma 1, this implies that

$$
-\int \log \pi_{\theta}(x) \pi_{\theta}(x) d x=-\log |\mathcal{P}|-|\mathcal{P}| \int_{V_{\theta}} \log \pi(x) \pi(x) d x=-\log |\mathcal{P}|-\int \log \pi(x) \pi(x) d x
$$

thus showing that for any $\theta \in \Theta$,

$$
\int \log \frac{\pi_{\theta}(x)}{\pi(x)} \pi_{\theta}(x) d x=\log |\mathcal{P}|
$$

and

$$
\int \log \frac{\pi_{\theta}(x)}{\mathcal{N}(x \mid \theta)} \pi_{\theta}(x) d x=w(\theta)+\log |\mathcal{P}|+\int \log \pi(x) \pi(x) d x
$$

1.2 Proof of Proposition 2 (Proposition 3 in the main paper)

Let $\theta \in \Theta$. By definition of w and by Lemma 1,

$$
w(\theta)=\frac{1}{2} \ln \operatorname{det}(\Sigma)+\frac{|\mathcal{P}|}{2} \int_{V_{\theta}} L_{\theta}(x) \pi(x) d x
$$

where V_{θ} and L_{θ} are given resp. by (4) and (1) and $|\mathcal{P}|$ denotes the cardinal of \mathcal{P}. We have

$$
|\mathcal{P}| \int_{V_{\theta}} L_{\theta}(x) \pi(x) d x=\sum_{P \in \mathcal{P}} \int_{V_{\theta}} L_{\theta}(x) \pi(x) d x=\sum_{P \in \mathcal{P}} \int_{P V_{\theta}} L_{\theta}\left(P^{T} x\right) \pi(x) d x
$$

where we use that π is invariant under the action of \mathcal{P}. In addition, by definition,

$$
P V_{\theta}=\left\{x \in \mathcal{X}: L_{\theta}\left(P^{T} x\right)=\min _{Q \in \mathcal{P}} L_{\theta}(Q x)\right\}
$$

Then by using Lemma 1,

$$
|\mathcal{P}| \int_{V_{\theta}} L_{\theta}(x) \pi(x) d x=\sum_{P \in \mathcal{P}} \int_{P V_{\theta}} \min _{Q \in \mathcal{P}} L_{\theta}(Q x) \pi(x) d x=\int \min _{Q \in \mathcal{P}} L_{\theta}(Q x) \pi(x) d x
$$

Finally, by definition of $L_{\theta}, L_{\theta}(Q x)=L_{\left(Q^{T} \mu, Q^{T} \Sigma Q\right)}(x)$, and this concludes the proof.

1.3 Proof of Proposition 3

We start by two lemmas. Lemma 2 is established for generic loss functions L_{θ} and a generic open set Θ. Its proof is adapted from [1, Lemma 4.10, page 44]. We then show in Lemma 3 that this result applies to the loss function given by (1) and the set Θ given by (3).
Lemma 2. Let Θ be an open subset of \mathbb{R}^{ℓ}, r be a positive integer and $\mathcal{O} \subseteq \Theta^{r}$ be an open set. Let $\mathcal{X} \subseteq \mathbb{R}^{d}$ be a measurable set and π be a probability density w.r.t. the Lebesgue measure on \mathcal{X}. Let $\left\{L_{\theta}, \theta \in \Theta\right\}$ be a family of loss functions $L_{\theta}: \mathcal{X} \rightarrow \mathbb{R}$, satisfying

1. For π-almost every $x, \theta \mapsto L_{\theta}(x)$ is C^{1} on Θ and for any $\theta \in \Theta$, there exists $h_{0}>0$ such that

$$
\int \sup _{\|h\| \leq h_{0}} \frac{1}{\|h\|}\left|h^{T} \nabla_{\theta} L_{\theta}(x)\right| \pi(x) d x<\infty
$$

2. For any $\theta \in \Theta$, there exists $h_{0}>0$ such that

$$
\int \sup _{\|h\| \leq h_{0}} \frac{\left|L_{\theta+h}(x)-L_{\theta}(x)\right|}{\|h\|} \pi(x) d x<\infty
$$

3. For any $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{r}\right) \in \mathcal{O}$, the sets

$$
V_{\theta_{i}}=\left\{x \in \mathcal{X}: L_{\theta_{i}}(x) \leq \min _{j} L_{\theta_{j}}(x)\right\}
$$

are measurable, cover \mathcal{X} and for any $i \neq j$, the Lebesgue measure of $V_{\theta_{i}} \cap V_{\theta_{j}}$ is zero.

For $\boldsymbol{\theta}=\left(\theta_{1}, \cdots, \theta_{r}\right) \in \mathcal{O}$ define the function $\psi: \Theta^{r} \rightarrow \mathbb{R}$

$$
\psi(\boldsymbol{\theta})=\int \min _{1 \leq i \leq r} L_{\theta_{i}}(x) \pi(x) d x
$$

Then ψ is differentiable on \mathcal{O} and for $1 \leq i \leq r$,

$$
\nabla_{\theta_{i}} \psi(\boldsymbol{\theta})=\int_{V_{\theta_{i}}} \nabla_{\theta_{i}} L_{\theta_{i}}(x) \pi(x) d x
$$

Proof. (of Lemma 2) Let $\boldsymbol{\theta}=\left(\theta_{1}, \cdots, \theta_{r}\right) \in \mathcal{O}$. Set

$$
d(x, \boldsymbol{\theta})=\min _{1 \leq i \leq r} L_{\theta_{i}}(x) .
$$

By definition of the function ψ

$$
\begin{equation*}
\psi(\boldsymbol{\theta}+\mathbf{h})-\psi(\boldsymbol{\theta})=\int(d(x, \boldsymbol{\theta}+\mathbf{h})-d(x, \boldsymbol{\theta})) \pi(x) d x \tag{5}
\end{equation*}
$$

We prove that $\lim _{\|h\| \rightarrow 0}\|h\|^{-1}\left(\psi(\boldsymbol{\theta}+\mathbf{h})-\psi(\boldsymbol{\theta})-\sum_{i=1}^{r} \int_{V_{\theta_{i}}}\left\langle\nabla_{\theta_{i}} L_{\theta_{i}}(x), h_{i}\right\rangle \pi(x) d x\right)=0$ by applying the dominated convergence theorem.

By Assumption 3,

$$
\begin{aligned}
\psi(\boldsymbol{\theta}+\mathbf{h})-\psi(\boldsymbol{\theta}) & -\sum_{i=1}^{r} \int_{V_{\theta_{i}}}\left\langle\nabla_{\theta_{i}} L_{\theta_{i}}(x), h_{i}\right\rangle \pi(x) d x \\
& =\sum_{i=1}^{r} \int_{V_{\theta_{i}}}\left(d(x, \boldsymbol{\theta}+\mathbf{h})-d(x, \boldsymbol{\theta})-\left\langle\nabla_{\theta_{i}} L_{\theta_{i}}(x), h_{i}\right\rangle\right) \pi(x) d x .
\end{aligned}
$$

Set

$$
V_{\theta_{i}}^{\circ}=\left\{x \in \mathcal{X}: L_{\theta_{i}}(x)<\min _{j \neq i} L_{\theta_{j}}(x)\right\}
$$

and note that $V_{\theta_{i}} \backslash V_{\theta_{i}}^{\circ}$ has measure zero under Assumption 3. Then

$$
\begin{aligned}
\psi(\boldsymbol{\theta}+\mathbf{h})-\psi(\boldsymbol{\theta})-\sum_{i=1}^{r} \int_{V_{\theta_{i}}}\left\langle\nabla_{\theta_{i}} L_{\theta_{i}}(x), h_{i}\right\rangle \pi(x) d x & \\
& =\sum_{i=1}^{r} \int_{V_{\theta_{i}}^{\circ}}\left(d(x, \boldsymbol{\theta}+\mathbf{h})-d(x, \boldsymbol{\theta})-\left\langle\nabla_{\theta_{i}} L_{\theta_{i}}(x), h_{i}\right\rangle\right) \pi(x) d x .
\end{aligned}
$$

Let $x \in V_{\theta_{i}}^{\circ}$; under Assumption 1, $\theta \mapsto L_{\theta}(x)$ is continuous on Θ and there exists ε_{x} such that

$$
\|h\| \leq \varepsilon_{x} \Rightarrow d(x, \boldsymbol{\theta}+\mathbf{h})=L_{\theta_{i}+h_{i}}(x)
$$

Then, by Assumption 1,

$$
d(x, \boldsymbol{\theta}+\mathbf{h})-d(x, \boldsymbol{\theta})-\left\langle\nabla_{\theta_{i}} L_{\theta_{i}}(x), h_{i}\right\rangle=L_{\theta_{i}+h_{i}}(x)-L_{\theta_{i}}(x)-\left\langle\nabla_{\theta_{i}} L_{\theta_{i}}(x), h_{i}\right\rangle=C\left(\theta_{i}, x, h_{i}\right)
$$

with $\left\|h_{i}\right\|^{-1} C\left(\theta_{i}, x, h_{i}\right) \rightarrow 0$ when $\left\|h_{i}\right\| \rightarrow 0$. Hence, we proved that for any $i \leq r$ and any $x \in V_{\theta_{i}}^{\circ}$,

$$
\lim _{\|h\| \rightarrow 0}\|h\|^{-1}\left(d(x, \boldsymbol{\theta}+\mathbf{h})-d(x, \boldsymbol{\theta})-\left\langle\nabla_{\theta_{i}} L_{\theta_{i}}(x), h_{i}\right\rangle\right)=0
$$

We now prove that there exists h_{0} such that

$$
\begin{equation*}
\int \sup _{\|h\| \leq h_{0}}\|h\|^{-1}\left|d(x, \boldsymbol{\theta}+\mathbf{h})-d(x, \boldsymbol{\theta})-\sum_{i=1}^{r}\left\langle\nabla_{\theta_{i}} L_{\theta_{i}}(x), h_{i}\right\rangle \mathbb{1}_{V_{\theta_{i}}}(x)\right| \pi(x) d x<+\infty \tag{6}
\end{equation*}
$$

First remark that for all $z, \mathbf{a}=\left(a_{1}, \cdots, a_{r}\right), \mathbf{b}=\left(b_{1}, \cdots, b_{r}\right)$,

$$
\begin{equation*}
|d(z, \mathbf{a}+\mathbf{b})-d(z, \mathbf{a})| \leq \max _{1 \leq i \leq r}\left|L_{a_{i}+b_{i}}(z)-L_{a_{i}}(z)\right| . \tag{7}
\end{equation*}
$$

Indeed, assume without loss of generality that $d(z, \mathbf{a}) \leq d(z, \mathbf{a}+\mathbf{b})$ and let i be such that $d(z, \mathbf{a})=L_{a_{i}}(z)$, then by definition of the distance $d, d(z, \mathbf{a}+\mathbf{b}) \leq L_{a_{i}+b_{i}}(z)$, which proves Eq. (7). Now, the proof of (6) is a consequence of Assumptions 1 and 2 and the inequality

$$
\max _{1 \leq i \leq r}\left|L_{a_{i}+b_{i}}(z)-L_{a_{i}}(z)\right| \leq \sum_{i=1}^{r}\left|L_{a_{i}+b_{i}}(z)-L_{a_{i}}(z)\right| .
$$

Lemma 3. The quadratic loss function given by (1), the set Θ given by (3) and the open set

$$
\mathcal{O}=\left\{\left(P \mu, P \Sigma P^{T}\right): P \in \mathcal{P},(\mu, \Sigma) \in \Theta\right\}
$$

satisfy the assumptions of Lemma 2.

Proof. (of Lemma 3) When taking derivatives with respect to a matrix, we shall use the "vec" notation during computations. For a $d \times d$ matrix A, its vectorized form $\operatorname{vec}(A)$ is a d^{2} vector such that $\operatorname{vec}(A)$ stacks the columns of A on top of one another. In general, we refer to [2] for matrix algebra notions.

We check the conditions of Lemma 2. Denote by r the cardinality of \mathcal{P} and set $\mathcal{P}=\left(I_{d}, P_{2}, \cdots, P_{r}\right)$. We set

$$
\mathcal{O}=\left\{\left(\theta_{1}, \cdots, \theta_{r}\right) \in \Theta^{r}: \theta_{i}=\left(P_{i} \mu, P_{i} \Sigma P_{i}^{T}\right), \forall i \geq 1\right\}
$$

Note that $L_{\theta_{i}}(x)=L_{\theta_{1}}\left(P_{i}^{T} x\right)$ and $V_{\theta_{i}}=P_{i} V_{\theta_{1}}$.
We have

$$
(\mu, \Sigma) \mapsto(x-\mu)^{T} \Sigma^{-1}(x-\mu)=\frac{1}{\operatorname{det} \Sigma}(x-\mu)^{T} \operatorname{Adjugate}(\Sigma)(x-u)
$$

so that $\theta \mapsto L_{\theta}(x)$ is a rational function in the coefficients of μ and Σ whose denominator $\operatorname{det} \Sigma>0$. In addition,

$$
\sup _{\|h\| \leq h_{0}} \frac{1}{\|h\|}\left|h^{T} \nabla_{\theta} L_{\theta}(x)\right| \leq\left\|\nabla_{\theta} L_{\theta}(x)\right\| \leq\left\|\nabla_{\mu} L_{\theta}(x)\right\|+\left\|\nabla_{\Sigma} L_{\theta}(x)\right\| .
$$

The RHS is at most quadratic in x (for fixed θ). Under the stated assumptions on π, the RHS is π-integrable. This proves Assumption 1.
We now prove Assumption 2. Let $\theta \in \Theta$ and set $\Delta \theta=(\Delta \mu, \Delta \Sigma)$. By standard algebra, we have

$$
(\Sigma+\Delta \Sigma)^{-1}=\Sigma^{-1}-\Sigma^{-1} \Delta \Sigma \Sigma^{-1}+o(\|\Delta \Sigma\|)
$$

for any matrix $\Delta \Sigma$ such that $\Sigma+\Delta \Sigma$ is invertible. Therefore,

$$
L_{\theta+\Delta \theta}(x)-L_{\theta}(x)=-2(\Delta \mu)^{T} \Sigma^{-1}(x-\mu)-(x-\mu)^{T} \Sigma^{-1} \Delta \Sigma \Sigma^{-1}(x-\mu)+\Xi(x, \theta, \Delta \theta),
$$

for some function $\Xi(x, \theta, \Delta \theta)$ such that

$$
|\Xi(x, \theta, \Delta \theta)| \leq C(\theta)\|x\|^{2}\|\Delta \theta\|^{2}
$$

and some constant $C(\theta)$ (depending upon θ but independent of x and $\Delta \theta$). The proof is concluded since $\int\|x\|^{2} \pi(x) d x<$ $+\infty$.
Finally, the sets $V_{\theta_{i}}$ are measurable for any $\theta_{1}, \cdots, \theta_{r} \in \Theta$ since $(x, \theta) \mapsto L_{\theta}(x)$ is continuous on $\mathcal{X} \times \Theta$. The proof of Assumption 3 is then concluded by application of Lemma 1.

We finally turn to proving Proposition 3 .
Proof. (of Proposition 3) Let r denote the cardinality of \mathcal{P} and set $\mathcal{P}=\left(I_{d}, P_{2}, \cdots, P_{r}\right)$. Let $\theta \in \Theta$. By Proposition 2, we have

$$
w(\theta)=\frac{1}{2} \ln \operatorname{det}(\Sigma)+\frac{1}{2} \int \min _{1 \leq i \leq r} L_{\theta_{i}}(x) \pi(x) d x,
$$

where $\theta_{i}=\left(P_{i} \mu, P_{i} \Sigma^{-1} P_{i}^{T}\right)$.
We first consider the derivative w.r.t. μ. We have

$$
\nabla_{\mu} w(\theta)=\frac{1}{2} \nabla_{\mu} \int \min _{1 \leq i \leq r} L_{\theta_{i}}(x) \pi(x) d x .
$$

By Lemmas 2 and 3 and the chain rule, we have

$$
\begin{aligned}
\nabla_{\mu} w(\theta) & =\frac{1}{2} \sum_{i=1}^{r} P_{i}^{T} \int_{\left\{x: L \theta_{i}(x) \leq \min _{j} L_{\theta_{j}}(x)\right\}} \nabla_{\mu_{i}}\left[\left(x-\mu_{i}\right) P_{i} \Sigma^{-1} P_{i}^{T}\left(x-\mu_{i}\right)\right]_{\mu_{i}=P_{i} \mu} \pi(x) d x \\
& =-\Sigma^{-1} \sum_{i=1}^{r} \int_{\left\{x: L_{\theta_{i}}(x) \leq \min _{j} L_{\theta_{j}}(x)\right\}}\left(P_{i}^{T} x-\mu\right) \pi(x) d x
\end{aligned}
$$

By definition of $P_{i} V_{\theta}$ (see (4)),

$$
\left\{x: L_{\theta_{i}}(x) \leq \min _{j} L_{\theta_{j}}(x)\right\}=P_{i} V_{\theta} .
$$

Hence, by Lemma 1 and since π is invariant under action of \mathcal{P}, we have

$$
\nabla_{\mu} w(\theta)=-\Sigma^{-1} \sum_{i=1}^{r} \int_{V_{\theta}}(x-\mu) \pi(x) d x=-\Sigma^{-1} \int(x-\mu)\left[r \pi(x) \mathbb{1}_{V_{\theta}}(x)\right] d x=-\Sigma^{-1}\left(\mu_{\pi_{\theta}}-\mu\right),
$$

where we used the definition of $\mu_{\pi_{\theta}}$.
We now consider the derivative w.r.t. Σ, that we will derive in a similar manner. We refer to [2] for matrix algebra notions such as Kronecker products. First remark that, by standard algebra and since Σ is symmetric,

$$
\nabla_{\operatorname{vec}(\Sigma)} \ln \operatorname{det} \Sigma=\operatorname{vec}\left(\Sigma^{-1}\right)
$$

Then recall that

$$
\nabla_{\operatorname{vec}(\Sigma)}(x-\mu) \Sigma^{-1}(x-\mu)=-\Sigma^{-1}(x-\mu) \otimes \Sigma^{-1}(x-\mu)
$$

Now, using Lemmas 2 and 3 along with the chain rule, we have

$$
\begin{aligned}
\nabla_{\operatorname{vec}(\Sigma)} w(\theta)-\frac{1}{2} \operatorname{vec}\left(\Sigma^{-1}\right) & =\frac{1}{2} \sum_{i=1}^{r}\left(P_{i} \otimes P_{i}\right)^{T} \int_{P_{i} V_{\theta}} \nabla_{\operatorname{vec}\left(\Sigma_{i}\right)}\left[\left(x-P_{i} \mu\right)^{T} \Sigma_{i}^{-1}\left(x-P_{i} \mu\right)\right]_{\Sigma_{i}=P_{i} \Sigma P_{i}^{T}} \pi(x) d x \\
& =-\frac{1}{2} \sum_{i=1}^{r}\left(P_{i}^{T} \otimes P_{i}^{T}\right) \int_{P_{i} V_{\theta}}\left[P_{i} \Sigma^{-1} P_{i}^{T}\left(x-P_{i} \mu\right)\right] \otimes\left[P_{i} \Sigma^{-1} P_{i}^{T}\left(x-P_{i} \mu\right)\right] \pi(x) d x \\
& =-\frac{1}{2} \sum_{i=1}^{r} \int_{P_{i} V_{\theta}}\left[\Sigma^{-1}\left(P_{i}^{T} x-\mu\right)\right] \otimes\left[\Sigma^{-1}\left(P_{i}^{T} x-\mu\right)\right] \pi(x) d x \\
& =-\frac{1}{2}\left(\Sigma^{-1} \otimes \Sigma^{-1}\right) \sum_{i=1}^{r} \int_{P_{i} V_{\theta}}\left[P_{i}^{T} x-\mu\right] \otimes\left[P_{i}^{T} x-\mu\right] \pi(x) d x
\end{aligned}
$$

where we used the identities $(A \otimes B)^{T}=A^{T} \otimes B^{T}$ and $(A \otimes B)(C \otimes D)=(A C) \otimes(B D)$. A change of variables now leads to

$$
\begin{aligned}
\nabla_{\operatorname{vec}(\Sigma)} w(\theta)-\frac{1}{2} \operatorname{vec}\left(\Sigma^{-1}\right) & =-\frac{1}{2}\left(\Sigma^{-1} \otimes \Sigma^{-1}\right) \sum_{i=1}^{r} \int_{V_{\theta}}(x-\mu) \otimes(x-\mu) \pi(x) d x \\
& =-\frac{1}{2}\left(\Sigma^{-1} \otimes \Sigma^{-1}\right) \int\left(x-\mu_{\pi_{\theta}}+\mu_{\pi_{\theta}}-\mu\right) \otimes\left(x-\mu_{\pi_{\theta}}+\mu_{\pi_{\theta}}-\mu\right)\left[r \pi(x) \mathbb{1}_{V_{\theta}}(x)\right] d x \\
& =-\frac{1}{2}\left(\Sigma^{-1} \otimes \Sigma^{-1}\right)\left(\int\left(x-\mu_{\pi_{\theta}}\right) \otimes\left(x-\mu_{\pi_{\theta}}\right) \pi_{\theta}(x) d x+\left(\mu_{\pi_{\theta}}-\mu\right) \otimes\left(\mu_{\pi_{\theta}}-\mu\right)\right) \\
& =-\frac{1}{2}\left(\Sigma^{-1} \otimes \Sigma^{-1}\right) \operatorname{vec}\left(\Sigma_{\pi_{\theta}}+\left(\mu_{\pi_{\theta}}-\mu\right)\left(\mu_{\pi_{\theta}}-\mu\right)^{T}\right)
\end{aligned}
$$

where we used the distributivity of the Kronecker product, Lemma 1 and the definitions of $\mu_{\pi_{\theta}}$ and $\Sigma_{\pi_{\theta}}$. Finally, the identity $\operatorname{vec}(A X B)=\left(B^{T} \otimes A\right) \operatorname{vec}(X)$ allows us to write

$$
\nabla_{\operatorname{vec}(\Sigma)} w(\theta)=-\frac{1}{2} \operatorname{vec}\left(\Sigma^{-1}\left[\Sigma_{\pi_{\theta}}-\Sigma+\left(\mu_{\pi_{\theta}}-\mu\right)\left(\mu_{\pi_{\theta}}-\mu\right)^{T}\right] \Sigma^{-1}\right)
$$

1.4 Proof of Corollary 1 (Proposition 1 in the main paper)

Let $\theta \in \mathbb{R}^{d} \times \mathcal{C}_{d}^{+}$. By definition of the scalar product on $\mathbb{R}^{d} \times \mathcal{M}_{d}$ we have

$$
\begin{aligned}
\langle\nabla w(\theta), h(\theta)\rangle=- & \left(\mu_{\pi_{\theta}}-\mu\right)^{T} \Sigma^{-1}\left(\mu_{\pi_{\theta}}-\mu\right)^{T} \\
& -\frac{1}{2} \operatorname{Trace}\left(\Sigma^{-1}\left[\Sigma_{\pi_{\theta}}-\Sigma+\left(\mu_{\pi_{\theta}}-\mu\right)\left(\mu_{\pi_{\theta}}-\mu\right)^{T}\right] \Sigma^{-1}\left[\Sigma_{\pi_{\theta}}-\Sigma+\left(\mu_{\pi_{\theta}}-\mu\right)\left(\mu_{\pi_{\theta}}-\mu\right)^{T}\right]\right)
\end{aligned}
$$

The first term of the right-hand side is negative since $\Sigma^{-1} \in \mathcal{C}_{d}^{+}$, and this term is null iff $\mu=\mu_{\pi_{\theta}}$. For the second term, note that since $(A, B) \mapsto \operatorname{Trace}\left(A^{T} B\right)$ is a scalar product on \mathcal{M}_{d}, $\operatorname{Trace} A^{T} A \geq 0$. This yields

$$
\begin{aligned}
\operatorname{Trace}\left(\Sigma^{-1}\right. & {\left.\left[\Sigma_{\pi_{\theta}}-\Sigma+\left(\mu_{\pi_{\theta}}-\mu\right)\left(\mu_{\pi_{\theta}}-\mu\right)^{T}\right] \Sigma^{-1}\left[\Sigma_{\pi_{\theta}}-\Sigma+\left(\mu_{\pi_{\theta}}-\mu\right)\left(\mu_{\pi_{\theta}}-\mu\right)^{T}\right]\right) } \\
& =\operatorname{Trace}\left(\Sigma^{-1 / 2}\left[\Sigma_{\pi_{\theta}}-\Sigma+\left(\mu_{\pi_{\theta}}-\mu\right)\left(\mu_{\pi_{\theta}}-\mu\right)^{T}\right] \Sigma^{-1}\left[\Sigma_{\pi_{\theta}}-\Sigma+\left(\mu_{\pi_{\theta}}-\mu\right)\left(\mu_{\pi_{\theta}}-\mu\right)^{T}\right] \Sigma^{-1 / 2}\right) \geq 0
\end{aligned}
$$

and when $\mu=\mu_{\pi_{\theta}}$, this term is null iff $\Sigma=\Sigma_{\pi_{\theta}}$.

References

[1] S. Graf and H. Luschgy. Foundations of Quantization for Probability Distributions. Springer-Verlag, 2000.
[2] J.W. Brewer. Kronecker products and matrix calculus in system theory. IEEE Transactions on Circuits and Systems, 25:772-781, 1978.

