Supplementary Material for Adaptive Metropolis with Online Relabeling

Notations and assumptions

By convention, vectors $x \in \mathbb{R}^d$ are column vectors. x^T is the transpose vector of x. We fix a norm $\|\cdot\|$ on vectors and will also denote by $\|\cdot\|$ the derived norm for matrices.

Let π be a probability density with respect to (w.r.t.) the Lebesgue measure on \mathcal{X} where $\mathcal{X} \subseteq \mathbb{R}^d$ is measurable (\mathbb{R}^d is endowed with its Borel σ -field). It is assumed that

- (a) π in invariant under the action of \mathcal{P} , a finite group of $d \times d$ block permutation matrices.
- (b) π has finite second moment.

Let C_d^+ be the set of the real $d \times d$ (symmetric) positive definite matrices. For any $\theta = (\mu, \Sigma) \in \mathbb{R}^d \times C_d^+$ and $x \in \mathcal{X}$, define the quadratic loss

$$L_{\theta}(x) = (x - \mu)^{T} \Sigma^{-1} (x - \mu)$$
(1)

and the set

$$V_{\theta} = \{ x \in \mathcal{X} : L_{\theta}(x) = \min_{P \in \mathcal{P}} L_{\theta}(Px) \}.$$

Observe that for any $\theta \in \mathbb{R}^d \times \mathcal{C}_d^+$, V_{θ} is measurable.

For any $\theta \in \mathbb{R}^d \times \mathcal{C}_d^+$, let π_θ be the probability density on \mathbb{R}^d , defined by

$$\pi_{\theta}(x) = Z_{\theta}^{-1} \mathbb{1}_{V_{\theta}}(x) \pi(x), \quad \text{where} \quad Z_{\theta} = \int_{V_{\theta}} \pi(x) dx$$

Under the assumptions on π , π_{θ} has an expectation

$$\mu_{\pi_{\theta}} = \int x \, \pi_{\theta}(x) dx$$

and a covariance matrix

$$\Sigma_{\pi_{\theta}} = \int (x - \mu_{\pi_{\theta}}) (x - \mu_{\pi_{\theta}})^T \pi_{\theta}(x) dx.$$

Define the function $w: \mathbb{R}^d \times \mathcal{C}^+_d \to \mathbb{R}$ by

$$w(\theta) = -\int \log \mathcal{N}(x|\theta) \ \pi_{\theta}(x) dx.$$

Finally, denote by \mathcal{M}_d the set of $d \times d$ real matrices. Define the function $h : \mathbb{R}^d \times \mathcal{C}_d^+ \to \mathbb{R}^d \times \mathcal{M}_d$ by

$$h(\theta) = \left((\mu_{\pi_{\theta}} - \mu), \Sigma_{\pi_{\theta}} - \Sigma + (\mu_{\pi_{\theta}} - \mu)(\mu_{\pi_{\theta}} - \mu)^T \right).$$
⁽²⁾

The set $\mathbb{R}^d \times \mathcal{M}_d$ is endowed with the scalar product given by

$$x = (\mu_1, M_1), y = (\mu_2, M_2) \in \mathbb{R}^d \times \mathcal{M}_d, \qquad \langle x, y \rangle = \mu_1^T \mu_2 + \operatorname{Trace}\left(M_1^T M_2\right).$$

1 Main result

We first prove that w is positive on the set Θ defined by

$$\Theta = \{ \theta = (\mu, \Sigma) \in \mathbb{R}^d \times \mathcal{C}_d^+ : \forall P \in \mathcal{P}, P^T \Sigma P \neq \Sigma \text{ or } \mu \neq P \mu \},$$
(3)

and for any $\theta \in \Theta$, $w(\theta)$ is, up to a constant, the Kullback-Leibler divergence between π_{θ} and the Gaussian distribution $\mathcal{N}(\cdot|\theta)$.

Proposition 1. *For any* $\theta \in \Theta$ *,*

$$w(\theta) = \int \log \frac{\pi_{\theta}(x)}{\mathcal{N}(x|\theta)} \, \pi_{\theta}(x) dx - \left(\log |\mathcal{P}| + \int \log \pi(x) \pi(x) dx \right),$$

where $|\mathcal{P}|$ denotes the cardinal of \mathcal{P} .

Proposition 2 shows that for any $\theta \in \Theta$, *w* is similar to a distortion measure in vector quantization [1]. **Proposition 2.** For any $\theta \in \Theta$,

$$w(\theta) = \frac{1}{2} \ln \det(\Sigma) + \frac{1}{2} \int \min_{P \in \mathcal{P}} L_{(P\mu, P\Sigma P^T)}(x) \, \pi(x) dx.$$

Finally, Proposition 3 and Corollary 1 show that on Θ , w is a natural Lyapunov function for the mean field h given by (2). **Proposition 3.** *The function* w *is continuously differentiable on* Θ *and for any* $\theta \in \Theta$,

$$\nabla_{\mu} w(\theta) = -\Sigma^{-1} (\mu_{\pi_{\theta}} - \mu),$$

$$\nabla_{\Sigma} w(\theta) = -\frac{1}{2} \Sigma^{-1} \left(\Sigma_{\pi_{\theta}} - \Sigma + (\mu_{\pi_{\theta}} - \mu) (\mu_{\pi_{\theta}} - \mu)^T \right) \Sigma^{-1}.$$

Corollary 1. *For any* $\theta \in \Theta$ *,*

$$\langle \nabla w(\theta), h(\theta) \rangle \le 0$$

and
$$\langle \nabla w(\theta), h(\theta) \rangle = 0$$
 iff $\mu = \mu_{\pi_{\theta}}$ and $\Sigma = \Sigma_{\pi_{\theta}}$

Corollary 1 is equivalent to Proposition 2 in the main paper.

Proofs

1.1 Proof of Proposition 1

We start by proving a lemma. Let

$$PV_{\theta} = \{Px : x \in V_{\theta}\}.$$
(4)

Lemma 1. For any $\theta \in \Theta$, the sets $\{PV_{\theta}, P \in \mathcal{P}\}$ cover \mathcal{X} and for any $P, Q \in \mathcal{P}, P \neq Q$, the Lebesgue measure of $PV_{\theta} \cap QV_{\theta}$ is zero.

Therefore, $Z_{\theta} = |\mathcal{P}|^{-1}$ *for any* $\theta \in \Theta$.

Proof. Let $\theta \in \Theta$. We first prove that for any $P, Q \in \mathcal{P}$ and $P \neq Q$, the Lebesgue measure of $PV_{\theta} \cap QV_{\theta}$ is zero. Observe that $PV_{\theta} \cap QV_{\theta} \subseteq \{x : L_{\theta}(P^Tx) = L_{\theta}(Q^Tx)\}$ and $L_{\theta}(P^Tx) = L_{\theta}(Q^Tx)$ iff

$$(x - P\mu)^{T} P \Sigma^{-1} P^{T} (x - P\mu) = (x - Q\mu)^{T} Q \Sigma^{-1} Q^{T} (x - Q\mu),$$

or, equivalently,

$$x^{T} \left(P \Sigma^{-1} P^{T} - Q \Sigma^{-1} Q^{T} \right) x - 2\mu^{T} \left(\Sigma^{-1} P^{T} - \Sigma^{-1} Q^{T} \right) x = 0.$$

Then $\{x : L_{\theta}(P^T x) = L_{\theta}(Q^T x)\}$ is either a quadratic or a linear surface, and thus of Lebesgue measure zero, except if both $\Sigma^{-1} = R^T \Sigma^{-1} R$ and $\mu = R \mu$ with $R = Q^T P$. Since \mathcal{P} is a group, $R \in \mathcal{P}$ and the definition of Θ now guarantees that these two conditions never simultaneously hold when $\theta \in \Theta$.

We now prove that $\mathcal{X} \subseteq \bigcup_{P \in \mathcal{P}} PV_{\theta}$. For any $x \in \mathcal{X}$, there exists $P \in \mathcal{P}$ such that $L_{\theta}(Px) = \min_{Q \in \mathcal{P}} L_{\theta}(Qx)$. Then, $x \in P^TV_{\theta}$ and this concludes the proof since \mathcal{P} is a group.

Let $P \in \mathcal{P}$. Observe that since π is invariant under the action of \mathcal{P} ,

$$\int_{V_{\theta}} \pi(y) dy = \int_{V_{\theta}} \pi(Py) dy = \int_{PV_{\theta}} \pi(x) dx.$$

Then, since $\operatorname{Leb}(PV_{\theta} \cap QV_{\theta}) = 0$ for any $P \neq Q$ and $\mathcal{X} = \bigcup_{P \in \mathcal{P}} PV_{\theta}$,

$$Z_{\theta} = \int_{V_{\theta}} \pi(y) dy = \frac{1}{|\mathcal{P}|} \sum_{P \in \mathcal{P}} \int_{PV_{\theta}} \pi(x) dx = \frac{1}{|\mathcal{P}|} \int \pi(x) dx = \frac{1}{|\mathcal{P}|}.$$

Proof. (of Proposition 1) Since $\pi(Px) = \pi(x)$ for any $x \in \mathcal{X}$ and $P \in \mathcal{P}$,

$$\int_{V_{\theta}} \log \pi(y) \ \pi(y) dy = \int_{V_{\theta}} \log \pi(Py) \ \pi(Py) dy = \int_{PV_{\theta}} \log \pi(x) \ \pi(x) dx.$$

Then, by Lemma 1, for any $\theta \in \Theta$,

$$\int_{V_{\theta}} \log \pi(y) \, \pi(y) dy = \frac{1}{|\mathcal{P}|} \sum_{P \in \mathcal{P}} \int_{PV_{\theta}} \log \pi(x) \, \pi(x) dx = \frac{1}{|\mathcal{P}|} \int \log \pi(x) \pi(x) dx$$

Since $Z_{\theta} = 1/|\mathcal{P}|$ by Lemma 1, this implies that

$$-\int \log \pi_{\theta}(x) \,\pi_{\theta}(x) dx = -\log |\mathcal{P}| - |\mathcal{P}| \int_{V_{\theta}} \log \pi(x) \,\pi(x) dx = -\log |\mathcal{P}| - \int \log \pi(x) \pi(x) dx,$$

thus showing that for any $\theta \in \Theta$,

$$\int \log \frac{\pi_{\theta}(x)}{\pi(x)} \, \pi_{\theta}(x) dx = \log |\mathcal{P}|$$

and

$$\int \log \frac{\pi_{\theta}(x)}{\mathcal{N}(x|\theta)} \, \pi_{\theta}(x) dx = w(\theta) + \log |\mathcal{P}| + \int \log \pi(x) \pi(x) dx.$$

- 11	_	_	
		1	
	_		

1.2 Proof of Proposition **2** (Proposition **3** in the main paper)

Let $\theta \in \Theta$. By definition of w and by Lemma 1,

$$w(\theta) = \frac{1}{2} \ln \det(\Sigma) + \frac{|\mathcal{P}|}{2} \int_{V_{\theta}} L_{\theta}(x) \pi(x) dx$$

where V_{θ} and L_{θ} are given resp. by (4) and (1) and $|\mathcal{P}|$ denotes the cardinal of \mathcal{P} . We have

$$|\mathcal{P}| \int_{V_{\theta}} L_{\theta}(x) \pi(x) dx = \sum_{P \in \mathcal{P}} \int_{V_{\theta}} L_{\theta}(x) \pi(x) dx = \sum_{P \in \mathcal{P}} \int_{PV_{\theta}} L_{\theta}(P^T x) \pi(x) dx,$$

where we use that π is invariant under the action of \mathcal{P} . In addition, by definition,

$$PV_{\theta} = \{x \in \mathcal{X} : L_{\theta}(P^T x) = \min_{Q \in \mathcal{P}} L_{\theta}(Qx)\}$$

Then by using Lemma 1,

$$|\mathcal{P}| \int_{V_{\theta}} L_{\theta}(x) \pi(x) dx = \sum_{P \in \mathcal{P}} \int_{PV_{\theta}} \min_{Q \in \mathcal{P}} L_{\theta}(Qx) \pi(x) dx = \int \min_{Q \in \mathcal{P}} L_{\theta}(Qx) \pi(x) dx.$$

Finally, by definition of L_{θ} , $L_{\theta}(Qx) = L_{(Q^T \mu, Q^T \Sigma Q)}(x)$, and this concludes the proof.

1.3 **Proof of Proposition 3**

We start by two lemmas. Lemma 2 is established for generic loss functions L_{θ} and a generic open set Θ . Its proof is adapted from [1, Lemma 4.10, page 44]. We then show in Lemma 3 that this result applies to the loss function given by (1) and the set Θ given by (3).

Lemma 2. Let Θ be an open subset of \mathbb{R}^{ℓ} , r be a positive integer and $\mathcal{O} \subseteq \Theta^{r}$ be an open set. Let $\mathcal{X} \subseteq \mathbb{R}^{d}$ be a measurable set and π be a probability density w.r.t. the Lebesgue measure on \mathcal{X} . Let $\{L_{\theta}, \theta \in \Theta\}$ be a family of loss functions $L_{\theta} : \mathcal{X} \to \mathbb{R}$, satisfying

1. For π -almost every $x, \theta \mapsto L_{\theta}(x)$ is C^1 on Θ and for any $\theta \in \Theta$, there exists $h_0 > 0$ such that

$$\int \sup_{\|h\| \le h_0} \frac{1}{\|h\|} |h^T \nabla_\theta L_\theta(x)| \ \pi(x) dx < \infty$$

2. For any $\theta \in \Theta$, there exists $h_0 > 0$ such that

$$\int \sup_{\|h\| \le h_0} \frac{|L_{\theta+h}(x) - L_{\theta}(x)|}{\|h\|} \, \pi(x) dx < \infty.$$

3. For any $\boldsymbol{\theta} = (\theta_1, ..., \theta_r) \in \mathcal{O}$ *, the sets*

$$V_{\theta_i} = \{ x \in \mathcal{X} : L_{\theta_i}(x) \le \min_j L_{\theta_j}(x) \}$$

are measurable, cover \mathcal{X} and for any $i \neq j$, the Lebesgue measure of $V_{\theta_i} \cap V_{\theta_j}$ is zero.

For $\boldsymbol{\theta} = (\theta_1, \cdots, \theta_r) \in \mathcal{O}$ define the function $\psi : \Theta^r \to \mathbb{R}$

$$\psi(\boldsymbol{\theta}) = \int \min_{1 \le i \le r} L_{\theta_i}(x) \, \pi(x) dx.$$

Then ψ is differentiable on \mathcal{O} and for $1 \leq i \leq r$,

$$abla_{ heta_i}\psi(oldsymbol{ heta}) = \int_{V_{ heta_i}}
abla_{ heta_i} L_{ heta_i}(x) \, \pi(x) dx.$$

Proof. (of Lemma 2) Let $\theta = (\theta_1, \cdots, \theta_r) \in \mathcal{O}$. Set

$$d(x, \boldsymbol{\theta}) = \min_{1 \le i \le r} L_{\theta_i}(x)$$

By definition of the function ψ

$$\psi(\boldsymbol{\theta} + \mathbf{h}) - \psi(\boldsymbol{\theta}) = \int \left(d(x, \boldsymbol{\theta} + \mathbf{h}) - d(x, \boldsymbol{\theta}) \right) \pi(x) dx.$$
(5)

We prove that $\lim_{\|h\|\to 0} \|h\|^{-1} \left(\psi(\theta + \mathbf{h}) - \psi(\theta) - \sum_{i=1}^r \int_{V_{\theta_i}} \langle \nabla_{\theta_i} L_{\theta_i}(x), h_i \rangle \pi(x) dx \right) = 0$ by applying the dominated convergence theorem.

By Assumption 3,

$$\begin{split} \psi(\boldsymbol{\theta} + \mathbf{h}) - \psi(\boldsymbol{\theta}) &- \sum_{i=1}^{r} \int_{V_{\theta_i}} \langle \nabla_{\theta_i} L_{\theta_i}(x), h_i \rangle \, \pi(x) dx \\ &= \sum_{i=1}^{r} \int_{V_{\theta_i}} \left(d(x, \boldsymbol{\theta} + \mathbf{h}) - d(x, \boldsymbol{\theta}) - \langle \nabla_{\theta_i} L_{\theta_i}(x), h_i \rangle \right) \pi(x) dx. \end{split}$$

Set

$$V_{\theta_i}^{\circ} = \{ x \in \mathcal{X} : L_{\theta_i}(x) < \min_{j \neq i} L_{\theta_j}(x) \}$$

and note that $V_{\theta_i} \setminus V_{\theta_i}^{\circ}$ has measure zero under Assumption 3. Then

$$\begin{split} \psi(\boldsymbol{\theta} + \mathbf{h}) - \psi(\boldsymbol{\theta}) - \sum_{i=1}^{r} \int_{V_{\theta_i}} \langle \nabla_{\theta_i} L_{\theta_i}(x), h_i \rangle \, \pi(x) dx \\ &= \sum_{i=1}^{r} \int_{V_{\theta_i}^{\circ}} \left(d(x, \boldsymbol{\theta} + \mathbf{h}) - d(x, \boldsymbol{\theta}) - \langle \nabla_{\theta_i} L_{\theta_i}(x), h_i \rangle \right) \pi(x) dx. \end{split}$$

Let $x \in V_{\theta_i}^{\circ}$; under Assumption 1, $\theta \mapsto L_{\theta}(x)$ is continuous on Θ and there exists ε_x such that

$$||h|| \leq \varepsilon_x \Rightarrow d(x, \theta + \mathbf{h}) = L_{\theta_i + h_i}(x).$$

Then, by Assumption 1,

$$d(x, \theta + \mathbf{h}) - d(x, \theta) - \langle \nabla_{\theta_i} L_{\theta_i}(x), h_i \rangle = L_{\theta_i + h_i}(x) - L_{\theta_i}(x) - \langle \nabla_{\theta_i} L_{\theta_i}(x), h_i \rangle = C(\theta_i, x, h_i)$$

with $||h_i||^{-1}C(\theta_i, x, h_i) \to 0$ when $||h_i|| \to 0$. Hence, we proved that for any $i \leq r$ and any $x \in V_{\theta_i}^{\circ}$,

$$\lim_{\|h\|\to 0} \|h\|^{-1} \left(d(x, \theta + \mathbf{h}) - d(x, \theta) - \langle \nabla_{\theta_i} L_{\theta_i}(x), h_i \rangle \right) = 0.$$

We now prove that there exists h_0 such that

$$\int \sup_{\|h\| \le h_0} \|h\|^{-1} \left| d(x, \theta + \mathbf{h}) - d(x, \theta) - \sum_{i=1}^r \langle \nabla_{\theta_i} L_{\theta_i}(x), h_i \rangle \, \mathbb{1}_{V_{\theta_i}}(x) \right| \pi(x) dx < +\infty.$$
(6)

First remark that for all $z, \mathbf{a} = (a_1, \cdots, a_r), \mathbf{b} = (b_1, \cdots, b_r),$

$$|d(z, \mathbf{a} + \mathbf{b}) - d(z, \mathbf{a})| \le \max_{1 \le i \le r} |L_{a_i + b_i}(z) - L_{a_i}(z)|.$$
(7)

Indeed, assume without loss of generality that $d(z, \mathbf{a}) \leq d(z, \mathbf{a} + \mathbf{b})$ and let *i* be such that $d(z, \mathbf{a}) = L_{a_i}(z)$, then by definition of the distance d, $d(z, \mathbf{a} + \mathbf{b}) \leq L_{a_i+b_i}(z)$, which proves Eq. (7). Now, the proof of (6) is a consequence of Assumptions 1 and 2 and the inequality

$$\max_{1 \le i \le r} |L_{a_i+b_i}(z) - L_{a_i}(z)| \le \sum_{i=1}^r |L_{a_i+b_i}(z) - L_{a_i}(z)|.$$

Lemma 3. The quadratic loss function given by (1), the set Θ given by (3) and the open set

$$\mathcal{O} = \{ (P\mu, P\Sigma P^T) : P \in \mathcal{P}, (\mu, \Sigma) \in \Theta \}$$

satisfy the assumptions of Lemma 2.

Proof. (of Lemma 3) When taking derivatives with respect to a matrix, we shall use the "vec" notation during computations. For a $d \times d$ matrix A, its vectorized form vec(A) is a d^2 vector such that vec(A) stacks the columns of A on top of one another. In general, we refer to [2] for matrix algebra notions.

We check the conditions of Lemma 2. Denote by r the cardinality of \mathcal{P} and set $\mathcal{P} = (I_d, P_2, \cdots, P_r)$. We set

$$\mathcal{O} = \{ (\theta_1, \cdots, \theta_r) \in \Theta^r : \theta_i = (P_i \mu, P_i \Sigma P_i^T), \forall i \ge 1 \}$$

Note that $L_{\theta_i}(x) = L_{\theta_1}(P_i^T x)$ and $V_{\theta_i} = P_i V_{\theta_1}$.

We have

$$(\mu, \Sigma) \mapsto (x - \mu)^T \Sigma^{-1} (x - \mu) = \frac{1}{\det \Sigma} (x - \mu)^T \operatorname{Adjugate}(\Sigma) (x - u)$$

so that $\theta \mapsto L_{\theta}(x)$ is a rational function in the coefficients of μ and Σ whose denominator det $\Sigma > 0$. In addition,

$$\sup_{\|h\| \le h_0} \frac{1}{\|h\|} \left| h^T \nabla_{\theta} L_{\theta}(x) \right| \le \|\nabla_{\theta} L_{\theta}(x)\| \le \|\nabla_{\mu} L_{\theta}(x)\| + \|\nabla_{\Sigma} L_{\theta}(x)\|.$$

The RHS is at most quadratic in x (for fixed θ). Under the stated assumptions on π , the RHS is π -integrable. This proves Assumption 1.

We now prove Assumption 2. Let $\theta \in \Theta$ and set $\Delta \theta = (\Delta \mu, \Delta \Sigma)$. By standard algebra, we have

$$(\Sigma + \Delta \Sigma)^{-1} = \Sigma^{-1} - \Sigma^{-1} \Delta \Sigma \Sigma^{-1} + o(\|\Delta \Sigma\|)$$

for any matrix $\Delta\Sigma$ such that $\Sigma + \Delta\Sigma$ is invertible. Therefore,

$$L_{\theta+\Delta\theta}(x) - L_{\theta}(x) = -2(\Delta\mu)^T \Sigma^{-1}(x-\mu) - (x-\mu)^T \Sigma^{-1} \Delta\Sigma \Sigma^{-1}(x-\mu) + \Xi(x,\theta,\Delta\theta),$$

for some function $\Xi(x, \theta, \Delta\theta)$ such that

$$|\Xi(x,\theta,\Delta\theta)| \le C(\theta) ||x||^2 ||\Delta\theta||^2$$

and some constant $C(\theta)$ (depending upon θ but independent of x and $\Delta \theta$). The proof is concluded since $\int ||x||^2 \pi(x) dx < +\infty$.

Finally, the sets V_{θ_i} are measurable for any $\theta_1, \dots, \theta_r \in \Theta$ since $(x, \theta) \mapsto L_{\theta}(x)$ is continuous on $\mathcal{X} \times \Theta$. The proof of Assumption 3 is then concluded by application of Lemma 1.

We finally turn to proving Proposition 3.

Proof. (of Proposition 3) Let r denote the cardinality of \mathcal{P} and set $\mathcal{P} = (I_d, P_2, \dots, P_r)$. Let $\theta \in \Theta$. By Proposition 2, we have

$$w(\theta) = \frac{1}{2} \ln \det(\Sigma) + \frac{1}{2} \int \min_{1 \le i \le r} L_{\theta_i}(x) \ \pi(x) dx,$$

where $\theta_i = (P_i \mu, P_i \Sigma^{-1} P_i^T).$

We first consider the derivative w.r.t. μ . We have

$$\nabla_{\mu} w(\theta) = \frac{1}{2} \nabla_{\mu} \int \min_{1 \le i \le r} L_{\theta_i}(x) \ \pi(x) dx.$$

By Lemmas 2 and 3 and the chain rule, we have

$$\nabla_{\mu}w(\theta) = \frac{1}{2}\sum_{i=1}^{r} P_{i}^{T} \int_{\{x:L_{\theta_{i}}(x)\leq\min_{j}L_{\theta_{j}}(x)\}} \nabla_{\mu_{i}} \left[(x-\mu_{i})P_{i}\Sigma^{-1}P_{i}^{T}(x-\mu_{i}) \right]_{\mu_{i}=P_{i}\mu} \pi(x)dx$$
$$= -\Sigma^{-1}\sum_{i=1}^{r} \int_{\{x:L_{\theta_{i}}(x)\leq\min_{j}L_{\theta_{j}}(x)\}} (P_{i}^{T}x-\mu) \pi(x)dx$$

By definition of $P_i V_{\theta}$ (see (4)),

$$\{x: L_{\theta_i}(x) \le \min_j L_{\theta_j}(x)\} = P_i V_{\theta}$$

Hence, by Lemma 1 and since π is invariant under action of \mathcal{P} , we have

$$\nabla_{\mu} w(\theta) = -\Sigma^{-1} \sum_{i=1}^{r} \int_{V_{\theta}} (x-\mu) \, \pi(x) dx = -\Sigma^{-1} \int (x-\mu) [r\pi(x) \,\mathbb{1}_{V_{\theta}}(x)] dx = -\Sigma^{-1} \left(\mu_{\pi_{\theta}} - \mu\right),$$

where we used the definition of $\mu_{\pi_{\theta}}$.

We now consider the derivative w.r.t. Σ , that we will derive in a similar manner. We refer to [2] for matrix algebra notions such as Kronecker products. First remark that, by standard algebra and since Σ is symmetric,

$$\nabla_{\operatorname{vec}(\Sigma)} \ln \det \Sigma = \operatorname{vec}(\Sigma^{-1}).$$

Then recall that

$$\nabla_{\operatorname{vec}(\Sigma)}(x-\mu)\Sigma^{-1}(x-\mu) = -\Sigma^{-1}(x-\mu)\otimes\Sigma^{-1}(x-\mu).$$

Now, using Lemmas 2 and 3 along with the chain rule, we have

$$\begin{split} \nabla_{\text{vec}(\Sigma)} w(\theta) &- \frac{1}{2} \text{vec}(\Sigma^{-1}) &= \frac{1}{2} \sum_{i=1}^{r} (P_{i} \otimes P_{i})^{T} \int_{P_{i} V_{\theta}} \nabla_{\text{vec}(\Sigma_{i})} \left[(x - P_{i} \mu)^{T} \Sigma_{i}^{-1} (x - P_{i} \mu) \right]_{\Sigma_{i} = P_{i} \Sigma P_{i}^{T}} \pi(x) dx \\ &= -\frac{1}{2} \sum_{i=1}^{r} (P_{i}^{T} \otimes P_{i}^{T}) \int_{P_{i} V_{\theta}} \left[P_{i} \Sigma^{-1} P_{i}^{T} (x - P_{i} \mu) \right] \otimes \left[P_{i} \Sigma^{-1} P_{i}^{T} (x - P_{i} \mu) \right] \pi(x) dx \\ &= -\frac{1}{2} \sum_{i=1}^{r} \int_{P_{i} V_{\theta}} \left[\Sigma^{-1} (P_{i}^{T} x - \mu) \right] \otimes \left[\Sigma^{-1} (P_{i}^{T} x - \mu) \right] \pi(x) dx \\ &= -\frac{1}{2} (\Sigma^{-1} \otimes \Sigma^{-1}) \sum_{i=1}^{r} \int_{P_{i} V_{\theta}} \left[P_{i}^{T} x - \mu \right] \otimes \left[P_{i}^{T} x - \mu \right] \pi(x) dx \end{split}$$

where we used the identities $(A \otimes B)^T = A^T \otimes B^T$ and $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$. A change of variables now leads to

$$\begin{aligned} \nabla_{\operatorname{vec}(\Sigma)} w(\theta) &- \frac{1}{2} \operatorname{vec}(\Sigma^{-1}) &= -\frac{1}{2} (\Sigma^{-1} \otimes \Sigma^{-1}) \sum_{i=1}^{r} \int_{V_{\theta}} (x - \mu) \otimes (x - \mu) \pi(x) dx \\ &= -\frac{1}{2} (\Sigma^{-1} \otimes \Sigma^{-1}) \int (x - \mu_{\pi_{\theta}} + \mu_{\pi_{\theta}} - \mu) \otimes (x - \mu_{\pi_{\theta}} + \mu_{\pi_{\theta}} - \mu) [r \pi(x) \mathbb{1}_{V_{\theta}}(x)] dx \\ &= -\frac{1}{2} (\Sigma^{-1} \otimes \Sigma^{-1}) \left(\int (x - \mu_{\pi_{\theta}}) \otimes (x - \mu_{\pi_{\theta}}) \pi_{\theta}(x) dx + (\mu_{\pi_{\theta}} - \mu) \otimes (\mu_{\pi_{\theta}} - \mu) \right) \\ &= -\frac{1}{2} (\Sigma^{-1} \otimes \Sigma^{-1}) \operatorname{vec}(\Sigma_{\pi_{\theta}} + (\mu_{\pi_{\theta}} - \mu)(\mu_{\pi_{\theta}} - \mu)^{T}) \end{aligned}$$

where we used the distributivity of the Kronecker product, Lemma 1 and the definitions of $\mu_{\pi_{\theta}}$ and $\Sigma_{\pi_{\theta}}$. Finally, the identity $\operatorname{vec}(AXB) = (B^T \otimes A)\operatorname{vec}(X)$ allows us to write

$$\nabla_{\operatorname{vec}(\Sigma)} w(\theta) = -\frac{1}{2} \operatorname{vec} \left(\Sigma^{-1} [\Sigma_{\pi_{\theta}} - \Sigma + (\mu_{\pi_{\theta}} - \mu)(\mu_{\pi_{\theta}} - \mu)^{T}] \Sigma^{-1} \right).$$

1.4 Proof of Corollary **1** (Proposition 1 in the main paper)

Let $\theta \in \mathbb{R}^d \times \mathcal{C}_d^+$. By definition of the scalar product on $\mathbb{R}^d \times \mathcal{M}_d$ we have

$$\langle \nabla w(\theta), h(\theta) \rangle = -(\mu_{\pi_{\theta}} - \mu)^{T} \Sigma^{-1} (\mu_{\pi_{\theta}} - \mu)^{T} - \frac{1}{2} \operatorname{Trace} \left(\Sigma^{-1} [\Sigma_{\pi_{\theta}} - \Sigma + (\mu_{\pi_{\theta}} - \mu)(\mu_{\pi_{\theta}} - \mu)^{T}] \Sigma^{-1} [\Sigma_{\pi_{\theta}} - \Sigma + (\mu_{\pi_{\theta}} - \mu)(\mu_{\pi_{\theta}} - \mu)^{T}] \right).$$

The first term of the right-hand side is negative since $\Sigma^{-1} \in C_d^+$, and this term is null iff $\mu = \mu_{\pi_\theta}$. For the second term, note that since $(A, B) \mapsto \operatorname{Trace}(A^T B)$ is a scalar product on \mathcal{M}_d , $\operatorname{Trace}A^T A \ge 0$. This yields

Trace
$$\left(\Sigma^{-1}[\Sigma_{\pi_{\theta}} - \Sigma + (\mu_{\pi_{\theta}} - \mu)(\mu_{\pi_{\theta}} - \mu)^{T}]\Sigma^{-1}[\Sigma_{\pi_{\theta}} - \Sigma + (\mu_{\pi_{\theta}} - \mu)(\mu_{\pi_{\theta}} - \mu)^{T}]\right)$$

= Trace $\left(\Sigma^{-1/2}[\Sigma_{\pi_{\theta}} - \Sigma + (\mu_{\pi_{\theta}} - \mu)(\mu_{\pi_{\theta}} - \mu)^{T}]\Sigma^{-1}[\Sigma_{\pi_{\theta}} - \Sigma + (\mu_{\pi_{\theta}} - \mu)(\mu_{\pi_{\theta}} - \mu)^{T}]\Sigma^{-1/2}\right) \ge 0,$

and when $\mu = \mu_{\pi_{\theta}}$, this term is null iff $\Sigma = \Sigma_{\pi_{\theta}}$.

References

[1] S. Graf and H. Luschgy. Foundations of Quantization for Probability Distributions. Springer-Verlag, 2000.

[2] J.W. Brewer. Kronecker products and matrix calculus in system theory. *IEEE Transactions on Circuits and Systems*, 25:772–781, 1978.