
Supplementary Material for Adaptive Metropolis with Online Relabeling

Notations and assumptions

By convention, vectors x ∈ Rd are column vectors. xT is the transpose vector of x. We fix a norm ‖ · ‖ on vectors and will
also denote by ‖ · ‖ the derived norm for matrices.

Let π be a probability density with respect to (w.r.t.) the Lebesgue measure on X where X ⊆ Rd is measurable (Rd is
endowed with its Borel σ-field). It is assumed that

(a) π in invariant under the action of P , a finite group of d× d block permutation matrices.

(b) π has finite second moment.

Let C+
d be the set of the real d × d (symmetric) positive definite matrices. For any θ = (µ,Σ) ∈ Rd × C+

d and x ∈ X ,
define the quadratic loss

Lθ(x) = (x− µ)T Σ−1(x− µ) (1)

and the set
Vθ = {x ∈ X : Lθ(x) = min

P∈P
Lθ(Px)}.

Observe that for any θ ∈ Rd × C+
d , Vθ is measurable.

For any θ ∈ Rd × C+
d , let πθ be the probability density on Rd, defined by

πθ(x) = Z−1
θ 1Vθ

(x)π(x), where Zθ =
∫

Vθ

π(x)dx.

Under the assumptions on π, πθ has an expectation

µπθ
=

∫
xπθ(x)dx

and a covariance matrix
Σπθ

=
∫

(x− µπθ
)(x− µπθ

)Tπθ(x)dx.

Define the function w : Rd × C+
d → R by

w(θ) = −
∫

logN (x|θ) πθ(x)dx.

Finally, denote by Md the set of d× d real matrices. Define the function h : Rd × C+
d → Rd ×Md by

h(θ) =
(
(µπθ

− µ),Σπθ
− Σ + (µπθ

− µ)(µπθ
− µ)T

)
. (2)

The set Rd ×Md is endowed with the scalar product given by

x = (µ1,M1), y = (µ2,M2) ∈ Rd ×Md, 〈x, y〉 = µT
1 µ2 + Trace

(
MT

1 M2

)
.



1 Main result

We first prove that w is positive on the set Θ defined by

Θ = {θ = (µ,Σ) ∈ Rd × C+
d : ∀P ∈ P, PT ΣP 6= Σ or µ 6= Pµ}, (3)

and for any θ ∈ Θ, w(θ) is, up to a constant, the Kullback-Leibler divergence between πθ and the Gaussian distribution
N (·|θ).
Proposition 1. For any θ ∈ Θ,

w(θ) =
∫

log
πθ(x)
N (x|θ)

πθ(x)dx−
(

log |P|+
∫

log π(x)π(x)dx
)
,

where |P| denotes the cardinal of P .

Proposition 2 shows that for any θ ∈ Θ, w is similar to a distortion measure in vector quantization [1].

Proposition 2. For any θ ∈ Θ,

w(θ) =
1
2

ln det(Σ) +
1
2

∫
min
P∈P

L(Pµ,PΣP T )(x)π(x)dx.

Finally, Proposition 3 and Corollary 1 show that on Θ, w is a natural Lyapunov function for the mean field h given by (2).

Proposition 3. The function w is continuously differentiable on Θ and for any θ ∈ Θ,

∇µw(θ) = −Σ−1(µπθ
− µ),

∇Σw(θ) = −1
2
Σ−1

(
Σπθ

− Σ + (µπθ
− µ)(µπθ

− µ)T
)
Σ−1.

Corollary 1. For any θ ∈ Θ,
〈∇w(θ), h(θ)〉 ≤ 0,

and 〈∇w(θ), h(θ)〉 = 0 iff µ = µπθ
and Σ = Σπθ

.

Corollary 1 is equivalent to Proposition 2 in the main paper.

Proofs

1.1 Proof of Proposition 1

We start by proving a lemma. Let
PVθ = {Px : x ∈ Vθ}. (4)

Lemma 1. For any θ ∈ Θ, the sets {PVθ, P ∈ P} cover X and for any P,Q ∈ P , P 6= Q, the Lebesgue measure of
PVθ ∩QVθ is zero.

Therefore, Zθ = |P|−1 for any θ ∈ Θ.

Proof. Let θ ∈ Θ. We first prove that for any P,Q ∈ P and P 6= Q, the Lebesgue measure of PVθ ∩QVθ is zero. Observe
that PVθ ∩QVθ ⊆ {x : Lθ(PTx) = Lθ(QTx)} and Lθ(PTx) = Lθ(QTx) iff

(x− Pµ)TPΣ−1PT (x− Pµ) = (x−Qµ)TQΣ−1QT (x−Qµ),

or, equivalently,
xT

(
PΣ−1PT −QΣ−1QT

)
x− 2µT

(
Σ−1PT − Σ−1QT

)
x = 0.

Then {x : Lθ(PTx) = Lθ(QTx)} is either a quadratic or a linear surface, and thus of Lebesgue measure zero, except if
both Σ−1 = RT Σ−1R and µ = Rµ with R = QTP . Since P is a group, R ∈ P and the definition of Θ now guarantees
that these two conditions never simultaneously hold when θ ∈ Θ.



We now prove that X ⊆
⋃

P∈P PVθ. For any x ∈ X , there exists P ∈ P such that Lθ(Px) = minQ∈P Lθ(Qx). Then,
x ∈ PTVθ and this concludes the proof since P is a group.

Let P ∈ P . Observe that since π is invariant under the action of P ,∫
Vθ

π(y)dy =
∫

Vθ

π(Py)dy =
∫

PVθ

π(x)dx.

Then, since Leb(PVθ ∩QVθ) = 0 for any P 6= Q and X =
⋃

P∈P PVθ,

Zθ =
∫

Vθ

π(y)dy =
1
|P|

∑
P∈P

∫
PVθ

π(x)dx =
1
|P|

∫
π(x)dx =

1
|P|

.

Proof. (of Proposition 1) Since π(Px) = π(x) for any x ∈ X and P ∈ P ,∫
Vθ

log π(y) π(y)dy =
∫

Vθ

log π(Py) π(Py)dy =
∫

PVθ

log π(x) π(x)dx.

Then, by Lemma 1, for any θ ∈ Θ,∫
Vθ

log π(y) π(y)dy =
1
|P|

∑
P∈P

∫
PVθ

log π(x)π(x)dx =
1
|P|

∫
log π(x)π(x)dx.

Since Zθ = 1/|P| by Lemma 1, this implies that

−
∫

log πθ(x)πθ(x)dx = − log |P| − |P|
∫

Vθ

log π(x)π(x)dx = − log |P| −
∫

log π(x)π(x)dx,

thus showing that for any θ ∈ Θ, ∫
log

πθ(x)
π(x)

πθ(x)dx = log |P|,

and ∫
log

πθ(x)
N (x|θ)

πθ(x)dx = w(θ) + log |P|+
∫

log π(x)π(x)dx.

1.2 Proof of Proposition 2 (Proposition 3 in the main paper)

Let θ ∈ Θ. By definition of w and by Lemma 1,

w(θ) =
1
2

ln det(Σ) +
|P|
2

∫
Vθ

Lθ(x)π(x)dx

where Vθ and Lθ are given resp. by (4) and (1) and |P| denotes the cardinal of P . We have

|P|
∫

Vθ

Lθ(x)π(x)dx =
∑
P∈P

∫
Vθ

Lθ(x)π(x)dx =
∑
P∈P

∫
PVθ

Lθ(PTx)π(x)dx,

where we use that π is invariant under the action of P . In addition, by definition,

PVθ = {x ∈ X : Lθ(PTx) = min
Q∈P

Lθ(Qx)}.

Then by using Lemma 1,

|P|
∫

Vθ

Lθ(x)π(x)dx =
∑
P∈P

∫
PVθ

min
Q∈P

Lθ(Qx)π(x)dx =
∫

min
Q∈P

Lθ(Qx)π(x)dx.

Finally, by definition of Lθ, Lθ(Qx) = L(QT µ,QT ΣQ)(x), and this concludes the proof.



1.3 Proof of Proposition 3

We start by two lemmas. Lemma 2 is established for generic loss functions Lθ and a generic open set Θ. Its proof is
adapted from [1, Lemma 4.10, page 44]. We then show in Lemma 3 that this result applies to the loss function given by (1)
and the set Θ given by (3).

Lemma 2. Let Θ be an open subset of R`, r be a positive integer and O ⊆ Θr be an open set. Let X ⊆ Rd be a
measurable set and π be a probability density w.r.t. the Lebesgue measure on X . Let {Lθ, θ ∈ Θ} be a family of loss
functions Lθ : X → R, satisfying

1. For π-almost every x, θ 7→ Lθ(x) is C1 on Θ and for any θ ∈ Θ, there exists h0 > 0 such that∫
sup

‖h‖≤h0

1
‖h‖

|hT ∇θLθ(x)| π(x)dx <∞.

2. For any θ ∈ Θ, there exists h0 > 0 such that∫
sup

‖h‖≤h0

|Lθ+h(x)− Lθ(x)|
‖h‖

π(x)dx <∞.

3. For any θ = (θ1, ..., θr) ∈ O, the sets

Vθi = {x ∈ X : Lθi(x) ≤ minjLθj (x)}

are measurable, cover X and for any i 6= j, the Lebesgue measure of Vθi
∩ Vθj

is zero.

For θ = (θ1, · · · , θr) ∈ O define the function ψ : Θr → R

ψ(θ) =
∫

min
1≤i≤r

Lθi(x) π(x)dx.

Then ψ is differentiable on O and for 1 ≤ i ≤ r,

∇θi
ψ(θ) =

∫
Vθi

∇θiLθi(x)π(x)dx.

Proof. (of Lemma 2) Let θ = (θ1, · · · , θr) ∈ O. Set

d(x,θ) = min
1≤i≤r

Lθi(x).

By definition of the function ψ

ψ(θ + h)− ψ(θ) =
∫ (

d(x,θ + h)− d(x,θ)
)
π(x)dx. (5)

We prove that lim‖h‖→0 ‖h‖−1
(
ψ(θ + h)− ψ(θ)−

∑r
i=1

∫
Vθi
〈∇θiLθi(x), hi〉π(x)dx

)
= 0 by applying the domi-

nated convergence theorem.

By Assumption 3,

ψ(θ + h)− ψ(θ) −
r∑

i=1

∫
Vθi

〈∇θiLθi(x), hi〉π(x)dx

=
r∑

i=1

∫
Vθi

(
d(x,θ + h)− d(x,θ)− 〈∇θiLθi(x), hi〉

)
π(x)dx.

Set
V ◦θi

= {x ∈ X : Lθi
(x) < minj 6=iLθj

(x)}



and note that Vθi \ V ◦θi
has measure zero under Assumption 3. Then

ψ(θ + h)− ψ(θ)−
r∑

i=1

∫
Vθi

〈∇θiLθi(x), hi〉π(x)dx

=
r∑

i=1

∫
V ◦

θi

(
d(x,θ + h)− d(x,θ)− 〈∇θiLθi(x), hi〉

)
π(x)dx.

Let x ∈ V ◦θi
; under Assumption 1, θ 7→ Lθ(x) is continuous on Θ and there exists εx such that

‖h‖ ≤ εx ⇒ d(x,θ + h) = Lθi+hi(x).

Then, by Assumption 1,

d(x,θ + h)− d(x,θ)− 〈∇θiLθi(x), hi〉 = Lθi+hi(x)− Lθi(x)− 〈∇θiLθi(x), hi〉 = C(θi, x, hi)

with ‖hi‖−1C(θi, x, hi) → 0 when ‖hi‖ → 0. Hence, we proved that for any i ≤ r and any x ∈ V ◦θi
,

lim
‖h‖→0

‖h‖−1
(
d(x,θ + h)− d(x,θ)− 〈∇θiLθi(x), hi〉

)
= 0.

We now prove that there exists h0 such that∫
sup

‖h‖≤h0

‖h‖−1
∣∣d(x,θ + h)− d(x,θ)−

r∑
i=1

〈∇θiLθi(x), hi〉1Vθi
(x)

∣∣π(x)dx < +∞. (6)

First remark that for all z,a = (a1, · · · , ar), b = (b1, · · · , br),

|d(z,a + b)− d(z,a)| ≤ max
1≤i≤r

|Lai+bi(z)− Lai(z)|. (7)

Indeed, assume without loss of generality that d(z,a) ≤ d(z,a + b) and let i be such that d(z,a) = Lai
(z), then by

definition of the distance d, d(z,a + b) ≤ Lai+bi(z), which proves Eq. (7). Now, the proof of (6) is a consequence of
Assumptions 1 and 2 and the inequality

max
1≤i≤r

|Lai+bi
(z)− Lai

(z)| ≤
r∑

i=1

|Lai+bi
(z)− Lai

(z)|.

Lemma 3. The quadratic loss function given by (1), the set Θ given by (3) and the open set

O = {(Pµ, PΣPT ) : P ∈ P, (µ,Σ) ∈ Θ}

satisfy the assumptions of Lemma 2.

Proof. (of Lemma 3) When taking derivatives with respect to a matrix, we shall use the “vec” notation during computations.
For a d × d matrix A, its vectorized form vec(A) is a d2 vector such that vec(A) stacks the columns of A on top of one
another. In general, we refer to [2] for matrix algebra notions.

We check the conditions of Lemma 2. Denote by r the cardinality of P and set P = (Id, P2, · · · , Pr). We set

O = {(θ1, · · · , θr) ∈ Θr : θi = (Piµ, PiΣPT
i ),∀i ≥ 1}.

Note that Lθi(x) = Lθ1(P
T
i x) and Vθi = PiVθ1 .

We have
(µ,Σ) 7→ (x− µ)T Σ−1(x− µ) =

1
det Σ

(x− µ)T Adjugate(Σ)(x− u)



so that θ 7→ Lθ(x) is a rational function in the coefficients of µ and Σ whose denominator det Σ > 0. In addition,

sup
‖h‖≤h0

1
‖h‖

∣∣hT∇θLθ(x)
∣∣ ≤ ‖∇θLθ(x)‖ ≤ ‖∇µLθ(x)‖+ ‖∇ΣLθ(x)‖.

The RHS is at most quadratic in x (for fixed θ). Under the stated assumptions on π, the RHS is π-integrable. This proves
Assumption 1.

We now prove Assumption 2. Let θ ∈ Θ and set ∆θ = (∆µ,∆Σ). By standard algebra, we have

(Σ + ∆Σ)−1 = Σ−1 − Σ−1 ∆Σ Σ−1 + o(‖∆Σ‖)

for any matrix ∆Σ such that Σ + ∆Σ is invertible. Therefore,

Lθ+∆θ(x)− Lθ(x) = −2(∆µ)T Σ−1(x− µ)− (x− µ)T Σ−1 ∆Σ Σ−1(x− µ) + Ξ(x, θ,∆θ),

for some function Ξ(x, θ,∆θ) such that

|Ξ(x, θ,∆θ)| ≤ C(θ)‖x‖2‖∆θ‖2

and some constant C(θ) (depending upon θ but independent of x and ∆θ). The proof is concluded since
∫
‖x‖2π(x)dx <

+∞.

Finally, the sets Vθi are measurable for any θ1, · · · , θr ∈ Θ since (x, θ) 7→ Lθ(x) is continuous on X × Θ. The proof of
Assumption 3 is then concluded by application of Lemma 1.

We finally turn to proving Proposition 3.

Proof. (of Proposition 3) Let r denote the cardinality of P and set P = (Id, P2, · · · , Pr). Let θ ∈ Θ. By Proposition 2,
we have

w(θ) =
1
2

ln det(Σ) +
1
2

∫
min

1≤i≤r
Lθi

(x) π(x)dx,

where θi = (Piµ, PiΣ−1PT
i ).

We first consider the derivative w.r.t. µ. We have

∇µw(θ) =
1
2
∇µ

∫
min

1≤i≤r
Lθi

(x) π(x)dx.

By Lemmas 2 and 3 and the chain rule, we have

∇µw(θ) =
1
2

r∑
i=1

PT
i

∫
{x:Lθi

(x)≤minj Lθj
(x)}

∇µi

[
(x− µi)PiΣ−1PT

i (x− µi)
]
µi=Piµ

π(x)dx

= −Σ−1
r∑

i=1

∫
{x:Lθi

(x)≤minj Lθj
(x)}

(PT
i x− µ) π(x)dx

By definition of PiVθ (see (4)),
{x : Lθi(x) ≤ min

j
Lθj (x)} = PiVθ.

Hence, by Lemma 1 and since π is invariant under action of P , we have

∇µw(θ) = −Σ−1
r∑

i=1

∫
Vθ

(x− µ) π(x)dx = −Σ−1

∫
(x− µ)[rπ(x)1Vθ

(x)]dx = −Σ−1 (µπθ
− µ) ,

where we used the definition of µπθ
.

We now consider the derivative w.r.t. Σ, that we will derive in a similar manner. We refer to [2] for matrix algebra notions
such as Kronecker products. First remark that, by standard algebra and since Σ is symmetric,

∇vec(Σ)ln det Σ = vec(Σ−1).



Then recall that
∇vec(Σ)(x− µ)Σ−1(x− µ) = −Σ−1(x− µ)⊗ Σ−1(x− µ).

Now, using Lemmas 2 and 3 along with the chain rule, we have

∇vec(Σ)w(θ)− 1
2

vec(Σ−1) =
1
2

r∑
i=1

(Pi ⊗ Pi)T

∫
PiVθ

∇vec(Σi)

[
(x− Piµ)T Σ−1

i (x− Piµ)
]
Σi=PiΣP T

i

π(x)dx

= −1
2

r∑
i=1

(PT
i ⊗ PT

i )
∫

PiVθ

[
PiΣ−1PT

i (x− Piµ)
]
⊗

[
PiΣ−1PT

i (x− Piµ)
]
π(x)dx

= −1
2

r∑
i=1

∫
PiVθ

[
Σ−1(PT

i x− µ)
]
⊗

[
Σ−1(PT

i x− µ)
]
π(x)dx

= −1
2
(Σ−1 ⊗ Σ−1)

r∑
i=1

∫
PiVθ

[PT
i x− µ]⊗ [PT

i x− µ]π(x)dx

where we used the identities (A⊗B)T = AT ⊗BT and (A⊗B)(C ⊗D) = (AC)⊗ (BD). A change of variables now
leads to

∇vec(Σ)w(θ)− 1
2

vec(Σ−1) = −1
2
(Σ−1 ⊗ Σ−1)

r∑
i=1

∫
Vθ

(x− µ)⊗ (x− µ)π(x)dx

= −1
2
(Σ−1 ⊗ Σ−1)

∫
(x− µπθ

+ µπθ
− µ)⊗ (x− µπθ

+ µπθ
− µ)[rπ(x)1Vθ

(x)]dx

= −1
2
(Σ−1 ⊗ Σ−1)

(∫
(x− µπθ

)⊗ (x− µπθ
)πθ(x)dx+ (µπθ

− µ)⊗ (µπθ
− µ)

)
= −1

2
(Σ−1 ⊗ Σ−1)vec(Σπθ

+ (µπθ
− µ)(µπθ

− µ)T )

where we used the distributivity of the Kronecker product, Lemma 1 and the definitions of µπθ
and Σπθ

. Finally, the
identity vec(AXB) = (BT ⊗A)vec(X) allows us to write

∇vec(Σ)w(θ) = −1
2

vec
(
Σ−1[Σπθ

− Σ + (µπθ
− µ)(µπθ

− µ)T ]Σ−1
)
.

1.4 Proof of Corollary 1 (Proposition 1 in the main paper)

Let θ ∈ Rd × C+
d . By definition of the scalar product on Rd ×Md we have

〈∇w(θ), h(θ)〉 = − (µπθ
− µ)T Σ−1 (µπθ

− µ)T

− 1
2
Trace

(
Σ−1[Σπθ

− Σ + (µπθ
− µ)(µπθ

− µ)T ]Σ−1[Σπθ
− Σ + (µπθ

− µ)(µπθ
− µ)T ]

)
.

The first term of the right-hand side is negative since Σ−1 ∈ C+
d , and this term is null iff µ = µπθ

. For the second term,
note that since (A,B) 7→ Trace(ATB) is a scalar product on Md, TraceATA ≥ 0. This yields

Trace
(
Σ−1[Σπθ

− Σ + (µπθ
− µ)(µπθ

− µ)T ]Σ−1[Σπθ
− Σ + (µπθ

− µ)(µπθ
− µ)T ]

)
= Trace

(
Σ−1/2[Σπθ

− Σ + (µπθ
− µ)(µπθ

− µ)T ]Σ−1[Σπθ
− Σ + (µπθ

− µ)(µπθ
− µ)T ]Σ−1/2

)
≥ 0,

and when µ = µπθ
, this term is null iff Σ = Σπθ

.
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