
Controlling Selection Bias in Causal Inference
(Supplementary Material)

Elias Bareinboim Judea Pearl
Cognitive Systems Laboratory

Department of Computer Science
University of California, Los Angeles

Los Angeles, CA. 90095
eb@cs.ucla.edu

Cognitive Systems Laboratory
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA. 90095
judea@cs.ucla.edu

Supplementary Material – Proofs

Theorem 1

(if part) Our target quantity is OR(X,Y | C) and
given that Z is OR-admissible relative to (X,Y,C),
Corollary 2 permits us to add Z and rewrite it as
OR(X,Y | C,Z). Given that the first condition of
the theorem holds, Corollary 1 implies OR(X,Y |
C,Z) = OR(X,Y | C,Z, S = 1). This establishes
G-recoverability since the r.h.s. is estimable from the
available s-biased data.

(only if part) If the conditions of the theorem cannot
be satisfied, then OR(X,Y | C) is not G-recoverable,
that is, there exist two distributions P1, P2 compatible
with G such that they agree in the probability under
selection, P1(V \ {S} | S = 1) = P2(V \ {S} | S = 1),
and disagree in the odds ratio, OR1(X,Y | C) 6=
OR2(X,Y | C). We first consider the case when
C = {}, and we will construct two such distributions.
Let P1 be compatible with the graph G1 = G, and P2

with the subgraph G2 where all edges pointing to S
are removed. Both are compatible with G, since com-
patibility with a subgraph assures compatibility with
the graph itself (Pearl, 1988). Notice that P2 harbors
an additional independence (V \{S} ⊥⊥ S)P2 . By con-
struction P1(X,Y | S = 1) = P2(X,Y | S = 1), but
since

P2(X,Y |S = 1) = P2(X,Y),

we have:
P1(X,Y |S = 1) = P2(X,Y)

We can then simplify OR2 rewriting it as follows

OR2 =
P1(X,Y, S = 1)P1(X,Y , S = 1)
P1(X,Y, S = 1)P1(X,Y , S = 1)

, (1)

and similarly for OR1,

OR1 =
P1(X,Y)P1(X,Y)
P1(X,Y)P1(X,Y)

(2)

We want to show that it is possible to produce a
parametrization of P1 in such way that OR1(X,Y) 6=
OR2(X,Y). First, let us consider the class of Marko-
vian models. Accordingly, P1 can be parametrized
through its factors in the Markov decomposition
P1(S = 1 | PAs), P1(X | PAx), . . ., or more generally,
P1(Vi | PAi) for each family in the graph. This choice
of parameters induces a valid parameterization for P2

as well. Firstly, let us consider the case in which con-
dition 1 of the theorem fails, i.e., {X,Y } are not sepa-
rable from S. Thus, eq. (1) can be rewritten using the
identity P1(X,Y, S = 1) = P1(S = 1 | X,Y)P1(X,Y),
yielding:

OR2 = OR1

(
P1(S = 1|X,Y)P1(S = 1 | X,Y)
P1(S = 1 | X,Y)P1(S = 1 | X,Y)

)
(3)

Note that making the multiplier of OR1 in eq. (3) dif-
ferent than 1 entails OR2 6= OR1, which will happen
for almost all parametrizations of P1(S = 1 | .) inde-
pendently of the one chosen for P1(X,Y). In case there
are additional nodes pointing to S, we can just make
them independent of S in this new parametrization
given that compatibility with the subgraph is enough
to ensure compatibility with G.

Now, let us consider the case in which condition 2 of
the theorem fails, i.e., there is no OR-admissible se-
quence in relation to (X,Y, {}). Let Z = V\{X,Y, S},
and expand P1(X,Y, S = 1) in the following way1:

P1(X,Y, S = 1) =
∑
Z

P1(X,Y, S = 1,Z)

=
∑
Z

P1(X | PAx) ... P1(S = 1 | PAs)

1It clear that we should consider in the expression above
(in respect to Z) just the nodes that are somehow related
to S, i.e., its ancestors, otherwise we could just sum these
vertices out because they do not offer any additional con-
straint over the distribution of interest related to OR, and
then in its respective parameterization.

Supplementary Material

=
∑
Z

∏
V∩S=1

P1(Vi | PAi) (4)

Notice that each term in eq. (1) can be rearranged for
each assignment of S’ parents (i.e., PAs = pa(j)

s), for
instance, we can write based on eq. (4):

P1(X,Y, S = 1) =

P1(S = 1 | PAs = pa(1)
s , λ)

(∑
Z,PAs=pa

(1)
s

∏
V\S

P1(Vi | PAi)
)

+

P1(S = 1 | PAs = pa(2)
s , λ)

(∑
Z,PAs=pa

(2)
s

∏
V\S

P1(Vi | PAi)
)

+

. . .

P1(S = 1 | PAs = pa(k)
s , λ)

(∑
Z,PAs=pa

(k)
s

∏
V\S

P1(Vi | PAi)
)

(5)

where k is the number of configurations of S’ par-
ents, and λ indexes configurations of X or Y when-
ever one of them is a parent of S. Given eq. (5),
let us call P1(S = 1 | PAs = pa(1)

s , λ) = αλ1 ,
P1(S = 1 | PAs = pa(2)

s , λ) = αλ2 , . . ., and also call∑
Z,PAs=pa

(j)
s

∏
V\S P1(Vi | PAi) = fj(x, y) for each

configuration X = x, Y = y,PAs = pa(j)
s . Then, we

can write eq. (5) in the following simplified manner:

P1(X,Y, S = 1) = αλ1f1(x, y) + αλ2f2(x, y) + . . . (6)

for all values of X and Y . We can then rewrite OR2

based on eq. (6) as

OR2 =
(αλ1f1(x, y) + αλ2f2(x, y) + . . .)

(αλ1f1(x, y) + αλ2f2(x, y) + . . .)

× (αλ1f1(x, y) + αλ2f2(x, y) +)
(αλ1f1(x, y) + αλ2f2(x, y) + . . .)

(7)

and similarly for OR1:

OR1 =
(f1(x, y)) + f2(x, y) + . . .)(f1(x, y) + f2(x, y) + . . .)
(f1(x, y)) + f2(x, y) + . . .)(f1(x, y) + f2(x, y) + . . .)

(8)

There is an important observation here. Given that
there is no admissible sequence relative to (X,Y, {}),
there exists a set W such that W is needed to sep-
arate S from X or Y , but also (W ⊥⊥/ {X,Y } | Z′),
for Z′ non-descendents of W and in Anc(S), otherwise
there will exist an admissible sequence. If W is differ-
ent than {S}, it is the case that, by construction, W
is contained in the factor fi(x, y). Thus, we have an
asymmetry given that W, and so fi(), change depend-
ing simultaneously on the specific instantiation of X
and Y , and consequently eq. (7) cannot be simplified

in the general case. I.e., the linear combinations en-
coded in fi()’s at eq. (7) do not deteriorate, factoring
out independently of the given parametrization given
that there is a different element in each one of them.

Now let us consider the following parametrization for
P1: set P1(Vi | PAi) = 1/2 for all families except for
the family of the S node (i.e., P (S = 1 | PAs)) and the
exclusive families included in the factor fi(x, y) (i.e.,
for when X = x, Y = y). Thus, rewrite OR2 based on
eq. (7):

OR2 =
(αλ1f1(x, y) + αλ2f2(x, y) + . . .)

(1/2)l(αλ1 + αλ2 + . . .)
(9)

where l is equal to k minus the number of summands in
the respective expression (eq. (5)). Let us also rewrite
eq. (8) accordingly with this given parametrization,
which yields:

OR1 =
(f1(x, y) + f2(x, y) + . . .)

k(1/2)l
(10)

After applying some simplifications on eqs. (9) and
(10), we obtain, respectively,

OR2 =
(αλ1f1(x, y) + αλ2f2(x, y) + . . .)

(αλ1 + αλ2 + . . .)
(11)

and

OR1 =
(f1(x, y) + f2(x, y) + . . .)

k
(12)

Notice that OR2 in eq. (11) is the weighted arithmetic
mean of fi(.)’s averaged by αλi ’s, and OR1 in eq. (12)
is the arithmetic mean of fi(.)’s. After simplifications,
the remaining parameters lie in the space [0, 1]m+k,
where m is the number of free parameters in fi(.)’s.
Note that OR1 − OR2 = 0 adds a constraint in this
space, and in order to satisfy it we should choose any
point in a surface in [0, 1]m+k−1 inside [0, 1]m+k, i.e.,
which has Lebesgue measure zero. Consequently, if we
randomly choose parameters the equality will almost
never hold (and the inequality OR1 6= OR2 almost
always), and then just randomly draw the parameters
from [0, 1]m+k until this is the case, which finishes this
part of the proof. The case of the conditional OR is
similar, and we basically have to write appropriately
eqs. (1) and (2) considering C, and exactly the same
reasoning applies.

For the case when the graph contains unobservable
variables, the proof is essentially the same except that
an appropriate parametrization of the underlying gen-
erating model should be used – for such, consider the
factorization given in (Evans and Richardson, 2011).

Elias Bareinboim, Judea Pearl

Theorem 2

For the necessity of the condition, we need to show
that the failure of any ancestor Ai of S that is also
a descendant of X (including S itself) to be sepa-
rated (from either X or Y) prevents recoverability of
OR(Y,X | C). Indeed, Ai cannot be part of admis-
sible sequence nor can any of its children be part of
an admissible sequence, because in order to separate
any such child from either X or Y we would need to
condition on the father Ai, and then, the sequence
will become non-admissible. Proceeding by induction,
we eventually reach S itself, whose failure to enter an
admissible sequence renders the existence of such se-
quence impossible. By Theorem 1, the inexistence of
admissible sequence implies the not G-recoverability
of OR(X,Y,C). �

Theorem 3

We use along the proof some graphoid axioms and
other DAG properties as shown in (Pearl, 1988). Let
us first consider the correctness of the algorithm. The
main idea of the reduction sequence is to use each
conditional independence (CI) in step 2 of the sink-
procedure to substantiate an OR reduction, creating a
mapping starting from the s-biased data OR(X,Y |
C, Z1, ..., Zk, S = 1) and reaching the target (un-
biased) expression OR(X,Y | C). If nodes are not
added in step 3 of the algorithm, it is obvious that
the sequence induces a valid step-OR reduction, which
witnesses the OR G-recoverability. So, let us con-
sider the case when nodes have to be added to T
along the execution of the algorithm. At each step i,
we reduce OR(X,Y | C,T, Z1, ..., Zi) to OR(X,Y |
C,T, Z1, ..., Zi−1) allowed by the CI in step 2. But
given that Ti can be added to T along the execution
of the algorithm, we need to show that this operation
is allowed, i.e., it does not invalidate the construction
of the desired mapping between the unbiased OR and
the s-biased one. Towards contradiction, consider an
arbitrary node Zj such that

(Zj ⊥⊥ X | C,T, Y, Z1, ..., Zj−1) or
(Zj ⊥⊥ Y | C,T, X, Z1, ..., Zj−1) (13)

Now, consider the first Zk such that k < j and, in
order to satisfy step 2 in the sink-procedure, W has
to be added to the conditioning set, then

(Zk ⊥⊥ X | C,T, Y, Z1, ..., Zk−1,W) or
(Zk ⊥⊥ Y | C,T, X, Z1, ..., Zk−1,W) (14)

but also

(Zj ⊥⊥ X | C,T, Y, Z1, ..., Zj−1,W) or
(Zj ⊥⊥ Y | C,T, X, Z1, ..., Zj−1,W) (15)

is false. If the sink-procedure ends, it is also true that

(T ⊥⊥ Y | C, X) (16)

From eq. (13), all paths from Zj to X or Y (including
the ones passing through W) are closed after condi-
tioning on {C,T, Y, Z1, ..., Zj−1}. From eq. (14) and
the minimal choice of Ti in step 3, it must be the case
that there is a path p from Zk to X or Y such that
p is blocked by some W ∈ W. From eq. (15), there
exists a path p′ that has to be open after condition
on W, and therefore there exists a collider U such
that U = W or W ∈ Desc(U). Let us consider two
possible scenarios for p′, the first when it goes from
Zj to Y , and the second when it goes from Zj to X.
In the former case, there is an open path from W to
Y , which is a contradiction with eq. (16) given that
W ⊆ T. Then it must be the case that W only blocks
paths ending in X, so let us assume the case in which
the end node in p′ is X. From (14), p is such that
Zk ←→← ... −W − ... →←→ X, where we are con-
dition on all intermediate converging arrows and W
must be a chain or a common cause (i.e., → W → or
←W →). Split p into p1 : Zk . . .W , and p2 : W . . .X.
From eq. (15), p′ is such that W opens a collider U ,
then the path from Zj to X. Split p′ into p′1 : Zj ...→ U
and p′2 : U ← ...X. Now we have two possibilities.
If p2 is such that W → . . . X, we can concatenate

Zk
p′
1→ U → W

p2→ X, which shows an open path from
Zk to X even before conditioning on W , contradiction.
If p2 is such that W ← . . . X, p1 must be W → . . . Zk,
and we have two possibilities: (a) Zk can be a descen-
dent of W , and in this case the collider in U is already
open even without conditioning on W , contradiction;
(b) W is connected to Zk through some collider, for
instance, p1 could be W → . . .→ C ← . . . Zk, but sim-
ilarly as before, given that we condition on C, which
is a descendent of W , and so of U , the collider was
already conditioned as well as the path from Zk to X
open, contradiction. Therefore, it cannot be the case
that after adding Tk ⊆ NonDesc(X) to block paths
from Zk to X or Y , there is a node Zj such that
k < j, and which previously had its paths to X or
Y blocked, turned to have them open after condition-
ing on Tk. Thus, we are allowed to modify each CI
obtained in step 2 before Zk in the sequence adding
Tk, and then based on the admissible sequence start-
ing from OR(X,Y | C,T, Z1, ..., Zn), we can reduce it
through this new augmented CIs of step 2 until reach-
ing the desired expression OR(X,Y | C).

Now we consider the complexity of the algorithm, and
we show that it runs in polynomial time. Notice that
only the step 3 of the algorithm could imply some
backtracking – i.e., when it chooses a (minimal) set
Ti of non-descendants of X that renders the equality

Supplementary Material

in step 2 to be true. The choice of separating set per
se is polynomial, see footnote 5.

Consider that the choice of Ti implies failure in step 5
when it tests the validity of (T ⊥⊥ Y | X,C). Assume
that it exists a sequence Q of ancestors of S and not
ancestors of X, (Z1, ..., Zk, ..., Zn) such that for each
Zi there is a separating set Ti which makes the inde-
pendence test valid. Let T =

⋃
Ti, and assume that

(T ⊥⊥ Y | X,C) holds. Assume now that in round k,
the sink procedure chooses a different (minimal) sepa-
rating set than Tk, and call this new set T′k, and subse-
quently (T′k+1, ...,T

′
n). We have the new sequence Q′

with additional separators (T1, ...,Tk−1,T′k, ...,T
′
n).

Call T′ =
⋃

T′i, and ∆ = T′ \ (T ∩T′).

We have that (T′ ⊥⊥/ Y | X,C) holds, or just
(∆ ⊥⊥/ Y | X,C). (This follows from (∆ ⊥⊥ Y |
X,C), which by composition yields (T′ ⊥⊥ Y | X,C),
contradiction. See also (Pearl and Paz, 2010).) Let
δ ∈ ∆ be the first node such that that Q and Q′

disagree and which make step 5 to fail. δ blocks at
least one path from Zk to X (after condition on
{C, Y,T, Z1, ..., Zk−1,Ti \ δ}) or from Zk to Y (after
condition on {C, X,T, Z1, ..., Zk−1,Ti \ δ}), otherwise
the sequence will not be admissible (pass in the test
of step 2). By construction, it must be the case that
there is an open path from Zk to Y passing through δ
(after cond. on {C,X,Q,Z1, ..., Zk−1,Ti \ δ}).

Let p be part of this path from δ to Y (or, δ− ...−Y).
There must exist in Q a vertex v which blocks this
same path from Zk to {X,Y } or {Y } in the test
of step 2. But v is in p or connected through an
open path p′ to δ (i.e., p : δ − ... − v − ... − Y or
v − ... − p′ − ... − δ − ... − p − ... − Y), otherwise we
would not need δ in the first place, contradicting min-
imality. In both cases, there is an open path from v to
Y , which contradicts the assumption about Q validat-
ing (T ⊥⊥ Y | X,C) as true, and therefore it cannot ex-
ist such δ. Applying the same reasoning for the whole
sequence Q′ inductively, we conclude that it cannot
exist such sequence. Therefore, step 5 does not imply
any backtracking.

Similarly, let us consider the case when the choice of Tj

implies failure in a subsequent step 2. In the sequence
Q′, it is true that when the algorithm chooses Tj to
satisfy the admissibility of Zj , it blocks some paths
from Zj to X. Now, assume that for Zk, k < j, there
is an open path through Tj, i.e., Zk ←→ U ←→ X,
where U = Tj or Tj ∈ Desc(U). But if you do not
choose Tj (or any other node that blocks this path),
we would have an open path from Zk to X through
Tj, contradiction.

We now argue about the completeness of the proce-
dure. Let us first consider the case in which there is not

X-independent variable in the admissible sequence,
the sink-procedure will return an admissible sequence
whenever one exists. Notice that the sink-procedure
performs a search for an admissible sequence in re-
verse topological order, and this only makes the con-
ditional independence’s tests easier than in any other
order. This is so because in each step, we are adding
all non-descendents of Zk (are non-colliders for Zk),
which completely disconnects Zk from X or Y except
for paths passing through non-descendents ofX. (Also,
non step-wise reductions can be converted to step-wise
one through the graphoids decomposition and weak
union.)

Assume that there is a sequence (A1, ..., Am) called
A that does not follow the order given by the sink-
procedure and it is admissible. Now, let us call Q the
sequence (Z1, ..., Zn) given by the sink-procedure, and
further assume that Q is not admissible. It is true
that the last element of both sequences is S, and in
Q we would have the blocking set {Z1, ..., Zn−1} while
in A we would have {A1, ..., Am−1}. It is true that
{A1, ..., Am−1} ⊆ {Z1, ..., Zn−1}, and this is an in-
variant along the algorithm for all nodes in A. Recall
two facts: (a) for now, we are assuming that there are
not disagreements between TQ and TA; (b) adding
descendents of Zk in each step can only open some
paths and spoil separation. It must be the case for
the sink-procedure to fail, there exists Zk ∈ Q such
that (Zk ⊥⊥ X | Y,C, Z1, ..., Zk−1) and (Zk ⊥⊥ Y |
X,C, Z1, ..., Zk−1) are both false. Thus, there is at
least one path from Zk to X and from Zk to Y that are
not blocked by {Z1, ..., Zk−1}∪ {C} (and respectively,
{Y } and {X}); call the set of these paths P1 and P2,
respectively.

Assume that A also chooses Zk at some point along its
execution, and Zk is labeled there Am. It must be the
case that all paths from Am to X or all paths from
Am to Y are blocked by {A1, ..., Am−1} ∪ {C} (and
respectively, {Y } and {X}). But if {A1, ..., Am−1} ⊆
{Z1, ..., Zk−1}, this is a contradiction. Now assume
that A does not choose Zk along its execution. There
are ancestors of S which have to block P1 from S to
X or P2 from S to Y , and we consider without loss
of generality the subset {A1, ..., Al} that renders this
separation to hold. Consider Aj the first descendant
of Zk in G∗ that is in {A1, ..., Al}. If such node is S,
we reach a contradiction. Assume that Aj is not S but
some of its ancestors. To separate Aj from X or Y , we
need to block the paths from it to X or Y , but there
are unblockable paths P1 and P2 passing through Zk
(Aj ← ...− Zk − P1 −X or Aj ← ...− Zk − P2 − Y),
and therefore Aj cannot be part of an admissible se-
quence, contradiction. Then, it is the case that if both
algorithms do not disagree in the choice of the non-

Elias Bareinboim, Judea Pearl

M 1 2 3 4 5 6 7 8 9 10 11 12
1 (c1 − 1)b1 c1b2 c1b3 c1b4
2 c2b1 (c2 − 1)b2 c2b3 c2b4
3 c3b1 c3b2 (c3 − 1)b3 c3b4
4 (c4 − 1)b1 c4b2 c4b3 c4b4
5 c5b1 (c5 − 1)b2 c5b3 c5b4
6 c6b1 c6b2 (c6 − 1)b3 c6b4
7 (c7 − 1)b1 c7b2 c7b3 c7b4
8 c8b1 (c8 − 1)b2 c8b3 c8b4
9 c9b1 c9b2 (c9 − 1)b3 c9b4
10 (1− c10)b1 −c10b2 −c10b3 −c10b4 (1− c10)b1 −c10b2 −c10b3 −c10b4 (1− c10)b1 −c10b2 −c10b3 −c10b4
11 −c11b1 (1− c11)b2 −c11b3 −c11b4 −c11b1 (1− c11)b2 −c11b3 −c11b4 −c11b1 (1− c11)b2 −c11b3 −c11b4
12 −c12b1 −c12b2 (1− c12)b3 −c12b4 −c12b1 −c12b2 (1− c12)b3 −c12b4 −c12b1 −c12b2 (1− c12)b3 −c12b4

descendents of X, there is indeed not admissible se-
quence. For the case when we add X-independent vari-
ables along the sequence, the result also follows, and
this is so based on the fact shown previously that there
is no backtracking in the choice of Ti, and any algo-
rithm that chooses Ti consistently obtains the same
outcome in terms of separation. Each time that the
sink-procedure does not return any sequence, we can
produce a counter-example for the G-recoverability of
the triplet (X,Y,C) based on the construction of The-
orem 1. �

Theorem 4

Let us first show the result for the binary case. To
match the dimensionality requirement, we assume that
Z = Z1∪Z2 and both Z1 and Z2 are binary satisfying:

P (Z1, Z2 | X,Y, S) = P (Z1, Z2 | X,Y) (17)

To simplify the notation, let us write:

• P (X = x, Y = y | Z1 = z1, Z2 = z2) = αxy,z1z2
• P (Z1 = z1, Z2 = z2) = βz1z2
• P (Z1 = z1, Z2 = z2 | X = x, Y = y) = γz1z2,xy

Note that the parameters γz1z2,xy and βz1z2 impose
constraints on the distribution αxy,z1z2 , which can be
made explicit by the following equation,

γz1z2,xy =
αxy,z1z2βz1z2∑
z′
1,z

′
2
αxy,z′

1z
′
2
βz′

1z
′
2

(18)

Now, for a given assignment < X = 0, Y = 0 >, let us
list all independent parameters γz1z2,00,

γ00,00 =
α00,00β00∑

z′
1,z

′
2
α00,z′

1z
′
2
βz′

1z
′
2

γ01,00 =
α00,01β01∑

z′
1,z

′
2
α00,z′

1z
′
2
βz′

1z
′
2

γ10,00 =
α00,10β10∑

z′
1,z

′
2
α00,z′

1z
′
2
βz′

1z
′
2

(19)

Note that γ11,00 is not an independent parameter be-
cause it is completely determined by the other three
equations in (19) given the integrality constraint. For

now, we have 3 equations and 4 unknown variables
({α00,00, α00,01, α00,10, α00,11}.)

Similarly, we write the constraints for the assignments
< X = 1, Y = 0 > and < X = 0, Y = 1 >, respec-
tively,

γ00,10 =
α10,00β00∑

z′
1,z

′
2
α10,z′

1z
′
2
βz′

1z
′
2

, ... (20)

γ00,01 =
α01,00β00∑

z′
1,z

′
2
α01,z′

1z
′
2
βz′

1z
′
2

, ... (21)

Now, we can write the equations for the constraints
relative to the variables α11,z1z2 as a function of the
previous variables {α00,z1z2 , α01,z1z2 , α10,z1z2},

γ00,11 =
(

(1−
(
α00,00+ α01,00+ α10,00

)
)β00

)
/(∑

Z′
1,Z

′
2

(
1−
(
α00,z′

1z
′
2
+ α01,z′

1z
′
2
+ α10,z′

1z
′
2

))
βz′

1z
′
2

)
, ... (22)

Notice that the parameters γz1z2,11 are independent,
and we have 12 equations and 12 unknowns, but it re-
mains to show that the equations are all independent
(notice that the last three constraints in eq. (22) in-
volve variables of the other constraints). Another fact
to observe is that the system is indeed linear. We show
that the matrix M , induced by the eqs. (19, 20, 21, 22),
is linear and (almost surely) invertible, and generates
an unique solution. M is invertible if and only if its de-
terminant is non-zero. For convenience, let us display
the variables αxy,z1z2 column-wise, renaming βz1z2 as
constants b1 − b4, and γz1z2,xy as constants c1 − c12.
The matrix is shown on the top of the previous page.

In what follows, we exploit the block structure of M
and apply the following transformations to better vi-
sualize its determinant.

1. First note that all columns {1, 5, 9} are multiplied
by b1, which can be factored out by the deter-
minant property. Similarly for the other columns
in respect to {b2, b3, b4}, which can be expressed
as det(M) = (b1b2b3b4)3det(M (1)), where M (1) is
the resultant matrix.

Supplementary Material

2. Let us sum lines {1, 4, 7} to line 10, lines {2, 5, 8}
to line 11, and {3, 6, 9} to line 12, which generate
matrix M (2).

3. We now sum the columns of M (2), −1 times col-
umn 4 to column 1, −1 times column 4 to column
2, and −1 times column 4 to column 3 (similarly
for the other blocks), which yields M (3).

4. Sum the columns of M (3), c1 times column 1, c2
times column 2 and c3 times column 3 to column
4 (similarly for the other blocks), yielding M (4).

5. Now, reorder the columns, “pushing” column 4
and 8 towards the end, call the resultant matrix
M (5).

Now we are done, notice that the det(M) =
(b1b2b3b4)3det(M (5)), and the determinant of M (5) is
the determinant of two block matrices, the square ma-
trix M (5)

1 from lines 1-9 multiplied by another square
matrix M

(5)
2 from lines 10-12. Note that det(M (5)

1) =
−1, and remains to show that det(M (5)

2) is almost al-
ways different than zero. The parameters c1 to c12 are
independent, and given the form obtained to M

(5)
2

where all entries are independent, this implies that
M

(5)
2 is non-singular almost surely, and so it is M (5)

– coincidental cancellations will occur with Lebesgue
measure zero.

Therefore, we consider M as full rank, which can be
solved algebraically with standard techniques yielding
the solution α = M−1γ. This result, together with
P (Z) yields the joint distribution P (Y,X,Z). The case
for non-binary variables follows in a straightforward
way, just noticing the requirement for agreement be-
tween the dimensions of the IV set Z and {X,Y }. �

Corollary 5

First, apply Theorem 4 to the variables {W,Y } replac-
ing X with W , and obtain P (W,Y). Further note that
P (X | Y,W, S = 1) = P (X | Y,W), which together
with the first observation finishes this part of proof.
The proof for when we do not rely on Z is essentially
the same. �

1 Acknowledgement

The authors would like to thank the reviewers for
their comments that help improve the manuscript.
This paper also benefited from discussions with Hum-
berto Silva Naves, Onyebuchi Arah, and Sander
Greenland. This research was supported in parts by
NIH #1R01 LM009961-01, NSF #IIS-0914211, #IIS-
1018922, ONR #N000-14-09-1-0665, and #N00014-10-
1-0933.

References

Evans, R. J. and Richardson, T. S. (2011).
Marginal log-linear parameters for graphical markov
models. arXiv:1105.6075 [stat.ME].

Pearl, J. (1988). Probabilistic Reasoning in Intelli-
gent Systems. Morgan Kaufmann, San Mateo, CA.

Pearl, J. and Paz, A. (2010). Confounding equiv-
alence in causal equivalence. In Proceedings of the
Twenty-Sixth Conference on Uncertainty in Artifi-
cial Intelligence. AUAI, Corvallis, OR, 433–441.

