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Abstract

We present the first PAC bounds for learning
parameters of Conditional Random Fields
[12] with general structures over discrete and
real-valued variables. Our bounds apply
to composite likelihood [14], which gener-
alizes maximum likelihood and pseudolikeli-
hood [3]. Moreover, we show that the only
existing algorithm with a PAC bound for
learning high-treewidth discrete models [1]
can be viewed as a computationally inefficient
method for computing pseudolikelihood. We
present an extensive empirical study of the
statistical efficiency of these estimators, as
predicted by our bounds. Finally, we use our
bounds to show how to construct computa-
tionally and statistically efficient composite
likelihood estimators.

1 Introduction

Markov Randoms Fields (MRFs) (c.f., [11]) and Con-
ditional Random Fields (CRFs) [12] are models of dis-
tributions over random variables and are commonly
used in machine learning, natural language process-
ing, and other domains. MRFs and CRFs encode
distributions by using conditional independence struc-
ture which permits simpler representations. Unfortu-
nately, the task of inference (i.e., computing proba-
bilistic queries over variables) in these models is #P-
hard (and NP-hard to approximate) in general [16].

The difficulty of inference poses a particular problem
for parameter learning, i.e., estimating the values in a
distribution given its structure and a training dataset.
A popular method for parameter learning is maximum
likelihood estimation (MLE), which maximizes the ex-
pected likelihood of the data. However, the MLE opti-
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mization problem requires inference and so is compu-
tationally intractable in general. When approximate
inference is used, MLE generally loses its statistical
guarantees. Some methods, such as maximum pseudo-
likelihood estimation (MPLE) [3], estimate parameters
without intractable inference (i.e., using only tractable
probabilistic queries) but—before our work—only had
asymptotic guarantees [13].

We present the first strong finite sample guarantees
for learning the parameters of general CRFs (which
generalize MRFs) when the target distribution is in
our model class. Specifically, we analyze maximum
composite likelihood estimation (MCLE) [14], a gen-
eralization of MLE and MPLE which permits learn-
ing without intractable inference. We prove learning
bounds for MCLE w.r.t. the parameter estimation er-
ror and log loss within the probably approximately cor-
rect (PAC) framework [21]: we can achieve high accu-
racy with polynomial sample and computational com-
plexity. In the large sample limit, our bounds match
existing asymptotic normality results for MCLE [13].

To our knowledge, only one other method for learning
parameters of high-treewidth discrete models has PAC
guarantees [1]. We prove that the method actually
computes MPLE. Thus, our analysis covers the only
existing methods for PAC-learning CRF parameters.

We end with a detailed empirical analysis of our the-
oretical results. We show that our bounds accurately
capture MCLE behavior in terms of a few problem
properties, and we study how those properties vary
with model structure and parameters. Finally, we im-
prove upon the traditional use of MCLE by showing
that careful choice of the MCLE loss structure can
provide computationally efficient estimators with bet-
ter statistical properties and empirical performance.

2 Related Work

Many works have shown MPLE to be empirically suc-
cessful (c.f., [18–20]), with lower statistical but higher
computational efficiency than MLE. Theoretical anal-
yses have predicted such behavior (c.f., [6, 10, 13]), but
only in the asymptotic setting.
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Our analysis is most closely related to that of [15], who
proved sample complexity bounds for parameter esti-
mation error in regression problems Yi ∼ X in Ising
models. We adapt their analysis to handle general
log linear CRFs, structured losses, and shared param-
eters (Sec. 4.4), and we use the resulting bounds on
parameter estimation error to prove bounds on the log
loss. Our bounds resemble asymptotic normality re-
sults such as those of [13] and [4].

Other methods for learning without intractable infer-
ence include piecewise likelihood and piecewise pseu-
dolikelihood [19, 20], as well as stochastic composite
likelihood (which generalizes MCLE) [4]. These meth-
ods are often empirically successful but, to our knowl-
edge, do not have PAC guarantees. The one excep-
tion is [1], who use a (complicated) technique dubbed
the canonical parametrization to PAC-learn bounded-
degree factor graphs over discrete variables. In Sec. 5,
we show that their algorithm in fact computes MPLE.

Intractable inference in learning may be replaced with
approximate inference methods such as sampling and
variational inference (c.f., [7, 11, 22]). In general, sam-
pling lacks finite-time guarantees on the approxima-
tion accuracy of inference results. Variational infer-
ence sometimes includes problem-specific guarantees
computable at runtime, but not a priori PAC bounds.

3 Learning CRF Parameters

We write general log-linear CRFs in the form

Pθ(Y |X) =
1

Z(X; θ)
exp

(
θTφ(Y,X)

)
, (1)

where Y and X are sets of output and input variables,
respectively. Y and X may be discrete or real-valued.
θ is an r-vector of parameters; φ is an r-vector of fea-
tures which are functions of Y and X with bounded
range; and Z is the partition function. Note that an
MRF P (Y ) would be represented by letting X = ∅.
The feature vector φ implicitly defines the structure of
the CRF: each element φt is a function of some subset
of Y,X and defines edges in the CRF graph connecting
its arguments. We call each θTt φt(Y,X) a factor.

In parameter learning, our goal is to estimate θ from
a set of i.i.d. samples {y(i), x(i)} from a target dis-
tribution P (X)Pθ∗(Y |X), where θ∗ are the target pa-
rameters. Note we assume Pθ∗(Y |X) is in our model
family in Eq. (1). We learn parameters by minimizing

a loss ˆ̀, which is a function of the samples and θ, plus
a regularization term:

min
θ

ˆ̀(θ) + λ‖θ‖p. (2)

Above, λ ≥ 0 is a regularization parameter, and p ∈
{1, 2} specifies the L1 or L2 norm. We write ˆ̀ for the

loss computed w.r.t. the n training samples and ` for
the loss w.r.t. the target distribution.

The choice of loss function defines the estimator. MLE
minimizes the log loss:

`L(θ) = EP (X)Pθ∗ (Y |X) [− logPθ(Y |X)] . (3)

MPLE [3] minimizes the pseudolikelihood loss, which
is the sum over variables Yi of their likelihoods condi-
tioned on neighbors in Y\i

.
= Y \ {Yi} and in X:

`PL(θ) = EP (X)Pθ∗ (Y |X)

[
−
∑

i

logPθ(Yi|Y\i, X)

]
. (4)

In general, computing the conditional probabilities
P (A|·) in these losses takes time exponential in |A|.
Thus, computing the log loss can take time exponen-
tial in |Y |, while computing the pseudolikelihood loss
takes time linear in |Y |.
MCLE [14] minimizes the composite likelihood loss:

`CL(θ) = EP (X)Pθ∗ (Y |X)

[
−
∑

i

logPθ(YAi |Y\Ai , X)

]
,

(5)

where YAi is a set of variables defining the ith likeli-
hood component and Y\Ai

.
= Y \ YAi . With a single

component YAi = Y , MCLE reduces to MLE; if each
component is a single variable YAi = {Yi}, MCLE re-
duces to MPLE. MCLE thus permits a range of losses
between MLE and MPLE with varying computational
complexity. We discuss the choice of likelihood com-
ponents in Sec. 7.

If a feature φt is a function of Yi ∈ YAi , then we
say φt and θt participate in component Ai, and we
write θt ∈ θAi . Also, some works permit more general
components conditioned on YB ⊆ Y\Ai . We restrict
YB = Y\Ai for simplicity, and our analysis only re-
quires that the set of components A .

= {Ai} forms a
consistent estimator (i.e., an estimator which recovers
the target parameters with probability approaching 1
as the training set size approaches infinity).

4 Sample Complexity Bounds

This section presents our main theoretical results:
PAC bounds for learning parameters for general CRFs
using MCLE. We give bounds in terms of parameter
estimation error, which we then use to bound log loss.
The appendix has detailed proofs of all results.

We refer to our bounds as PAC bounds, although
the PAC framework requires learning to be polytime.
MLE and MCLE may or may not be polytime; our
bounds are thus statistical statements. We later dis-
cuss choosing tractable MCLE estimators, for which
our bounds are technically PAC bounds.
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4.1 Parameter Estimation: MLE

For comparison, we first give bounds for MLE. Our
bounds are written in terms of a few model prop-
erties: r (the number of parameters), φmax

.
=

maxt,y,x φt(y, x) (the maximum magnitude of any fea-
ture vector element), and Cmin (a lower bound on
Λmin

(
∇2`L(θ∗)

)
, the minimum eigenvalue of the Hes-

sian of the log loss w.r.t. the target distribution).1

Bounding the eigenvalues away from 0 prevents vari-
able interactions from being deterministic.

Our first theorem is a PAC bound for MLE w.r.t. pa-
rameter estimation error.

Theorem 4.1. (MLE PAC bound) Assume a lower
bound on the minimum eigenvalue of the log loss:
Λmin

(
∇2`L(θ∗)

)
≥ Cmin > 0. Suppose we learn pa-

rameters θ̂ by minimizing Eq. (2) using the log loss
`L w.r.t. n > 1 i.i.d. samples, using regularization

λ =
C2
min

26r2φ3
max

n−ξ/2, where ξ ∈ (0, 1). Then θ̂ will be

close to the target parameter vector θ∗:
∥∥∥θ̂ − θ∗

∥∥∥
1
≤ Cmin

4rφ3
max

n−ξ/2 (6)

with probability at least

1− 2r(r + 1) exp
(
− C4

min

213r4φ8
max

n1−ξ
)
. (7)

In Theorem 4.1, the constant ξ trades off the conver-
gence rate of the parameters with the probability of
success. As n −→∞, we may let ξ −→ 1 while keeping
the probability of success high; as ξ −→ 1, the conver-
gence rate approaches n−1/2, the asymptotic rate [13].
The next corollary eliminates ξ by converting the PAC
bound into a sample complexity bound.

Corollary 4.2. (MLE sample complexity) Given
the assumptions from Theorem 4.1, to estimate the
parameters within L1 error ε with probability at least
1− δ, it suffices to have a training set of size

n ≥ 29φ2
max

C2
min

1
(ε/r)2 log 2r(r+1)

δ . (8)

This sample complexity result implies that parame-
ters are easier to learn when the minimum eigenvalue
bound Cmin is large; i.e., estimators with large Cmin
are more statistically efficient.2 Asymptotic results
(e.g., [13, 15]) have related statistical efficiency to the
loss’ Hessian. The above bound is expressed in terms

1If the features are overcomplete, then r is the intrinsic
dimensionality of the feature space, computed as the num-
ber of non-zero eigenvalues of the log loss Hessian. Cmin
is a lower bound on the non-zero eigenvalues.

2We use “statistical efficiency” w.r.t. finite sample sizes,
borrowing the term from asymptotic analysis.

of ε/r, the error for the full parameter vector normal-
ized by the number of parameters r; keeping this nor-
malized parameter error ε/r constant, the bound in-
creases only logarithmically with r. Also, note that
changing φmax essentially rescales parameters.

4.2 Parameter Estimation: MCLE

We now present bounds generalized to MCLE. Since
MCLE can use multiple likelihood components Ai, our
bounds contain additional quantities. Mmax denotes
the maximum number of components in which any
feature participates. The bound Cmin applies to all
Ai ∈ A. We also write ρmin as a lower bound on
the sum of minimum eigenvalues for likelihood com-
ponents (w.r.t. the target distribution) in which any
parameter θt participates: ρmin

.
= mint ρt, where ρt ≤∑

i : θt∈θAi
Λmin(∇2[`CL(θ∗)]Ai). Here, [`CL(θ∗)]Ai de-

notes the loss term contributed by component Ai.

Intuitively, ρmin generalizes Cmin from MLE to
MCLE. Recall that MLE uses a single likelihood com-
ponent to estimate θ, and the minimum eigenvalue of
the component’s Hessian (Cmin) affects the statistical
efficiency of MLE. In MCLE, each parameter may be
estimated using multiple likelihood components, and
the sum of the minimum eigenvalues for those compo-
nents (ρmin) affects the statistical efficiency of MCLE.

We can now present our PAC bound for MCLE.

Theorem 4.3. (MCLE PAC bound) Assume we
use a consistent MCLE estimator `CL. Assume bounds
mini Λmin

(
∇2[`CL(θ∗)]Ai

)
≥ Cmin > 0, and let

ρmin = mint ρt. Suppose we learn parameters θ̂ by
minimizing Eq. (2) using the MCLE loss `CL w.r.t.
n > 1 i.i.d. samples, using regularization λ =

C2
min

26r2Mmaxφ3
max

n−ξ/2, where ξ ∈ (0, 1). Then θ̂ will be

close to the target parameter vector θ∗:
∥∥∥θ̂ − θ∗

∥∥∥
1
≤ ρmin

4rMmaxφ3
max

n−ξ/2 (9)

with probability at least

1− 2r(|A|r + 1) exp
(
− C4

min

213r4M4
maxφ

8
max

n1−ξ
)
. (10)

If the number of likelihood components is

|A| ≤ 1
2r2 (2r)

[
28C2

minM
2
max

ρ2min

]

, (11)

then Eq. (9) holds with probability at least

1− 4r exp
(
− ρ4minn

1−ξ

213r4M4
maxφ

8
max

)
. (12)

We can see that using multiple likelihood components
can worsen the bound by increasing Mmax and |A|
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but can also improve the bound by increasing ρmin.
Sec. 7 shows how careful choices of components can
improve this tradeoff. We include the special condition
Eq. (11) since it permits us to replace Cmin with ρmin
in the probability bound, which will later prove helpful
in explaining the behavior of MCLE with overlapping
components. Eq. (11) is a reasonable requirement in
many cases, and it holds for our empirical tests.

The following corollary converts Theorem 4.3 into a
sample complexity bound.

Corollary 4.4. (MCLE sample complexity)
Given the assumptions from Theorem 4.3, to estimate
the parameters within L1 error ε with probability at
least 1− δ, it suffices to have a training set of size

n ≥ 29M2
maxφ

2
maxρ

2
min

C4
min

1
(ε/r)2 log 2r(|A|r+1)

δ . (13)

If Eq. (11) holds, then it suffices to have

n ≥ 29M2
maxφ

2
max

ρ2min

1
(ε/r)2 log 4r

δ . (14)

Theorem 4.3 generalizes Theorem 4.1: with MLE,
ρmin = Cmin, Mmax = 1, and |A| = 1. For MPLE, we
have ρmin ≥ Cmin, Mmax = 2, and |A| = |Y |. Thus,
MLE’s statistical guarantees are stronger than those
for MPLE and MCLE only up to problem-dependent
constants. All three estimators’ sample complexity
bounds have the same dependence (up to log terms) on
the problem properties r and φmax, the desired error
ε, and the probability of failure δ.

The estimators mainly differ in their spectral proper-
ties. Recall that ρmin generalizes Cmin. If each pa-
rameter θt participates in an equal number of MCLE
components, then we may replace Mmax/ρmin with
the minimum over parameters θt of the average of min-
imum eigenvalues for components in which θt partic-
ipates: ρmin

.
= mint avgi : θt∈θAiΛmin(∇2[`CL(θ∗)]Ai).

This substitution makes our MCLE sample complex-
ity bound in Eq. (14) identical (up to log factors) to
our MLE bound in Eq. (8), with ρmin substituted for
Cmin. I.e., MCLE averages the effects of its various
components. We show in Sec. 7 how this averaging
can mitigate the negative impact of “bad” components
(with small eigenvalues).

4.3 Loss Reduction

Thus far, we have only given bounds on parameter
estimation error. We now show that a bound on pa-
rameter error may be used to bound the log loss.

Theorem 4.5. (Log loss, given parameter error)
Let Λmax be the largest eigenvalue of the log loss Hes-
sian at θ∗. If the parameter estimation error is small:

‖θ − θ∗‖1 ≤
−Λmax+

√
Λ2
max+4rφ4

max

4φ3
max

, (15)

the log loss converges quadratically in the error:

`L(θ) ≤ `L(θ∗) +
(

Λmax
2 + φ2

max

)
‖θ − θ∗‖21 . (16)

Otherwise, the log loss converges linearly in the error:

`L(θ) ≤ `L(θ∗) + φmax ‖θ − θ∗‖1 . (17)

This theorem describes two well-known convergence
regimes: linear far from the optimum and quadratic
close to the optimum. In the large sample limit, our re-
sults indicate that the log loss of the MLE and MCLE
estimates converge at a rate approaching n−1, match-
ing the asymptotic results of [13]. To see this, let
ξ −→ 1 in Theorem 4.1 and Theorem 4.3, and note
that we enter the quadratic regime in Theorem 4.5.

Sample complexity bounds for MLE and MCLE w.r.t.
log loss may be computed by combining Corollary 4.2
and Corollary 4.4 with Theorem 4.5. For lack of space,
we relegate these bounds to the appendix.

4.4 Disjoint vs. Joint Optimization

In Sec. 4.2, we analyzed MCLE using joint optimiza-
tion; i.e., we jointly minimized all likelihood compo-
nents’ contributions to the loss in Eq. (5), and pa-
rameters θt participating in multiple components were
shared during optimization. In this section, we discuss
disjoint optimization, in which each likelihood compo-
nent is treated as a separate MLE regression problem
over a subset of the variables.

With disjoint optimization, each component Ai pro-
duces an estimate of its parameter subvector; denote

the estimate of each θt ∈ θAi by θ̂
(Ai)
t . These estimates

obey the bounds for MLE in Sec. 4.1. We can obtain a
global estimate θ̂ of the parameters by averaging these
subvectors where they overlap:

θ̂t = avgi : θt∈θAi θ̂
(Ai)
t . (18)

Disjoint optimization is simple to implement and is
data parallel, permitting easy scaling via parallel com-
puting (c.f., [5]). We now show how to bound the error

in θ̂ using the bounds from each component’s estimate.

Lemma 4.6. (Disjoint optimization) Suppose we
average the results of disjoint optimizations using like-
lihood components A, as in Eq. (18). If each estimated

subvector θ̂(Ai) has L1 error at most ε, then the full es-

timate has error
∥∥∥θ̂ − θ∗

∥∥∥
1
≤ |A|ε.

The factor of |A| appears since the estimation error in

each θ̂(Ai) could be in elements of θ which participate
only in likelihood component Ai.

Theorem 4.7. (Disjoint MCLE sample com-
plexity) Suppose we average the results of disjoint
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optimizations using likelihood components A, as in
Eq. (18). Given the assumptions from Theorem 4.1 for
each component, with a single Cmin denoting a bound
for all components, in order to estimate the parame-
ters θ within L1 error ε with probability at least 1− δ,
it suffices to have a training set of size

n ≥ 29φ2
max

C2
min

|A|2
(ε/r)2 log 2r(r+1)|A|

δ . (19)

Since Mmax ≤ |A| and ρmin ≥ Cmin, this sample com-
plexity bound for disjoint MCLE is worse than that for
joint MCLE in Corollary 4.4, as might be expected.

5 Canonical Parametrization of
Abbeel et al. (2006)

To our knowledge, [1] is the only previous work with
PAC bounds for learning parameters of high-treewidth
discrete MRFs. They analyzed MRFs representable as
bounded-degree factor graphs (i.e., for which each φt
is a function of a bounded number of variables, and
each variable Yi is an argument of a bounded number
of features φt). They proposed learning via a canoni-
cal parametrization, which re-parametrizes an MRF in
terms of products of canonical factors. Each canoni-
cal factor is a conditional probability P (YA|YB), where
YA, YB are of polynomial size. Learning thus consists
of estimating each canonical factor from data and then
multiplying them together. We describe the canonical
parametrization in the appendix.

[17] later improved upon this method, showing how to
simplify the canonical factors s.t. |YA| = 1. We use
this insight to prove the canonical parametrization is,
in fact, an alternative method for computing MPLE.

Theorem 5.1. If canonical factors are computed us-
ing the factorization of the target distribution Pθ∗ , then
the canonical parametrizations of [1] and [17] produce

the same parameter estimate θ̂ as MPLE.

Recall that MPLE for MRFs essentially involves com-
puting a conditional probability P (Yi|Y\i) for each
Yi ∈ Y . Even with the improvement from [17],
the canonical parametrization requires computing,
for each factor φt, a set of conditional probabilities
(canonical factors) exponential in the number of ar-
guments of φt. (Specifically, for each factor φt, for
each subset A of arguments of φt, and for each subset
of A, we compute a conditional probability.) Directly
computing MPLE via traditional optimization involves
much less computation.

Figure 1: Structures tested. Left-to-right: chain,
star, grid. The grid shows an example of two struc-
tured likelihood components (“combs”), as in Sec. 7.

6 Empirical Analysis of Bounds

We present an extensive study of our PAC bounds for
MLE and MPLE on a variety of synthetic models. Our
results show that our bounds accurately capture the
learning methods’ behaviors in terms of properties of
the target distribution. We show how those properties
vary across different model structures and factor types,
indicating where MPLE may succeed or fail.

6.1 Setup

We tested synthetic models over binary variables, with
features defined by edge factors φ(Yi, Yj) and φ(Yi|Xi).
We used three structures: chains, stars, and grids
(Fig. 1). Our models had |Y | = |X|, and both
P (X) and P (Y |X) shared the same structure. Our
models used two factor types: associative (in which
θ∗t φt(a, b) = s if a = b and 0 otherwise) and random
(in which each value θ∗t φt(·, ·) was chosen uniformly at
random from the range [−s, s]). We call s the factor
strength, and we write associative(s) and random(s)
for shorthand. Note the strength s is in log-space.

For optimization, we used conjugate gradient with
exact inference for small models in this section and
stochastic gradient with approximate inference (Gibbs
sampling) for the large models in Sec. 7. We chose reg-
ularization λ according to each method’s PAC bound,
with ξ = .5 (though this choice is technically not valid
for small training set sizes).3 Our results are aver-
aged over 10 runs on different random samples, and
10 models when using random factors.

6.2 Comparing Bounds

Our theoretical analysis included two types of bounds:
a bound on the parameter estimation error ‖θ̂ − θ∗‖1
in terms of the training set size (Corollary 4.2, Corol-
lary 4.4, and Theorem 4.7 for MLE, MPLE, and
MPLE-disjoint, respectively) and a bound on the log

3We also ran experiments with regularization chosen
via k-fold cross validation, which improved results but did
not significantly change qualitative comparisons. We omit
these results since they do not apply to our PAC analysis.

140



Sample Complexity of Composite Likelihood

Parameter error

0	  

10	  

20	  

30	  

40	  

50	  

60	  

1	   10	   100	   1000	   10000	  
Training	  set	  size	  

L1
	  p
ar
am

	  e
rr
or
	   MPLE-‐disjoint	  

MPLE	  
MLE	  

0	  

5000	  

10000	  

15000	  

20000	  

25000	  

30000	  

1	   10	   100	   1000	   10000	  

L1
	  p
ar
am

	  e
rr
or
	  b
ou

nd
	  

Training	  set	  size	  

MPLE-‐disjoint	  

MPLE	  
MLE	  

Log loss

0	  
2	  
4	  
6	  
8	  
10	  
12	  
14	  
16	  

1	   10	   100	   1000	   10000	  
Training	  set	  size	  

Lo
g	  
(b
as
e	  
e)
	  lo
ss
	   MPLE-‐disjoint	  

MPLE	  
MLE	  

0	  

10	  

20	  

30	  

40	  

50	  

60	  

1	   10	   100	   1000	   10000	  
Training	  set	  size	  Lo

g	  
lo
ss
	  b
ou

nd
,	  g
iv
en

	  p
ar
am

s	  
MPLE-‐disjoint	  
MPLE	  
MLE	  

Figure 2: Bounds: training set size. Top: Actual
(learned) parameter error (top-left) is much smaller
than the bound on parameter error (top-right), but
both decrease at similar rates w.r.t. training set size.
Bottom: The actual log loss (bottom-left) is close
to the loss bound given the actual parameter error
(bottom-right). (Note scales on y-axes.)
Chains; |Y | = 4; random(1) factors. Averaged over 10
models × 10 datasets; error bars 1 stddev.

loss `L(θ̂) in terms of ‖θ̂− θ∗‖1 (Theorem 4.5). Fig. 2
shows that the parameter error bound is much looser
than the loss bound for MLE and MPLE with both
joint and disjoint optimization. However, both bounds
capture the convergence behavior w.r.t. training set
size. As expected from our analysis, MPLE performs
worse with disjoint optimization than with joint.

Our bounds for MLE and MPLE depend on a key
property: Cmin. Though Cmin only needs to lower-
bound the Hessian eigenvalues for our analysis, we
simplify our discussion from here on by equating Cmin
with the minimum eigenvalue. Our bounds indicate
that, for a fixed training set size, the parameter esti-
mation error should be proportional to 1/Cmin. Fig. 3
plots the error for MLE and MPLE vs. their respec-
tive values 1/Cmin. Though the bound constants are
loose, the 1/Cmin dependence appears accurate.

Our bounds indicate that, for a fixed training set size,
the normalized parameter error (normalized by the di-
mensionality r) should increase only logarithmically in
r. Fig. 3 plots results for three values of r; increasing
r does not significantly effect the normalized error.

This section’s results were for chains with random fac-
tors, but other model types showed similar behavior.
We next study a much wider variety of models.
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Figure 3: Bounds: minimum eigenvalue Cmin.
Top: Learned parameter error for MLE and MPLE
(normalized by dimension r) increases with 1/Cmin.
Bottom: Bound on parameter error for MLE and
MPLE increases at a similar rate with 1/Cmin.
Chains; |Y | = 2, 4, 8 (r = 5, 11, 23); random(1) factors;
1495 training samples. Each point corresponds to 1
model, averaged 10 datasets; error bars 1 stddev.

6.3 Eigenspectra

As shown in the previous subsection, Cmin, the min-
imum eigenvalue of the loss’ Hessian, largely deter-
mines learning performance. When choosing a loss,
we must trade off the goals of maximizing Cmin (i.e.,
maximizing statistical efficiency) and of limiting com-
putational complexity. In this section, we compare the
Cmin for MLE with the Cmin for MPLE on a range
of models, thus offering the reader guidance for when
MPLE may replace MLE without sacrificing too much
statistical efficiency.

Testing model diameter (chains): Fig. 4 plots the
MLE/MPLE ratio of Cmin values for chains with asso-
ciative and random factors. Higher ratios imply lower
statistical efficiency for MPLE, relative to MLE. For
both, the ratio remains fairly constant as model size
increases; i.e., model size does not significantly affect
MPLE’s relative statistical efficiency. However, in-
creased factor strength decreases MPLE’s efficiency,
particularly for associative factors.

Testing node degree (stars): Fig. 5 compares MLE
and MPLE for stars. For both associative and random
factors, the Cmin ratio increases as |Y | increases, in-
dicating that high-degree nodes decrease MPLE’s rel-
ative statistical efficiency. As with chains, increased
factor strength decreases MPLE’s efficiency.
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Chains: associative factors
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Figure 4: Chains: Min eigval ratio MLE/MPLE.
Higher ratios imply MLE is superior.
Left : The ratio is about constant w.r.t. model size (for
fixed factor strength 1). Right : The ratio increases
with factor strength (for fixed model size |Y | = 8).
Note: Non-monotonicity in right-most parts of plots
is from systematic numerical inaccuracy. Error bars 1
stddev, computed from 100 random models.

Testing treewidth (grids): Fig. 6 compares MLE
and MPLE for square grids (as in Fig. 1). For both
factor types, the Cmin ratio increases as |Y | and fac-
tor strength increase. We estimated Hessians for grids
with width > 3 by sampling from P (X).

Overall, MPLE appears most statistically efficient for
low-degree models with weak variable interactions. In
the next section, we discuss how to overcome difficul-
ties with high degree nodes and strong factors by using
structured MCLE instead of MPLE.

7 Structured Composite Likelihood

MPLE sacrifices statistical efficiency for computa-
tional tractability. In this section, we show how to use
MCLE to improve upon MPLE’s statistical efficiency
without much increase in computation. In particu-
lar, we demonstrate the benefits of careful selection of
structured likelihood components for MCLE.

We state two propositions providing a simple method
for choosing MCLE components. The first states how
to choose a consistent MCLE estimator. The second
states that consistent MCLE estimators may be com-
bined to create new, consistent MCLE estimators.

Proposition 7.1. Suppose a set of MCLE compo-
nents A covers each Y variable exactly once; i.e.,
∪iAi = Y , and

∑
i |Ai| = |Y |. Then the MCLE es-

timator defined by A is consistent.
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Figure 5: Stars: Min eigval ratio MLE/MPLE.
Higher ratios imply MLE is superior.
Left : The ratio increases with model size (for fixed
factor strength 1). Right : The ratio increases with
factor strength (for fixed model size |Y | = 8). Error
bars 1 stddev, computed from 100 random models.

Proposition 7.2. Suppose two MCLE estimators A′
and A′′ are both consistent. Then their union A =
A′ ∪ A′′ is also a consistent MCLE estimator.

The simplest MCLE estimator buildable using
Prop. 7.1 is MPLE. We advocate the use of structured
likelihood components, i.e., components Ai containing
multiple variables chosen according to the structure
of the model. We give a simple example in Fig. 1,
in which two comb-like components cover the entire
model while maintaining low treewidth (i.e., tractable
inference) within each component. In general, MCLE
estimators with larger components are more statis-
tically efficient. Fig. 6 demonstrates such behavior
empirically, with combs (structured MCLE) having
higher Cmin values than MPLE (unstructured MCLE).

Our bound for MCLE indicates that we should choose
MCLE estimators based on their components’ mini-
mum eigenvalues, but those eigenvalues are often ex-
pensive to compute. Corollary 4.4 and Prop. 7.2 offer
a solution: use a mixture of MCLE estimators. Recall
that our bound’s dependence on ρmin indicates that
a mixture of MCLE estimators A′ ∪ A′′ should have
statistical efficiency somewhere in between that of A′
and A′′. We present a toy example in Fig. 7. This
example uses a grid with stronger vertical factors than
horizontal ones. As might be expected, MCLE compo-
nents which include these strong edges (Combs-vert)
make better estimators than components which do not
(Combs-horiz). The combination of the two MCLE
estimators (Combs-both) lies in between.
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Grids: associative factors
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Figure 6: Grids: Min eigval ratio MLE/MPLE.
Higher ratios imply MLE is superior. We include
combs (MCLE) as described in Sec. 7; MCLE is strictly
superior to MPLE. All y-axes are log-scale.
Left : The ratio increases with model size (for fixed
factor strength 0.5). Right : The ratio increases with
factor strength (for fixed model size |Y | = 16). Error
bars 1 stddev, computed from 10 random models.

Our empirical results provide two rules of thumb for
choosing a reasonable estimator when lacking expert
knowledge: (A) use a small number of structured
MCLE components which both cover Y and have low
treewidth, and (B) combine multiple such estimators
to average out the effects of “bad” components.

Fig. 8 gives empirical results on large grids, compar-
ing MLE, MPLE, and comb-structured MCLE. Since
we cannot easily compute eigenvalues for large mod-
els, we show results in terms of log loss on held-out
test data. MCLE achieves much smaller log loss than
MPLE, even though their training times are similar.

In related work, [2] discussed benefits of using of small
tree-structured components for MCLE (though they
used the components for sampling-based inference).
[4] analyzed stochastic composite likelihood and found
that MCLE components composed of two to four vari-
ables gave better empirical performance than MPLE.

8 Discussion

Using pseudolikelihood (MPLE) and composite like-
lihood (MCLE), we proved the first PAC bounds for
learning parameters of general MRFs and CRFs. Our
bounds are written in terms of problem-specific con-
stants, and through empirical analysis, we showed that
these constants accurately determine the relative sta-
tistical efficiency of MLE, MPLE, and MCLE.
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Figure 7: Combining MCLE estimators. As grid
width increases, min eigenvalues Cmin for estimators
decrease (so learning becomes harder). Vertical fac-
tors are strongest: associative(1.5) vs. associative(.5).
Combs-vert is two vertically oriented combs as in
Fig. 1; Combs-horiz is the same combs rotated 90 de-
grees; and Combs-both is their combination.
Note Cmin for Combs-both is the average of the Cmin
values for Combs-vert and Combs-horiz. Cmin esti-
mated via sampling for width ≥ 4; error bars 1 stddev.
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Figure 8: Structured MCLE on grids. Combs
(MCLE) achieves smaller log loss than MPLE (left)
but uses no more training time (right). Associative(.5)
factors; 10,000 training samples.

We demonstrated that structured MCLE components
can provide better estimators with little additional
computation. Our small-scale tests give guidance for
choosing MCLE structure in practice, even when our
bounds’ constants may not be computed.

Future topics of interest: Generalizing our analysis to
handle model misspecification would be useful; we pos-
tulate that MCLE should outperform MPLE in that
setting since MCLE can be “closer” to MLE. Also, our
analysis of graph properties was w.r.t. MLE, MPLE,
and MCLE, and it could be augmented by similar anal-
ysis relating these estimators to other tractable learn-
ing methods, such as MLE with approximate inference.
Finally, as parallel computing becomes more main-
stream, more analysis of disjoint optimization could
prove valuable, such as possibly improving statisti-
cal efficiency by using limited communication between
separate optimizations.
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9 APPENDIX–SUPPLEMENTARY MATERIAL

9.1 CRF Losses and Derivatives

We provide a list of losses and derivatives for general log-linear CRFs.

General log-linear CRF model:

Pθ(Y |X) =
1

Z(X; θ)
exp

(
θTφ(Y,X)

)
(20)

=
1

Z(X; θ)
exp


∑

j

θTj φj(YCj , XDj )


 ,

where θ ∈ R is a length-r vector of parameters and φ(Y,X) ∈ R+ is a length-r non-negative feature vector.
When discussing the factors making up the model, we express factor j with domain (YCj , XDj ) in terms of its
corresponding parameters θj and features φj .

Log loss for model Pθ w.r.t. distribution Pθ∗ :

`L(θ) = EP (X)

[
EPθ∗ (Y |X) [− logPθ(Y |X)]

]
(21)

= EP (X)

[
EPθ∗ (Y |X)

[
−θTφ(Y,X)

]
+ logZ(X; θ)

]
.

Gradient of log loss

∇`L(θ) = EP (X)

[
−EPθ∗ (Y |X) [φ(Y,X)] + EPθ(Y ′|X) [φ(Y ′, X)]

]
. (22)

Hessian of log loss:

∇2`L(θ) = EP (X)

[
EPθ(Y ′|X)

[
φ(Y ′, X)⊗

]
−
(
EPθ(Y ′|X) [φ(Y ′, X)]

)⊗]
(23)

= EP (X)

[
VarPθ(Y ′|X) [φ(Y ′, X)]

]
(24)

Third derivative of log loss:

∂

∂θi
∇2`L(θ) (25)

= EP (X)

[
E
[
φiφ
⊗]+ 2E [φi]E [φ]

⊗ −E [φi]E
[
φ⊗
]
−E [φ]E [φiφ]

T −E [φiφ]E [φ]
T
]
,

where all unspecified expectations are w.r.t. Pθ(Y
′|X) and φ = φ(Y ′, X).

Composite likelihood loss for model Pθ w.r.t. distribution Pθ∗ :

`CL(θ) = EP (X)

[
EPθ∗ (Y |X)

[
−
∑

i

logPθ(YAi |Y\Ai , X)

]]
(26)

= EP (X)


EPθ∗ (Y |X)


∑

i

−θTAiφAi(Y,X) + log
∑

y′Ai

θTAiφAi(y
′
Ai , Y\Ai , X)




 .

Above, the likelihood components are specified by subsets YAi ⊆ Y . The parameter and feature subvectors
associated with component i are specified as θAi and φAi ; here, “associated with” means that at least one
Yj ∈ YAi is an argument of the function φk for each element k of φAi .

Gradient of composite likelihood loss:

∇`CL(θ) = EP (X)

[
EPθ∗ (Y |X)

[∑

i

−φAi(Y,X) + EPθ(Y ′Ai
|Y\Ai ,X)

[
φAi(Y

′
Ai , Y\Ai , X)

]
]]

. (27)
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Above, we abuse notation in the vector summation: each element in the summation over i is a subvector of the
full length-r gradient; these subvectors should be treated as length-r vectors (with zeros in the extra elements)
in the summation.

Hessian of composite likelihood loss:

∇2`CL(θ) (28)

= EP (X)Pθ∗ (Y |X)

[∑

i

EPθ(Y ′
Ai
|Y\Ai ,X)

[
φYAi (Y

′
Ai , Y\Ai , X)⊗

]
−
(
EPθ(Y ′

Ai
|Y\Ai ,X)

[
φYAi (Y

′
Ai , Y\Ai , X)

])⊗
]

= EP (X)Pθ∗ (Y |X)

[∑

i

VarPθ(Y ′
Ai
|Y\Ai ,X)

[
φYAi (Y

′
Ai , Y\Ai , X)

]]
.

In the matrix summation above, we again abuse notation: each element in the sum over i is added to a submatrix
of the full r×r Hessian. Each of these elements is the Hessian for a likelihood component; we denote the Hessian
of the ith component as ∇2[`CL(θ)]Ai .

Third derivative of composite likelihood loss:

∂

∂θt
∇2`CL(θ) (29)

= EP (X)Pθ∗ (Y |X)

[ ∑

i : θt∈θAi

E
[
φtφ
⊗
Ai

]
+ 2E [φt]E [φAi ]

⊗ −E [φt]E
[
φ⊗Ai
]

−E [φAi ]E [φtφAi ]
T −E [φtφAi ]E [φAi ]

T

]
,

where θt ∈ θAi indicates whether θt is an element of the parameter subvector θAi . All unspecified expectations
are w.r.t. Pθ(Y

′
Ai
|Y\Ai , X), and the feature function arguments are hidden: φAi = φAi(Y

′
Ai
, Y\Ai , X) and φt =

φt(Y
′
Ai
, Y\Ai , X).

9.2 Parameter Estimation with MLE

We prove finite sample bounds for regression problems using log-linear models P (Y |X), as defined in Eq. (20).
This analysis applies both to learning CRF parameters via MLE and to learning parameters for each composite
likelihood component (when using disjoint optimization). Our analysis in this section extends the analysis of
Ravikumar et al. (2010) for Ising MRFs to the more general setting of log-linear CRFs. Also, while they
were concerned with L1-regularized regression in the high-dimensional setting (with the number of covariates
increasing with the training set size), we limit our discussion to L1- and L2-regularized regression with a fixed
number of covariates.

The log loss and its derivatives are defined in Eq. (21), Eq. (22), Eq. (23), and Eq. (25). We train our model by
minimizing the regularized log loss over n training samples, as in eqnrefeqn:objective:crfs.

All of the results in this subsection are presented in terms of the parameters θ and corresponding features φ,
each of which are assumed to be length-r vectors. If the feature space is overcomplete, then the constant Cmin,
the minimum eigenvalue of the Hessian of the log loss, will be zero, violating our assumption that Cmin > 0.
However, in all of these results, θ and φ (and quantities defined in terms of these vectors) may be replaced with
UT θ and UTφ, where U is a r × d matrix whose columns are eigenvectors of the Hessian corresponding to the
non-zero eigenvalues. This transformation using U projects the parameters and features onto a minimal set of
vectors spanning the feature space.

The following lemma (similar to Lemma 2 of Ravikumar et al. (2010)) lets us bound the max norm of the
gradient of the empirical log loss at θ∗ with high probability.

Lemma 9.1. Given n samples, a bound φmax on the magnitude of each of r features, and a constant δ > 0, we
have

P
[
‖∇ˆ̀

L(θ∗)‖∞ > δ
]
≤ 2r exp

(
− δ2n

2φ2
max

)
. (30)
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Proof of Lemma 9.1: Consider one element j of the gradient at θ∗: [∇ˆ̀
L(θ∗)]j , as in Eq. (22). This element is

a random variable (random w.r.t. the sample) with mean 0. The variable also has bounded range [−φmax, φmax].
We may therefore apply the Azuma-Hoeffding inequality [8], which states that

P
[∣∣∣[∇ˆ̀

L(θ∗)]j
∣∣∣ > δ

]
≤ 2 exp

(
− δ2n

2φ2
max

)
. (31)

Applying a union bound over all r elements of the gradient gives the lemma’s result. �
We now give a lemma which shows that the minimum eigenvalue of the Hessian of the empirical log loss ˆ̀

L (w.r.t.
n samples from the target distribution) is close to that for the actual log loss `L (w.r.t. the target distribution
itself).

Lemma 9.2. Assume Λmin
(
∇2`L(θ∗)

)
≥ Cmin > 0 and φmax = maxj,y,x φj(y, x). With n training samples, the

minimum eigenvalue of the Hessian of the empirical log loss is not much smaller than Cmin with high probability:

P
[
Λmin

(
∇2 ˆ̀

L(θ∗)
)
≤ Cmin − ε

]
≤ 2r2 exp

(
− nε2

8r2φ4
max

)
. (32)

Proof of Lemma 9.2: Our proof is similar to that of Lemma 5 from Ravikumar et al. (2010). Define shorthand
for the Hessian of the log loss w.r.t. the target distribution: Q .

= ∇2`L(θ∗) and for the Hessian w.r.t. the empirical

distribution: Qn .
= ∇2 ˆ̀

L(θ∗). Using the Courant-Fischer variational representation [9], we can re-express the
minimum eigenvalue of the Hessian:

Λmin(Q) = min
‖v‖2=1

vTQv (33)

= min
‖v‖2=1

[
vTQnv + vT (Q−Qn)v

]
(34)

≤ vTminQnvmin + vTmin(Q−Qn)vmin, (35)

(36)

where vmin : ‖vmin‖2 = 1 is an eigenvector corresponding to the minimum eigenvalue of Qn. Rearranging,

Λmin(Qn) ≥ Λmin(Q)− vTmin(Q−Qn)vmin (37)

≥ Λmin(Q)− Λmax(Q−Qn) (38)

≥ Λmin(Q)−
(

r∑

s=1

r∑

t=1

(Qst −Qnst)2

)1/2

, (39)

where the last inequality upper-bounded the spectral norm with the Frobenius norm. Recall that

∇2 ˆ̀
L(θ∗) = 1

n

n∑

i=1

EPθ∗ (Y ′|x(i))

[
φ(Y ′, x(i))⊗

]
−
(
EPθ∗ (Y ′|x(i))

[
φ(Y ′, x(i))

])⊗
(40)

We upper-bound the Frobenius norm term by noting that each element (Qst − Qnst) may be written as an
expectation over our n samples of zero-mean, bounded-range values. Abbreviating φ = φ(Y,X) and φ(i) =
φ(Y, x(i)), we can write:

Qst −Qnst = EP (X)

[
EPθ∗ (Y |X) [φsφt]−EPθ∗ (Y |X) [φs]EPθ∗ (Y |X) [φt]

]
(41)

− 1
n

n∑

i=1

[
EPθ∗ (Y |x(i))

[
φ(i)
s φ

(i)
t

]
−EPθ∗ (Y |x(i))

[
φ(i)
s

]
EPθ∗ (Y |x(i))

[
φ

(i)
t

] ]
(42)

= 1
n

n∑

i=1

[
EP (X)

[
EPθ∗ (Y |X) [φsφt]−EPθ∗ (Y |X) [φs]EPθ∗ (Y |X) [φt]

]
(43)

−
[
EPθ∗ (Y |x(i))

[
φ(i)
s φ

(i)
t

]
−EPθ∗ (Y |x(i))

[
φ(i)
s

]
EPθ∗ (Y |x(i))

[
φ

(i)
t

]] ]
. (44)

Each of these n values has magnitude at most 2φ2
max. The Azuma-Hoeffding inequality [8] tells us that, for any

s, t,

P
[
(Qst −Qnst)2 ≥ ε2

]
= P [|Qst −Qnst)| ≥ ε] ≤ 2 exp

(
− nε2

8φ4
max

)
. (45)

147



Joseph K. Bradley, Carlos Guestrin

A union bound over all elements s, t shows:

P

[
r∑

s=1

r∑

t=1

(Qst −Qnst)2 ≥ r2ε2

]
≤ 2r2 exp

(
− nε2

8φ4
max

)
(46)

P



(

r∑

s=1

r∑

t=1

(Qst −Qnst)2

)1/2

≥ ε


 ≤ 2r2 exp

(
− nε2

8r2φ4
max

)
. (47)

Using the above inequality with Eq. (39), we get:

P [Λmin(Qn) ≤ Cmin − ε] ≤ 2r2 exp

(
− nε2

8r2φ4
max

)
. � (48)

We next prove a lemma which lower-bounds the log loss (w.r.t. our training samples) in terms of the parameter

estimation error (the distance between our estimated parameters θ̂ and the target parameters θ∗). The analysis
resembles part of Lemma 3 from Ravikumar et al. (2010).

Lemma 9.3. Let ˆ̀
L(θ) be the log loss w.r.t. n training samples. Assume bounds Λmin

(
∇2`L(θ∗)

)
≥ Cmin > 0

and φmax = maxj,y,x φj(y, x). Let δ > 0. Let B = ‖θ − θ∗‖1. Then

ˆ̀
L(θ)− ˆ̀

L(θ∗) ≥ −δB + r−1

4 CminB
2 − 1

2φ
3
maxB

3 (49)

with probability at least

1− 2r exp
(
− δ2n

2φ2
max

)
− 2r2 exp

(
− nC2

min

25r2φ4
max

)
. (50)

Proof of Lemma 9.3: Let u = θ − θ∗ and ‖u‖1 = B. Use a Taylor expansion of ˆ̀
L around θ∗:

ˆ̀
L(θ) = ˆ̀

L(θ∗) +
(
∇ˆ̀

L(θ∗)
)T

u+ 1
2
uT
(
∇2 ˆ̀

L(θ∗)
)
u+ 1

6

∑

i

uiu
T
(

∂
∂θ̄i
∇2 ˆ̀

L(θ̄)
∣∣
θ̄=θ∗+αu

)
u, (51)

where α ∈ [0, 1]. We now lower-bound the first-, second-, and third-order terms.

First-order term in Eq. (51):

(
∇ˆ̀

L(θ∗)
)T

u ≥ −
∣∣∣∣
(
∇ˆ̀

L(θ∗)
)T

u

∣∣∣∣ (52)

≥ −‖∇ˆ̀
L(θ∗)‖∞ ‖u‖1 (53)

= −‖∇ˆ̀
L(θ∗)‖∞B (54)

≥ −δB, (55)

where the second inequality uses Holder’s inequality, and where the last inequality uses Lemma 9.1 and holds

with probability at least 1− 2r exp(− δ2n
2φ2
max

).

Second-order term in Eq. (51):

1
2u

T
(
∇2 ˆ̀

L(θ∗)
)
u ≥ 1

2Λmin

(
∇2 ˆ̀

L(θ∗)
)
‖u‖22 (56)

≥ r−1

2 Λmin

(
∇2 ˆ̀

L(θ∗)
)
‖u‖21 (57)

= r−1

2 Λmin

(
∇2 ˆ̀

L(θ∗)
)
B2, (58)

where we used the definition of Λmin(∇2 ˆ̀
L(θ∗)), the minimum eigenvalue of the Hessian at θ∗. Now use

Lemma 9.2 with ε = Cmin
2 to show:

1
2u

T
(
∇2 ˆ̀

L(θ∗)
)
u ≥ r−1

4 CminB
2, (59)
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which holds with probability at least 1− 2r2 exp
(
− nC2

min

25r2φ4
max

)
.

Third-order term in Eq. (51):

1
6

∑

i

uiu
T
(

∂
∂θ̄i
∇2 ˆ̀

L(θ̄)
∣∣
θ̄=θ∗+αu

)
u (60)

= 1
6

∑

i

uiu
T
(
E
[
φiφ
⊗]+ 2E [φi]E [φ]

⊗ −E [φi]E
[
φ⊗
]

(61)

−E [φ]E [φiφ]
T −E [φiφ]E [φ]

T
)
u,

where all expectations are w.r.t. Pθ∗+αu(Y ′|X) and φ = φ(Y ′, X). Continuing,

1
6

∑

i

uiu
T
(
E
[
φiφ
⊗]+ 2E [φi]E [φ]

⊗ −E [φi]E
[
φ⊗
]

(62)

−E [φ]E [φiφ]
T −E [φiφ]E [φ]

T
)
u

= 1
6

∑

i

ui

(
E
[
φi(u

Tφ)2
]

+ 2E [φi]E
[
uTφ

]2 −E [φi]E
[
(uTφ)2

]
(63)

−2E
[
uTφ

]
E
[
φiu

Tφ
] )

= 1
6

(
E
[
(uTφ)3

]
+ 2E

[
uTφ

]3 − 3E
[
uTφ

]
E
[
(uTφ)2

] )
(64)

≥ 1
6

(
3E
[
uTφ

]3 − 3E
[
uTφ

]
E
[
(uTφ)2

] )
(65)

= − 1
2E
[
uTφ

] (
E
[
(uTφ)2

]
−E

[
uTφ

]2)
(66)

≥ − 1
2

∣∣E
[
uTφ

]∣∣ ·
∣∣∣E
[
(uTφ)2

]
−E

[
uTφ

]2∣∣∣ (67)

≥ − 1
2

∣∣E
[
uTφ

]∣∣ ·E
[
(uTφ)2

]
(68)

≥ − 1
2E
[
|uTφ|

]
·E
[
|uTφ|2

]
(69)

≥ − 1
2 ‖u‖

3
1 φ

3
max (70)

= − 1
2B

3φ3
max. (71)

Two of our bounds in this proof had small probabilities of failure. Using a union bound, we get the probability
of at least one failing, finishing the proof. �
We now prove a lemma which bounds our parameter estimation error in terms of our training sample size; it
is similar to Lemma 3 from Ravikumar et al. (2010). Note that θ̂ is defined as the minimizer of Eq. (2) with
ˆ̀= ˆ̀

L.

Proof of Theorem 4.1: Define a convex function G : Rr → R by

G(u) = ˆ̀
L(θ∗ + u)− ˆ̀

L(θ∗) + λ (‖θ∗ + u‖p − ‖θ∗‖p) . (72)

By definition of θ̂, the function G is minimized at û = θ̂ − θ∗. Since G(0) = 0, we know G(û) ≤ 0. Using the
same argument as Ravikumar et al. (2010), if G(u) > 0 for all u ∈ Rr with ‖u‖1 = B for some B > 0, then we
know that ‖û‖1 ≤ B.

Let u ∈ Rr with ‖u‖1 = B. Using Lemma 9.3, we can lower-bound G:

G(u) ≥ −δB + r−1

4 CminB
2 − 1

2φ
3
maxB

3 (73)

+λ (‖θ∗ + u‖p − ‖θ∗‖p) ,

which holds with the probability given in Lemma 9.3. We can lower-bound the regularization term (for both L1

and L2 regularization):

λ (‖θ∗ + u‖p − ‖θ∗‖p) ≥ −λ‖u‖p (74)

(If p = 1) = −λ‖u‖1 = −λB. (75)

(If p = 2) = −λ‖u‖2 ≥ −λ‖u‖1 = −λB. (76)
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Combine the above bound into Eq. (73):

G(u) ≥ −δB + r−1

4 CminB
2 − 1

2φ
3
maxB

3 − λB (77)

= B
[
−δ + r−1

4 CminB − 1
2φ

3
maxB

2 − λ
]
. (78)

Note that we need λ > 0, B > 0, δ > 0. Eq. (78) will be strictly greater than 0 if B > 0 and

λ < −δ + r−1

4 CminB − 1
2φ

3
maxB

2. (79)

Maximizing this bound w.r.t. B gives B = Cmin
4rφ3

max
. However, we would like for B to shrink as n−1/2, the

asymptotic rate of convergence, so instead let

B =
Cmin

4rφ3
max

n−ξ/2, (80)

where ξ ∈ (0, 1). Plugging in this value for B gives

λ < −δ +
C2
min

24r2φ3
max

n−ξ/2 − C2
min

25r2φ3
max

n−ξ. (81)

We want to choose δ to be large but still keep λ > 0, so choose

λ = δ =
C2
min

26r2φ3
max

n−ξ/2, (82)

which makes Eq. (81) hold if n > 1. Now that we have chosen δ, we can simplify the probability of failure from
Lemma 9.3:

2r exp
(
− δ2n

2φ2
max

)
+ 2r2 exp

(
− nC2

min

25r2φ4
max

)
(83)

= 2r exp
(
− C4

min

213r4φ8
max

n1−ξ
)

+ 2r2 exp
(
− C2

min

25r2φ4
max

n
)

(84)

≤ 2r exp
(
− C4

min

213r4φ8
max

n1−ξ
)

+ 2r2 exp
(
− C4

min

213r4φ8
max

n1−ξ
)

(85)

= 2r(r + 1) exp
(
− C4

min

213r4φ8
max

n1−ξ
)
. (86)

Above, we upper-bounded the spectral norm with the Frobenius norm to show that Cmin ≤ Λmax

(
∇2 ˆ̀

L(θ∗)
)
≤

φ2
maxr. �

We can convert the previous result into a sample complexity bound for achieving a given parameter estimation
error.

Proof of Corollary 4.2: If we wish to have a probability of failure of at most δ when we have n samples, we
may choose ξ accordingly:

2r(r + 1) exp
(
− C4

min

213r4φ8
max

n1−ξ
)
≤ δ (87)

log(2r(r + 1))− C4
min

213r4φ8
max

n1−ξ ≤ log δ (88)

C4
min

213r4φ8
max

n1−ξ ≥ log 2r(r+1)
δ (89)

n1−ξ ≥ 213r4φ8
max

C4
min

log 2r(r+1)
δ (90)

1− ξ ≥ 1
logn

(
log

213r4φ8
max

C4
min

+ log log 2r(r+1)
δ

)
(91)

ξ ≤ 1− 1
logn

(
log

213r4φ8
max

C4
min

+ log log 2r(r+1)
δ

)
. (92)
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We will set ξ equal to this upper bound in the next part. Likewise, if we wish to have parameter estimation
error at most ε, then we need:

Cmin
4rφ3

max
n−ξ/2 ≤ ε (93)

log Cmin
4rφ3

max
− ξ

2 log n ≤ log ε (94)

ξ
2 log n ≥ log Cmin

4rφ3
max
− log ε (95)

1
2

(
1− 1

logn

(
log

213r4φ8
max

C4
min

+ log log 2r(r+1)
δ

))
log n ≥ log Cmin

4rφ3
max
− log ε (96)

log n−
(

log
213r4φ8

max

C4
min

+ log log 2r(r+1)
δ

)
≥ 2 log Cmin

4rφ3
maxε

. (97)

log n ≥ 2 log Cmin
4rφ3

maxε
+ log

213r4φ8
max

C4
min

+ log log 2r(r+1)
δ (98)

= log
C2
min

24r2φ6
max

+ log
213r4φ8

max

C4
min

+ 2 log 1
ε + log log 2r(r+1)

δ (99)

= log
29r2φ2

max

C2
min

+ 2 log 1
ε + log log 2r(r+1)

δ (100)

n ≥ 29r2φ2
max

C2
min

1
ε2 log 2r(r+1)

δ . � (101)

9.3 Parameter Estimation with MCLE

We train our model by minimizing the regularized composite likelihood loss over n training samples:

min
θ

ˆ̀
CL(θ) + λ‖θ‖p, (102)

where ˆ̀
CL(θ) is the composite likelihood loss w.r.t. the n training samples, λ ≥ 0 is a regularization parameter,

and p ∈ {1, 2} specifies the L1 or L2 norm. Note that ˆ̀
CL(θ) is Eq. (26) with P (X)Pθ∗(Y |X) replaced with the

empirical distribution.

Lemma 9.4. Given n samples, a bound φmax on the magnitude of each of r features, a bound Mmax on the
number of likelihood components in which any feature participates, and a constant δ > 0, we have

P [‖∇`CL(θ∗)‖∞ > δ] ≤ 2r exp

(
− δ2n

2M2
maxφ

2
max

)
. (103)

Proof of Lemma 9.4: Consider one element j of the expected gradient at θ∗: EP (X)Pθ∗ (Y |X) [[∇`CL(θ∗)]j ].
This element is a random variable (random w.r.t. the sample) with mean 0. The variable also has bounded
range [−Mjφmax,Mjφmax], where Mj is the number of likelihood components in which θj participates. We may
therefore apply the Azuma-Hoeffding inequality [8], which states that

P [|[∇`CL(θ∗)]j | > δ] ≤ 2 exp
(
− δ2n

2M2
j φ

2
max

)
. (104)

Applying a union bound over all r elements of the gradient and using Mmax = maxjMj gives the lemma’s result.
�
Lemma 9.5. Define ρt =

∑
i : θt∈θAi

Λmin(∇2[`CL(θ∗)]Ai), i.e., the sum of minimum eigenvalues for all likelihood

components in which parameter θt participates (w.r.t. the target distribution). Define ρ̂t analogously w.r.t. ˆ̀
CL

(i.e., w.r.t. the empirical distribution). Assume φmax = maxj,y,x φj(y, x). Let A denote the set of likelihood
components. With n training samples, the empirical quantities ρ̂t are not much smaller than ρt with high
probability:

P
[
∃t : ρ̂t ≤ ρt

2

]
≤ 2|A|r2 exp

(
− nC2

min

25r2φ4
max

)
. (105)

Proof of Lemma 9.5: Let Ci be the minimum eigenvalue of the Hessian of likelihood component Ai w.r.t the
target distribution. The Hessian of each likelihood component may be analyzed using Lemma 9.2, with ε = Ci

2 ,
giving the result:

P
[
Λmin

(
∇2[ˆ̀CL(θ∗)]Ai

)
≤ Ci

2

]
≤ 2r2

Ai exp

(
− nC2

i

25r2
Ai
φ4
max

)
, (106)

151



Joseph K. Bradley, Carlos Guestrin

where rAi denotes the length of the parameter vector corresponding to likelihood component Ai. A union bound
over all |A| likelihood components in the min operation gives:

P
[
∃i : Λmin

(
∇2[ˆ̀CL(θ∗)]Ai

)
≤ Ci

2

]
≤ 2|A|r2 exp

(
− nC2

min

25r2φ4
max

)
. (107)

I.e., all components’ minimum eigenvalues (w.r.t. the training data) are within a factor of 1
2 of their true

eigenvalues (w.r.t. the target distribution) with high probability, which implies that sums of sets of eigenvalues
are likewise estimated within a factor of 1

2 , giving the lemma’s result. �
Lemma 9.6. Let ˆ̀

CL(θ) be the composite likelihood loss w.r.t. n training samples. Assume bounds
mini Λmin

(
∇2[`CL(θ∗)]Ai

)
≥ Cmin > 0 and φmax = maxj,y,x φj(y, x). Let ρmin = mint ρt. Let Mmax,Mmin

be the maximum and minimum numbers of components any feature participates in, respectively. Let δ > 0. Let
B = ‖θ − θ∗‖1. Then

ˆ̀
CL(θ)− ˆ̀

CL(θ∗) ≥ −δB + r−1

4 ρminB
2 − 1

2Mmaxφ
3
maxB

3 (108)

with probability at least

1− 2r exp
(
− δ2n

2M2
maxφ

2
max

)
− 2|A|r2 exp

(
− nC2

min

25r2φ4
max

)
. (109)

Proof of Lemma 9.6: We abbreviate this proof where it is similar to that of Lemma 9.3.

Let u = θ − θ∗ and ‖u‖1 = B. Use a Taylor expansion of ˆ̀
CL around θ∗:

ˆ̀
CL(θ) = ˆ̀

CL(θ∗) +
(
∇ˆ̀

CL(θ∗)
)T

u+ 1
2
uT
(
∇2 ˆ̀

CL(θ∗)
)
u+ 1

6

∑

i

uiu
T
(

∂
∂θ̄i
∇2 ˆ̀

CL(θ̄)
∣∣
θ̄=θ∗+αu

)
u, (110)

where α ∈ [0, 1]. We now lower-bound the first-, second-, and third-order terms.

First-order term in Eq. (110): We can use Lemma 9.4 to bound the first term with (∇ˆ̀
CL(θ∗))Tu ≥ −δB with

probability at least 1− 2r exp(− δ2n
2M2

maxφ
2
max

).

Second-order term in Eq. (110): Let uAi denote the elements of u corresponding to the component of the
pseudolikelihood loss for YAi ; let rAi denote the length of uAi ; and let Mmin denote the minimum number of
likelihood components in which any parameter participates.

1
2u

T
(
∇2 ˆ̀

CL(θ∗)
)
u = 1

2

∑

i

uTAi

(
∇2[ˆ̀CL(θ∗)]Ai

)
uAi (111)

≥ 1
2

∑

i

Λmin

(
∇2[ˆ̀CL(θ∗)]Ai

)
‖uAi‖22 (112)

Continuing,

1
2u

T
(
∇2 ˆ̀

CL(θ∗)
)
u ≥ 1

2

∑

i

Λmin

(
∇2[ˆ̀CL(θ∗)]Ai

)
‖uAi‖22 (113)

= 1
2

∑

t


 ∑

i :ut∈uAi

Λmin

(
∇2[ˆ̀CL(θ∗)]Ai

)

u2

t (114)

= 1
2

∑

t

ρ̂tu
2
t (115)

≥ 1
4

∑

t

ρtu
2
t (116)

≥ 1
4ρmin

∑

t

u2
t (117)

= 1
4ρmin ‖u‖

2
2 (118)

≥ r−1

4 ρmin ‖u‖21 (119)

= r−1

4 ρminB
2, (120)
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where we used Lemma 9.5 to lower-bound ρ̂t with ρt/2 with high probability.

Third-order term in Eq. (110):

1
6

∑

t

utu
T
(

∂
∂θ̄t
∇2 ˆ̀

CL(θ̄)
∣∣
θ̄=θ∗+αu

)
u (121)

= 1
6

∑

t

utu
T

( ∑

i : θt∈θAi

E
[
φtφ
⊗
Ai

]
+ 2E [φt]E [φAi ]

⊗ −E [φt]E
[
φ⊗Ai
]

(122)

−E [φAi ]E [φtφAi ]
T −E [φtφAi ]E [φAi ]

T

)
u, (123)

where all expectations are w.r.t. Pθ∗+αu(Y ′Ai |Y\Ai , X), and φAi = φAi(Y
′
Ai
, Y\Ai , X) and φt = φt(Y

′
Ai
, Y\Ai , X).

We can lower-bound and collapse the various terms on the right-hand side, just as in the proof of Theorem 4.1:

1
6

∑

t

utu
T
(

∂
∂θ̄t
∇2 ˆ̀

CL(θ̄)
∣∣
θ̄=θ∗+αu

)
u (124)

= 1
6

∑

t

ut
∑

i : θt∈θAi

uTAi

(
E
[
φtφ
⊗
Ai

]
+ 2E [φt]E [φAi ]

⊗ −E [φt]E
[
φ⊗Ai

]
(125)

−E [φAi ]E [φtφAi ]
T −E [φtφAi ]E [φAi ]

T

)
uAi (126)

= 1
6

∑

t

ut
∑

i : θt∈θAi

(
E
[
φt(u

T
AiφAi)

2
]

+ 2E [φt]E
[
uTAiφAi

]2
−E [φt]E

[
(uTAiφAi)

2
]

(127)

−2E
[
uTAiφAi

]
E
[
φtu

T
AiφAi

]T
)
uAi (128)

= 1
6

∑

i

E
[
(uTAiφAi)

3
]

+ 2E
[
uTAiφAi

]
E
[
uTAiφAi

]2
− 3E

[
uTAiφAi

]
E
[
(uTAiφAi)

2
]
. (129)

Using Jensen’s inequality multiple times, we can continue:

1
6

∑

i

E
[
(uTAiφAi)

3
]

+ 2E
[
uTAiφAi

]
E
[
uTAiφAi

]2
− 3E

[
uTAiφAi

]
E
[
(uTAiφAi)

2
]

(130)

≥ 1
6

∑

i

3E
[
uTAiφAi

]3
− 3E

[
uTAiφAi

]
E
[
(uTAiφAi)

2
]

(131)

= 1
2

∑

i

E
[
uTAiφAi

]3
−E

[
uTAiφAi

]
E
[
(uTAiφAi)

2
]

(132)

= − 1
2

∑

i

∣∣∣E
[
uTAiφAi

]∣∣∣ ·
(
E
[
(uTAiφAi)

2
]
−E

[
uTAiφAi

]2)
(133)

≥ − 1
2

∑

i

∣∣∣E
[
uTAiφAi

]∣∣∣E
[
(uTAiφAi)

2
]

(134)

≥ − 1
2

∑

i

E

[∣∣∣uTAiφAi
∣∣∣
3
]
. (135)

Applying Holder’s inequality, we can continue:

− 1
2

∑

i

E

[∣∣∣uTAiφAi
∣∣∣
3
]
≥ − 1

2

∑

i

‖uAi‖31 φ
3
max ≥ − 1

2
Mmax ‖u‖31 φ

3
max = − 1

2
MmaxB

3φ3
max. (136)

Two of our bounds in this proof had small probabilities of failure. Using a union bound, we get the probability
of at least one failing, finishing the proof. �
Proof of Theorem 4.3: As in the proof of Theorem 4.1, we define G : Rr → R by

G(u) = ˆ̀
CL(θ∗ + u)− ˆ̀

CL(θ∗) + λ (‖θ∗ + u‖p − ‖θ∗‖p) , (137)

with the difference that we now use the composite likelihood loss. As in Theorem 4.1, we wish to show that
G(u) > 0 for all u ∈ Rr with ‖u‖1 = B for some B > 0, which will imply that ‖û‖1 ≤ B.
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Let u ∈ Rr with ‖u‖1 = B. Using Lemma 9.6, we can lower-bound G:

G(u) ≥ −δB + r−1

4 ρminB
2 − 1

2Mmaxφ
3
maxB

3 (138)

+λ (‖θ∗ + u‖p − ‖θ∗‖p) ,

which holds with the probability given in Lemma 9.6. As in the proof of Theorem 4.1, we can lower-bound
the regularization term (for both L1 and L2 regularization): λ (‖θ∗ + u‖p − ‖θ∗‖p) ≥ −λB. Combining these
bounds, we get:

G(u) ≥ −δB + r−1

4 ρminB
2 − 1

2MmaxB
3φ3
max − λB (139)

= B
[
−δ + r−1

4 ρminB − 1
2MmaxB

2φ3
max − λ

]
. (140)

Note that we need λ > 0, B > 0, δ > 0. Eq. (140) will be strictly greater than 0 if B > 0 and

λ < −δ + r−1

4 ρminB − 1
2MmaxB

2φ3
max. (141)

Maximizing this bound w.r.t. B gives B = ρmin
4rMmaxφ3

max
. However, we would like for B to shrink as n−1/2, the

asymptotic rate of convergence, so instead let

B =
ρmin

4rMmaxφ3
max

n−ξ/2, (142)

where ξ ∈ (0, 1). Plugging in this value for B gives

λ < −δ +
ρ2
min

24r2Mmaxφ3
max

n−ξ/2 − ρ2
min

25r2Mmaxφ3
max

n−ξ. (143)

We want to choose δ to be large but still keep λ > 0, so choose

λ = δ =
ρ2
min

26r2Mmaxφ3
max

n−ξ/2, (144)

which makes Eq. (143) hold if n > 1. Now that we have chosen δ, we can simplify the probability of failure from
Lemma 9.6:

2r exp
(
− δ2n

2M2
maxφ

2
max

)
+ 2|A|r2 exp

(
− nC2

min

25r2φ4
max

)
(145)

= 2r exp
(
− ρ4minn

1−ξ

213r4M4
maxφ

8
max

)
+ 2|A|r2 exp

(
− nC2

min

25r2φ4
max

)
(146)

≤ 2r exp
(
− C4

minn
1−ξ

213r4M4
maxφ

8
max

)
+ 2|A|r2 exp

(
− nC2

min

25r2φ4
max

)
(147)

≤ 2r(|A|r + 1) exp
(
− C4

min

213r4M4
maxφ

8
max

n1−ξ
)
. (148)

The above bound is very loose in combining the two exponential terms; in particular, we would like ρmin to
remain in the bound. To derive a sufficient condition for this tighter combination, we first require that the
left-hand term in the probability of failure be meaningful, i.e., at most 1:

2r exp
(
− ρ4minn

1−ξ

213r4M4
maxφ

8
max

)
≤ 1 (149)

log(2r)− ρ4minn
1−ξ

213r4M4
maxφ

8
max

≤ 0 (150)

n1−ξ ≥ 213r4M4
maxφ

8
max

ρ4min
log(2r). (151)

To keep ρmin in the bound, we want to show that the left-hand exponential term in Eq. (146) dominates the
right-hand term. Thus, we must use Eq. (151) to show a sufficient condition for:

2r exp
(
− ρ4minn

1−ξ

213r4M4
maxφ

8
max

)
≥ 2|A|r2 exp

(
− nC2

min

25r2φ4
max

)
. (152)
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We may replace n with n1−ξ on the right-hand side. Since the left-hand term decreases more slowly in n than
the right-hand term, we may replace n with the value from Eq. (151):

1 ≥ 2|A|r2 exp
(
− 28C2

minr
2M4

maxφ
4
max

ρ4 log(2r)
)

(153)

|A| ≤ 1
2r2 exp

(
28C2

minr
2M4

maxφ
4
max

ρ4 log(2r)
)
. (154)

Since ρmin is a sum of at most Mmax eigenvalues, and since any eigenvalue is at most φ2
maxr (as shown in

Theorem 4.1), we know ρ ≤Mmaxφ
2
maxr. Plugging this in, it suffices to show that:

|A| ≤ 1
2r2 exp

(
28C2

minM
2
max

ρ2 log(2r)
)

(155)

= 1
2r2 (2r)

[
28C2

minM
2
max

ρ2

]

. (156)

Therefore, if we have

|A| ≤ 1
2r2 (2r)

[
28C2

minM
2
max

ρ2

]

, (157)

then we know that the probability of failure is at most:

4r exp
(
− ρ4minn

1−ξ

213r4M4
maxφ

8
max

)
. � (158)

Note that this bound is better than that from separate regressions, though both bounds are loose in terms of
their treatments of shared parameters.

Proof of Corollary 4.4: If we wish to have a probability of failure of at most δ when we have n samples, we
may choose ξ accordingly:

2r(|A|r + 1) exp
(
− C4

min

213r4M4
maxφ

8
max

n1−ξ
)
≤ δ (159)

log(2r(|A|r + 1))− C4
min

213r4M4
maxφ

8
max

n1−ξ ≤ log δ (160)

C4
min

213r4M4
maxφ

8
max

n1−ξ ≥ log 2r(|A|r+1)
δ (161)

n1−ξ ≥ 213r4M4
maxφ

8
max

C4
min

log 2r(|A|r+1)
δ (162)

(1− ξ) log n ≥ log
213r4M4

maxφ
8
max

C4
min

+ log log 2r(|A|r+1)
δ (163)

(1− ξ) ≥ 1
logn

(
log

213r4M4
maxφ

8
max

C4
min

+ log log 2r(|A|r+1)
δ

)
(164)

ξ ≤ 1− 1
logn

(
log

213r4M4
maxφ

8
max

C4
min

+ log log 2r(|A|r+1)
δ

)
(165)

(166)

We will set ξ equal to this upper bound in the next part. Likewise, if we wish to have parameter estimation
error at most ε, then we need:

ρmin
4rMmaxφ3

max
n−ξ/2 ≤ ε (167)

log ρmin
4rMmaxφ3

max
− ξ

2 log n ≤ log ε. (168)

Rewrite the left-hand side:

log ρmin
4rMmaxφ3

max
− ξ

2 log n (169)

= log ρmin
4rMmaxφ3

max
− 1

2

(
log n−

(
log

213r4M4
maxφ

8
max

C4
min

+ log log 2r(|A|r+1)
δ

))
(170)

= 1
2

[
log

ρ2min
24r2M2

maxφ
6
max
− log n+ log

213r4M4
maxφ

8
max

C4
min

+ log log 2r(|A|r+1)
δ

]
(171)

= 1
2

[
− log n+ log

29r2M2
maxφ

2
maxρ

2
min

C4
min

+ log log 2r(|A|r+1)
δ

]
. (172)
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Recombine this left-hand side with Eq. (168):

− log n+ log
29r2M2

maxφ
2
maxρ

2
min

C4
min

+ log log 2r(|A|r+1)
δ ≤ 2 log ε (173)

log n ≥ log
29r2M2

maxφ
2
maxρ

2
min

C4
min

+ log log 2r(|A|r+1)
δ − 2 log ε (174)

n ≥ 29r2M2
maxφ

2
maxρ

2
min

C4
min

1
ε2 log 2r(|A|r+1)

δ (175)

If, however, we assume that |A| ≤ 1
2r2 (2r)

[
28C2

minM
2
max

ρ2

]

, then our probability of failure changes, so we require:

4r exp
(
− ρ4minn

1−ξ

213r4M4
maxφ

8
max

)
≤ δ (176)

log(4r)− ρ4minn
1−ξ

213r4M4
maxφ

8
max

≤ log δ (177)

ρ4minn
1−ξ

213r4M4
maxφ

8
max

≥ log 4r
δ (178)

n1−ξ ≥ 213r4M4
maxφ

8
max

ρ4min
log 4r

δ (179)

ξ ≤ 1− 1
logn

(
log

213r4M4
maxφ

8
max

ρ4min
+ log log 4r

δ

)
. (180)

Plugging this value for ξ into Eq. (168), we get:

log ρmin
4rMmaxφ3

max
− 1

2

[
1− 1

logn

(
log

213r4M4
maxφ

8
max

ρ4min
+ log log 4r

δ

)]
log n ≤ log ε (181)

log
ρ2min

24r2M2
maxφ

6
max
− log n+ log

213r4M4
maxφ

8
max

ρ4min
+ log log 4r

δ ≤ 2 log ε (182)

log n ≥ log
ρ2min

24r2M2
maxφ

6
max

+ log
213r4M4

maxφ
8
max

ρ4min
+ log log 4r

δ + log 1
ε2 (183)

= log
29r2M2

maxφ
2
max

ρ2min
+ log log 4r

δ + log 1
ε2 (184)

n ≥ 29r2M2
maxφ

2
max

ρ2min

1
ε2 log 4r

δ . � (185)

9.4 Disjoint Optimization

Proof of Lemma 4.6: Let Mt = |{i : θt ∈ θAi}|.∥∥∥θ̂ − θ∗
∥∥∥

1
=

∑

t

∣∣∣θ̂t − θ∗t
∣∣∣ (186)

=
∑

t

∣∣∣∣∣∣
1
Mt

∑

i : θt∈θAi

θ̂
(Ai)
t − θ∗t

∣∣∣∣∣∣
(187)

=
∑

t

1
Mt

∣∣∣∣∣∣
∑

i : θt∈θAi

θ̂
(Ai)
t − θ∗t

∣∣∣∣∣∣
(188)

≤
∑

t

1
Mt

∑

i : θt∈θAi

∣∣∣θ̂(Ai)
t − θ∗t

∣∣∣ (189)

=
∑

i

∑

t : θt∈θAi

1
Mt

∣∣∣θ̂(Ai)
t − θ∗t

∣∣∣ (190)

≤
∑

i

∑

t : θt∈θAi

∣∣∣θ̂(Ai)
t − θ∗t

∣∣∣ (191)

≤
∑

i

ε (192)

= |A|ε � (193)
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Proof of Theorem 4.7: Lemma 4.6 shows we can use Corollary 4.2 by shrinking the desired error ε and the
probability of failure δ by factors of 1/|A|. A union bound combines the probabilities of failure. �

9.5 Bounding the KL with Bounds on Parameter Estimation Error

This subsection uses bounds on the parameter estimation error to bound the log loss of our estimated distribution
w.r.t. the target distribution.

The previous theorem demonstrates that there are two convergence regimes. Far from the optimum parameters,
the log loss is approximately linear in the parameter estimation error. Close to the optimum, the log loss
converges quadratically w.r.t. the parameter estimation error.

We prove two lemmas (for the two regimes) before proving the theorem.

Lemma 9.7. (Third-Order Taylor Expansion) Given a CRF factorizing as in Eq. (20) with parameters θ∗

and maximum feature magnitude φmax, assume that the maximum eigenvalue of the Hessian of the log loss at
θ∗ is Λmax. Then the expected loss using a vector of parameters θ obeys the following bounds:

`L(θ) ≤ `L(θ∗) +
Λmax

2
‖θ − θ∗‖21 + φ3

max‖θ − θ∗‖31 (194)

`L(θ) ≤ `L(θ∗) +
Λmax

2
‖θ − θ∗‖22 + φ3

maxr
3/2‖θ − θ∗‖32. (195)

The second-order term dominates when, respectively,

‖θ − θ∗‖1 ≤ Λmax
2φ3

max

(196)

‖θ − θ∗‖2 ≤ Λmax
2r3/2φ3

max

. (197)

Proof : Write out the third-order Taylor expansion of the log loss in Eq. (21) w.r.t. θ around θ∗:

`L(θ) = `L(θ∗) (198)

+ 1
2 (θ − θ∗)T

(
∇2`L(θ∗)

)
(θ − θ∗)

+ 1
6

∑

i

(θi − θ∗i )(θ − θ∗)T
(

∂
∂θi
∇2`L(θ)

∣∣
θ=αθ+(1−α)θ∗

)
(θ − θ∗),

where α ∈ [0, 1]. Note that the first-order term is 0. Let u = θ−θ∗. The second-order term may be upper-bounded
using the maximum eigenvalue of the Hessian:

1
2u

T
(
∇2`L(θ∗)

)
u ≤ 1

2Λmax ‖u‖22 ≤ 1
2Λmax ‖u‖21 . (199)

The third-order term may be upper-bounded as well:

1
6

∑

i

uiu
T
(

∂
∂θi
∇2`L(θ)

∣∣
θ=αθ+(1−α)θ∗

)
u (200)

= 1
6

∑

i

ui

(
E
[
φi(u

Tφ)2
]

+ 2E [φi] (E
[
uTφ

]
)2 (201)

−E [φi]E
[
(uTφ)2

]
− 2E

[
uTφ

]
E
[
φi(u

Tφ)
] )

(202)

= 1
6

(
E
[
(uTφ)3

]
+ 2E

[
uTφ

]
(E
[
uTφ

]
)2 − 3E

[
uTφ

]
E
[
(uTφ)2

])
(203)

≤
(
E
[
|uTφ|

])3
(204)

≤ (φmax‖u‖1)
3 ≤

(
φmax

√
r‖u‖2

)3
. � (205)

Lemma 9.8. (First-Order Taylor Expansion) Given a CRF factorizing as in Eq. (20) with parameters
θ∗ and maximum feature magnitude φmax, the expected loss using a vector of parameters θ obeys the following
bounds:

`L(θ) ≤ `L(θ∗) + φmax ‖θ − θ∗‖1 (206)

`L(θ) ≤ `L(θ∗) + φmax
√
r ‖θ − θ∗‖2 . (207)
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Proof : Write out the first-order Taylor expansion of the log loss in Eq. (21) w.r.t. θ around θ∗:

`L(θ) = `L(θ∗) +
(
∇`L(θ)|θ=αθ+(1−α)θ∗

)
(θ − θ∗), (208)

where α ∈ [0, 1]. We can upper-bound the first-order term using Holder’s inequality:
(
∇`L(θ)|θ=αθ+(1−α)θ∗

)
(θ − θ∗),

=
(
EP (X)

[
−EPθ(Y |X) [φ(Y,X)] + EPθ(Y ′|X) [φ(Y ′, X)]

])
(θ − θ∗) (209)

≤
∥∥EP (X)

[
−EPθ(Y |X) [φ(Y,X)] + EPθ(Y ′|X) [φ(Y ′, X)]

]∥∥
∞ ‖θ − θ

∗‖1 (210)

≤ φmax ‖θ − θ∗‖1 ≤ φmax
√
r ‖θ − θ∗‖2 . � (211)

Proof of Theorem 4.5: Let δ = ‖θ − θ∗‖1. Suppose the third-order bound is tighter; i.e.,

Λmax
2 δ2 + φ3

maxδ
3 ≤ φδ (212)

φ3
maxδ

2 + Λmax
2 δ − φ ≤ 0. (213)

Solving, we get

δ ≤
−Λmax

2 +

√
Λ2
max

4 + 4φ4
max

2φ3
max

. (214)

Plugging this into the third-order bound, we can rewrite the third-order bound as:

Λmax
2 δ2 + φ3

maxδ
3 ≤ Λmax

2 δ2 +
−Λmax

2 +

√
Λ2
max

4 + 4φ4
max

2
δ2 (215)

= 1
2

(
Λmax

2 +

√
Λ2
max

4 + 4φ4
max

)
δ2 (216)

≤ 1
2

(
Λmax

2 + Λmax
2 + 2φ2

max

)
δ2 (217)

≤
(

Λmax
2 + φ2

max

)
δ2. � (218)

We discuss sample complexity bounds. The key is to establish a bound on the number of samples required to be
in the quadratic convergence regime, after which the proof is trivial. To guarantee that Eq. (15) holds, we can
use Corollary 4.4 to show it suffices to have:

29r2M2
maxφ

2
max

ρ2min

1
n log 4r

δ ≤


−

Λmax
2 +

√
Λ2
max

4 + rφ4
max

2φ3
max




2

(219)

=

Λ2
max

4 +
Λ2
max

4 + rφ4
max − Λmax

√
Λ2
max

4 + rφ4
max

4φ6
max

(220)

=
Λ2
max + 2rφ4

max − Λmax
√

Λ2
max + 4rφ4

max

8φ6
max

(221)

n ≥ 212r2M2
maxφ

8
max

ρ2min

(
Λ2
max+2rφ4

max−Λmax
√

Λ2
max+4rφ4

max

) log 4r
δ (222)

In this quadratic regime, to achieve log loss `L(θ∗) + ε, we need:

(
Λmax

2 + φ2
max

) 29r2M2
maxφ

2
max

ρ2min

1
n log 4r

δ ≤ ε (223)

n ≥ 28r2M2
maxφ

2
max(Λmax+2φ2

max)

ρ2min

1
ε log 4r

δ . (224)

Likewise, in the linear regime, we need:

n ≥ 29r2M2
maxφ

3
max

ρ2min

1
ε log 4r

δ . (225)
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9.6 Canonical Parametrization of Abbeel et al. (2006)

We present the canonical parametrization in its improved version from [17]. We omit proofs already provided
by [1, 17]. These two previous works discussed the method in terms of MRFs, but it is trivially generalizable to
CRFs. Like our work, the canonical parametrization requires that we know the structure of the target distribution
(and that it lies within our model class used for learning).

The canonical parametrization method is based on re-expressing a distribution P (Y |X) as a product of canonical
factors. Each canonical factor is a ratio of many local conditional probabilities of the form P (Yi|Y\i, X). In
expressing P (y|x), each of these local conditional probabilities is instantiated partly using the values of interest
in y and partly using values from a reference assignment y.

Before explicitly stating the canonical parametrization, we define some new notation. We use an asterisk ∗ to
mark domains and indices corresponding to canonical factors. 2C is the powerset of C. For each canonical factor
domain YC∗j ⊆ Y , we define Yij to be an arbitrary element in YC∗j . If A is a variable or set of variables and u, v

are assignments to disjoint sets of variables U, V s.t. A ⊆ U ∪ V , then we write A[u, v] to denote an assignment
to variables in A taking values from u, v. We write MBYi to denote the Markov blanket of Yi in Y and X.

The parametrization is based on the following equality (partly proven in [1], completed for MRFs in [17], and
extended to CRFs here). The proof for the extension to CRFs simply requires conditioning every probability on
X.

Theorem 9.9. Suppose a CRF factorizes according to factors φj:

P (Y |X) ∝
J∏

j=1

φj(YCj , XDj ). (226)

Let y be an arbitrary assignment of values to Y . Define a set of canonical factor domains {C∗j }J
∗
j=1

.
= ∪Jj=12Cj \∅,

We may exactly represent the distribution via the following equality:

P (Y |X) = P (y|X)

J∗∏

j=1

exp


 ∑

U⊆C∗j

(−1)|C
∗
j \U | logP

(
Yij [YU , y\U ]

∣∣MBYij [YU , y\U , X]
)

 . (227)

Given this equality, the canonical parametrization method is simple: choose an arbitrary reference assignment y,
use data to compute each local conditional probability P (Yi|MBYi), and plug the results into equation Eq. (227).

Note that, in general, each local conditional probability P
(
Yij [YU , y\U ]

∣∣MBYij [YU , y\U , X]
)

may be difficult

to compute directly, especially if the Markov blanket is large. For discrete data, the required instantiation
MBYij [y\U ] might not even appear in the dataset. Therefore, we assume that these conditional probabilities are

computed via regression (MLE), using the factorization of the target distribution: maxP Edata
[
logP (Yi|Y\i, X)

]
,

where P (Yi|Y\i, X) ∝∏j : i∈Cj φj(YCj , XDj ). (We may assume we know the factorization of the target distribu-

tion in Eq. (226), for the canonical parametrization PAC bounds require knowing this factorization.) As discussed
in Sec. 4.4, we can estimate these probabilities via joint or disjoint optimization. With joint optimization, we
compute single estimates of each factor φj ; with disjoint optimization, we estimate φj once for each Yi ∈ YCj ,
and we assume that we use the average of these |Cj | estimates.

Note that, like us, [1] compute local conditional probabilities via maximum-likelihood estimates (using disjoint
optimization). Since they work with binary variables and low-degree factor graphs, they can compute MLE by
computing each P (Yi|Y\i) (in tabular form) via simple counts. [17] do not suggest a method for computing the
probabilities, for they only use the canonical parametrization as theoretical motivation for a different algorithm.

To summarize, we use two (very reasonable) assumptions to prove Theorem 5.1, which shows the equivalence of
the canonical parametrization and MPLE:

1. In computing the local conditional probabilities in the canonical parametrization, we take advantage of the
factorization of the target distribution.

2. We compute local conditional probabilities using either joint optimization (joint MPLE) or disjoint opti-
mization with factor averaging (disjoint MPLE).
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Proof of Theorem 5.1: Given our two assumptions, the proof is simple. We need to show that plugging our
estimates of local conditional probabilities into the canonical parametrization in Eq. (227) produces the same
model as plugging our estimates of factors φj into the model in Eq. (226). This equivalence is exactly what
Theorem 9.9 proves. �
Clarification: [17] uses probabilities P (Yi|·) while [1] uses probabilities P (YA|·) with |A| > 1; it is thus tempting
to state that [17] is similar to MPLE while [1] is more similar to MCLE. However, this argument is misleading
since the parametrization of [1] can be further simplified into the parametrization of [17]. The two algorithms
compute the same set of canonical factors (where each is defined by its domain); the algorithms differ in their
parametrizations of these canonical factors. However, both types of canonical factors for a given domain are
exactly equal if computed from the same data (Thm. 2.1 from [17]). Thus, the two algorithms are optimizing
the same objective. By showing that the method of [17] is equivalent to MPLE, we show that both methods are.
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