
Supplementary material to

“Optimistic planning for Markov decision processes”: Proofs

Proof of main result

Recall that to prove Theorem 1, it must first be shown
that the regret of the algorithm is related to the small-
est α among expanded nodes (which will be done in
Lemma 6), and then that the algorithm always works
to decrease this smallest α (done in Lemma 7). A
preliminary result is also needed.

Lemma 5. The ν-values of the near-optimal policy
classes increase over iterations: ν(H∗

t+1) ≥ ν(H∗
t),

where H∗
t ∈ arg maxH∈Tt

ν(H).

Proof. Consider first one policy class H, split by ex-
panding some leaf node s ∈ L(TH). One child class H ′

is obtained for each action u, and we have L(TH′) =
(L(TH) \ {s}) ∪ C(s, u). By easy calculations, since
the rewards are positive, the terms that nodes C(s, u)
contribute to ν(H ′) add up to more than the term
of s in ν(H), and the other terms remain constant.
Thus ν(H ′) ≥ ν(H). Then, among the policy classes
Ht ∈ Tt, some are split in Tt+1 and some remain un-
changed. For the children of split classes ν-values are
larger than their parents’; while ν-values of unchanged
classes remain constant. Thus, the maximal ν-value
increases across iterations. Note it can similarly be
shown that b(H†

t+1) ≤ b(H†
t).

Lemma 6. Define αt = α(st), the α value of the node
expanded at iteration t; and α∗ = mint=0,...,n−1 αt.
The regret after n expansions satisfies Rn ≤

N
γ α∗.

Proof. We will first bound, individually at each itera-
tion t, the suboptimality of ν(H∗

t), by showing:

v∗ − ν(H∗
t) ≤ diam(H†

t) ≤
N

γ
αt (7)

To this end, observe that:

ν(H†
t) ≤ ν(H∗

t) ≤ v∗ ≤ b(H†
t) (8)

The inequality ν(H∗
t) ≤ v∗ is true by definition (ν(H∗

t)
is a lower bound on the value of some policy, itself
smaller than v∗). For the leftmost inequality, H∗

t max-
imizes the lower bound across all policy classes com-
patible with the current tree, so its lower bound is
at least as large as that of the optimistic policy class
H†

t . Similarly, for the rightmost inequality, since H†
t

maximizes the upper bound, its upper bound is imme-
diately larger than the true optimal value. Using this

string of inequalities, we get:

v∗ − ν(H∗
t) ≤ b(H†

t)− ν(H†
t)

= diam(H†
t) =

∑

s∈L(T
H

†
t
)

c(s) (9)

We now investigate the relationship between this di-
ameter and αt. Consider the subtree TH†

t
of policy

class H†
t , represented schematically in Figure 4 using

a black continuous outline (this subtree has a branch-
ing factor of N). We are thus interested in finding
an upper bound for

∑

s∈L(T
H

†
t
) c(s) as a function of

αt. Consider the tree Thst
, as introduced earlier in the

definition of n(s), which is included in TH†
t

and is the

same for any h ∈ H†
t . To see this, recall that st max-

imizes c among the leaves of TH†
t
. Since additionally

c strictly decreases along paths, any node with a con-
tribution larger than c(st) must be above these leaves,

and this holds for any h ∈ H†
t .

Denote in this context Thst
more simply by T ′, shown

in gray in the figure, and its leaves by L′, shown as a
gray outline. Denote the children of L′ by L′′, shown
as a dashed line.

T '

L"
L'

xt

THt
†

Figure 4: Tree of the optimistic policy class and vari-
ous subtrees.

Recall that for any h and s ∈ Th,
∑

s′∈C(s,h(s)) c(s′) =

γc(s). This also means the sum of contributions for
the leaves of any subtree of Th having some s as its
root is smaller than c(s). Using these properties, we
have:

∑

s∈L(T
H

†
t
)

c(s) ≤
∑

s′∈L′

c(s′) =
1

γ

∑

s′′∈L′′

c(s′′) ≤
1

γ

∑

s′′∈L′′

c(st)

≤
1

γ
N |L′| c(st) ≤

1

γ
Nn(st)c(st) =

N

γ
αt

Optimistic planning for Markov decision processes

where we additionally exploited the facts that c(s′′) ≤
c(st) (otherwise s′′ would have been in T ′), that each
node in L′ has N children in L′′, and that by the defi-
nition of n(s) |L′| ≤ n(st). From this and also (9), the
desired intermediate result (7) is obtained.

Using now (8) and (7), as well as Lemma 5, we have:

Rn = max
u

Q∗(x0, u)−Q∗(x0,H
∗
n(s0))

≤ v∗ − ν(H∗
n) ≤ b(H†

t∗)− ν(H†
t∗)

= diam(H†
t∗) ≤

N

γ
α∗

where H∗
n(s0) is the action chosen by OP at the

root (i.e., in state x0), and t∗ ∈ arg mint=0,...,n−1 αt.
The first inequality is true because maxu Q∗(s0, u) =
v∗ and Q∗(s0,H

∗
n(s0)) ≥ ν(H∗

n) (the return
Q∗(s0,H

∗
n(s0)) is obtained by choosing optimal actions

below level 0, whereas H∗
n may make other suboptimal

choices). The proof is complete.

Lemma 7. All nodes expanded by the algorithm belong
to Sα∗ , so that n ≤ |Sα∗ |.

Proof. We show first that st ∈ Sαt
at any iteration t.

Condition (i) in the definition (5) of Sαt
is immedi-

ately true. For condition (ii), an N
γ αt-optimal policy

h whose tree Th contains st is needed. Choose any
h ∈ H†

t , then st ∈ Th and:

v∗ − v(h) ≤ b(H†
t)− ν(H†

t) = diam(H†
t) ≤

N

γ
αt

where we used some of the inequalities derived in the
proof of Lemma 6. Thus st ∈ Sαt

. Furthermore, α∗ ≤
αt implies Sαt

⊆ Sα∗ , and we are done.

Proof of Theorem 1. Exploiting Lemma 7 in combina-
tion with (6):

• if β > 0, n = Õ(α∗−β), thus for large n, α∗ =

Õ(n− 1
β);

• if β = 0, n ≤ a
(

log 1
α∗

)b
, thus α∗ ≤ exp[−(n

a)
1
b].

By Lemma 6, Rn ≤
N
γ α∗ which immediately leads to

the desired results.

Proofs for values of β in special cases

Proof of Proposition 2 (uniform case). We study the
size of Sε. Due to the equal rewards all the poli-
cies are optimal, and condition (ii) in (5) does not
eliminate any nodes. The contribution of a node is

c(s) = P(s) γd(s)

1−γ = (γ
N)d(s) 1

1−γ since the probability

of reaching a node at depth d(s) is (1
N)d(s). This also

means that, for any policy h, the tree Ths consists of all
the nodes s′ up to the depth of s. The number of leaves
of this tree is Nd(s) (recall that a policy tree has only
branching factor N), and since this number does not
depend on the policy, n(s) is also Nd(s). Therefore,

α(s) = n(s)c(s) = γd(s)

1−γ and condition (i) eliminates

nodes with depths larger than D = log ε(1−γ)
log γ . The re-

maining nodes in the whole tree, with branching factor
NK, form Sε, which is of size:

|Sε| = O((NK)D) = O((NK)
log ε(1−γ)

log γ) = O(ε−
log NK
log 1/γ)

yielding for β the value: βunif = log NK
log 1/γ . So, for large

n the regret Rn = Õ(n−
log 1/γ
log NK). In fact, as can be

easily checked by examining the proof of Theorem 1,
the logarithmic component disappears in this case and

Rn = O(n−
log 1/γ
log NK) .

Proof of Proposition 3 (structured rewards). Since
α(s) depends only on the probabilities, condition (i)

leads to the same D = log ε(1−γ)
log γ as in the uniform

case. However, now condition (ii) becomes important,
so to obtain the size of Sε, we must only count
near-optimal nodes up to depth D.

Consider the set of nodes in T∞ which do not belong
to the optimal policy, but lie below nodes that are
at depth d′ on this policy. An example is enclosed
by a dashed line in Figure 3, where d′ = 1. All these
nodes are sub-optimal to the extent of the loss incurred
by not choosing the optimal action at their parent,
namely: (γ

N)d′ 1
1−γ . Note these nodes do belong to a

policy that is near-optimal to this extent, one which
makes the optimal choices everywhere except at their
parent. Looking now from the perspective of a given
depth d, for any m ≤ d there are NdKm nodes at this
depth that are (γ

N)d−m 1
1−γ -optimal. Condition (ii),

written (γ
N)d−m 1

1−γ ≤
N
γ

γd

1−γ , leads to m ≤ d log N
log N/γ +

1. Then:

|Sε| ≤

D
∑

d=0

NdKd log N
log N/γ

+1 ≤ K

D
∑

d=0

(

NK
log N

log N/γ
)d

If N > 1:

|Sε| = O
((

NK
log N

log N/γ)D
)

= O
(

(NK
log N

log N/γ)
log ε(1−γ)

log γ
)

= O
(

ε−
log N

log 1/γ
(1+ log K

log N/γ
))

yielding the desired value of βrew = log N
log 1/γ (1+ log K

log N/γ).

If N = 1 (deterministic case), βrew = 0 and:

|Sε| =
D

∑

d=0

1 ·K = (D + 1)K =

(

log ε(1− γ)

log γ
+ 1

)

K

≤ a log 1/ε

Lucian Buşoniu, Rémi Munos

for small ε and some constant a, which is of the
form (6) for b = 1. From Theorem 1, the regret is
O(exp(−n

a)).

Proof of Proposition 4 (structured probabilities). We
will show that the quantities of nodes with sizable
contributions on the subtree of one policy, and
respectively on the whole tree, satisfy:

n(λ) = |{s ∈ T∞ | c(s) ≥ λ}| = Õ(λ−δ)

nh(λ) = |{s ∈ Th | c(s) ≥ λ}| = Õ(λ−δh)

for constants δh and δ; and we will find values for these
constants. (Note nh(λ) is not a function of h, since all
policies have the same probability structure.) Then,
since condition (ii) always holds and nodes in Sε only
have to satisfy condition (i):

|Sε| = |{s ∈ T∞ |n(s)c(s) ≥ ε}|

≤ |{s ∈ T∞ |nh(c(s))c(s) ≥ ε}|

≤
∣

∣

{

s ∈ T∞
∣

∣ a[log 1/c(s)]bc(s)1−δh ≥ ε
}∣

∣

= Õ(ε
− δ

1−δh)

where we used n(s) ≤ nh(c(s)) and nh(c(s)) =
Õ(c(s)−δh). Thus β = δ

1−δh
.

Consider now nh(λ). The nodes at each depth d cor-
respond to a binomial distribution with d trials, so
there are Cm

d nodes with contribution c(s) = pd−m(1−

p)m γd

1−γ , for m = 0, 1, . . . , d. Since these contributions
decrease monotonically with d, as well as with m at a
certain depth, condition c(x) ≥ λ eliminates all nodes
above a certain maximum depth D, as well as at every
depth d all nodes above a certain m(d), where:

(pγ)d

1− γ
≥ λ ⇒ d ≤

log 1/(λ(1− γ))

log 1/(pγ)
= D

m ≤
log 1/(λ(1− γ))

log p/(1− p)
− d

log 1/(pγ)

log p/(1− p)
= m(d)

Note in the condition for D we set m = 0 to ob-
tain the largest probability. So, m(d) decreases lin-
early with d, so that up to some depth m∗, m(d) ≥ d
and we count all the nodes up to m = d; while
above m∗, m(d) < d and we count fewer nodes. The
depth m∗ is obtained by solving m(d) = d, leading

to m∗ = log 1/(λ(1−γ))
log 1/(γ(1−p)) = log 1/(pγ)

log 1/(γ(1−p))D = ηD with

the notation η = log 1/(pγ)
log 1/(γ(1−p)) . The structure of the

subtree satisfying c(s) ≥ λ is represented in Figure 5.

D

m*

m d()

depth d

Figure 5: Schematic representation of the subtree sat-
isfying c(s) ≥ λ, shown in gray. Nodes with larger
probabilities are put to the left. The thick line repre-
sents the fringe m(d) where nodes stop being counted.

Now:

nh(λ) =
D

∑

d=0

min{m(d),d}
∑

m=0

Cm
d ≤

D
∑

d=0

min{m(d),d}
∑

m=0

(

de

m

)m

≤
D

∑

d=0

m∗

∑

m=0

(

De

m∗

)m∗

= Dm∗

(

De

m∗

)m∗

= ηD2

(

e

η

)ηD

= Õ
(

(

e

η

)ηD
)

where we used Cm
d ≤

(

de
m

)m
as well as

(

de
m

)m
≤

(

De
m

)m
≤

(

De
m∗

)m∗

. The latter inequality can be shown

by noticing that
(

De
m

)m
, as a function of m, increases

up to m = D, and m∗ ≤ D is on the increasing part.

Denoting now η′ =
(

e
η

)η

and continuing:

nh(λ) = Õ(η′D) = Õ(η′
log 1/(λ(1−γ))

log 1/(pγ)) = Õ(λ− log η′

log 1/(pγ))

leading to the value for δh = log η′

log 1/(pγ) .
3

Similarly, it is shown that n(λ) = Õ(λ− log Kη′

log 1/(pγ)) and

thus δ = log Kη′

log 1/(pγ) , where the extra K comes from

the fact we count the nodes corresponding to all Kd

policies rather than just one.

The desired result is immediate: βprob = δ
1−δh

=
log Kη′

log 1/(pγη′) . Note throughout, we silently used the

fact that p is close to 1; indeed, this is required for
some of the steps to be meaningful, such as having
log 1/(pγη′) > 0.

3The definition of n(s) in fact only requires counting the
leaves of the subtree corresponding to nh(λ) (thick line in
Figure 5), while we counted all the nodes (gray area). Ex-
ploiting this property is unlikely to be helpful, however,
since in the upper bound derived for nh(λ) the inner term
in the sum (corresponding to Cm

d , the number of nodes
having a certain probability) is dominant. The fact that
the whole tree is taken into account only enters the loga-
rithmic component of the bound.

