Proof of main result

Recall that to prove Theorem 1, it must first be shown that the regret of the algorithm is related to the smallest α among expanded nodes (which will be done in Lemma 6), and then that the algorithm always works to decrease this smallest α (done in Lemma 7). A preliminary result is also needed.

Lemma 5. The ν-values of the near-optimal policy classes increase over iterations: $\nu(H^*_t + 1) \geq \nu(H^*_t)$, where $H^*_t \in \arg \max_{H \in T_t} \nu(H)$.

Proof. Consider first one policy class H, split by expanding some leaf node $s \in L(T_H)$. One child class H' is obtained for each action u, and we have $L(T_{H'}) = (L(T_H) \setminus \{s\}) \cup c(s, u)$. By easy calculations, since the rewards are positive, the terms that nodes $c(s, u)$ contribute to $\nu(H')$ add up to more than the term of s in $\nu(H)$, and the other terms remain constant. Thus $\nu(H') \geq \nu(H)$. Then, among the policy classes $H_t \in T_t$, some are split in T_{t+1} and some remain unchanged. For the children of split classes ν-values are larger than their parents; while ν-values of unchanged classes remain constant. Thus, the maximal ν-value increases across iterations. Note it can similarly be shown that $b(H^*_t + 1) \leq b(H^*_t)$.

Lemma 6. Define $\alpha_t = \alpha(s_t)$, the α value of the node expanded at iteration t; and $\alpha^* = \min_{t=0,\ldots,n-1} \alpha_t$. The regret after n expansions satisfies $R_n \leq \frac{N}{\gamma} \alpha^*$.

Proof. We will first bound, individually at each iteration t, the suboptimality of $\nu(H^*_t)$, by showing:

$$v^* - \nu(H^*_t) \leq \text{diam}(H^*_t) \leq \frac{N}{\gamma} \alpha_t \tag{7}$$

To this end, observe that:

$$\nu(H^*_t) \leq \nu(H^*_t) \leq v^* \leq b(H^*_t) \tag{8}$$

The inequality $\nu(H^*_t) \leq v^*$ is true by definition ($\nu(H^*_t)$ is a lower bound on the value of some policy, itself smaller than v^*). For the leftmost inequality, H^*_t maximizes the lower bound across all policy classes compatible with the current tree, so its lower bound is at least as large as that of the optimistic policy class H^*_t. Similarly, for the rightmost inequality, since H^*_t maximizes the upper bound, its upper bound is immediately larger than the true optimal value. Using this string of inequalities, we get:

$$v^* - \nu(H^*_t) \leq b(H^*_t) - \nu(H^*_t) = \text{diam}(H^*_t) = \sum_{s \in L(T_{H^*_t})} c(s) \tag{9}$$

We now investigate the relationship between this diameter and α_t. Consider the subtree $T_{H^*_t}$ of policy class H^*_t, represented schematically in Figure 4 using a black continuous outline (this subtree has a branching factor of N). We are thus interested in finding an upper bound for $\sum_{s \in L(T_{H^*_t})} c(s)$ as a function of α_t. Consider the tree T_h, as introduced earlier in the definition of $n(s)$, which is included in $T_{H^*_t}$ and is the same for any $h \in H^*_t$. To see this, recall that s_t maximizes c among the leaves of $T_{H^*_t}$. Since additionally c strictly decreases along paths, any node with a contribution larger than $c(s_t)$ must be above these leaves, and this holds for any $h \in H^*_t$.

Denote in this context $T_{h,s}$ more simply by T', shown in gray in the figure, and its leaves by L', shown as a gray outline. Denote the children of L' by L'', shown as a dashed line.

![Figure 4: Tree of the optimistic policy class and various subtrees.](image)

Recall that for any h and $s \in T_h$, $\sum_{s' \in C(h, s)} c(s') = \gamma c(s)$. This also means the sum of contributions for the leaves of any subtree of T_h having some s as its root is smaller than $c(s)$. Using these properties, we have:

$$\sum_{s \in L(T_{H^*_t})} c(s) \leq \sum_{s' \in L'} c(s') = \frac{1}{\gamma} \sum_{s'' \in L''} c(s'') \leq \frac{1}{\gamma} \sum_{s \in L''} c(s) = \frac{1}{\gamma} N c(s_t) \leq \frac{1}{\gamma} N n(s_t) c(s_t) = \frac{N}{\gamma} \alpha_t$$
Proof. We show first that condition (i) in the definition (5) of \(S \) size of \(W \) study the whose tree \(n \). By Lemma 6, the first inequality is true because \(\max_u Q^*(s_0, u) = v^* \) and \(Q^*(s_0, H_n^*(s_0)) \geq v^*(H_n^*) \) (the return \(Q^*(s_0, H_n^*(s_0)) \) is obtained by choosing optimal actions below level 0, whereas \(H_n^* \) may make other suboptimal choices). The proof is complete.

Lemma 7. All nodes expanded by the algorithm belong to \(S_{\alpha^*} \), so that \(n \leq |S_{\alpha^*}| \).

Proof. We show first that \(s_t \in S_{\alpha_t} \) at any iteration \(t \). Condition (i) in the definition (5) of \(S_{\alpha_t} \) is immediately true. For condition (ii), an \(\frac{N}{\gamma} \alpha_t \)-optimal policy \(h \) whose tree \(T_h \) contains \(s_t \) is needed. Choose any \(h \in H_1^t \), then \(s_t \in T_h \) and:

\[
v^* - \nu(h) \leq b(H_1^t) - \nu(H_1^t) = \text{diam}(H_1^t) \leq \frac{N}{\gamma} \alpha_t
\]

where we used some of the inequalities derived in the proof of Lemma 6. Thus \(s_t \in S_{\alpha_t} \). Furthermore, \(\alpha^* \leq \alpha_t \) implies \(S_{\alpha_t} \subseteq S_{\alpha^*} \), and we are done.

Proof of Theorem 1. Exploiting Lemma 7 in combination with (6):

- if \(\beta > 0 \), then \(\tilde{O}(\alpha^{* - \beta}) \), thus for large \(n \), \(\alpha^* = O\left(n^{-\frac{1}{\beta}}\right) \);
- if \(\beta = 0 \), then \(a \left(\frac{1}{\gamma} \right)^b \), thus \(\alpha^* \leq \exp\left[-(\frac{n}{\gamma})^b\right] \).

By Lemma 6, \(R_n \leq \frac{N}{\gamma} \alpha^* \) which immediately leads to the desired results.

Proofs for values of \(\beta \) in special cases

Proof of Proposition 2 (uniform case). We study the size of \(S_{\varepsilon} \). Due to the equal rewards all the policies are optimal, and condition (ii) in (5) does not eliminate any nodes. The contribution of a node is \(c(s) = R(s) \left(\frac{\alpha^*}{1 - \gamma} \right)^d(s) \left(\frac{1}{1 - \gamma} \right) \), since the probability of reaching a node at depth \(d(s) \) is \(\left(\frac{\alpha^*}{1 - \gamma} \right)^d(s) \). This also means that, for any policy \(h \), the tree \(T_{h_\varepsilon} \) consists of all the nodes \(s' \) up to the depth of \(s \). The number of leaves of this tree is \(N^{d(s)} \) (recall that a policy tree has only branching factor \(N \), and since this number does not depend on the policy, \(n(s) \) is also \(N^{d(s)} \). Therefore, \(\alpha(s) = n(s)c(s) = \frac{\alpha^*}{1 - \gamma} \) and condition (i) eliminates nodes with depths larger than \(D = \log \frac{\varepsilon(1 - \gamma)}{\log \gamma} \). The remaining nodes in the whole tree, with branching factor \(NK \), form \(S_{\varepsilon} \), which is of size:

\[
|S_{\varepsilon}| = O(\left(\frac{NK}{\log \frac{\varepsilon(1 - \gamma)}{\log \gamma}}\right)^D) = O(\left(\frac{NK}{\log \frac{\varepsilon(1 - \gamma)}{\log \gamma}}\right) D) = O(\frac{\varepsilon}{\log \frac{\varepsilon(1 - \gamma)}{\log \gamma}})
\]

yielding for \(\beta \) the value: \(\beta_{\text{rew}} = \frac{\log N}{\log \frac{\varepsilon(1 - \gamma)}{\log \gamma}} \). So, for large \(n \), the regret \(R_n = \tilde{O}(n^{-\frac{1}{\gamma}}) \). In fact, as can be easily checked by examining the proof of Theorem 1, the logarithmic component disappears in this case and \(R_n = O(n^{-\frac{1}{\gamma}}) \).

Proof of Proposition 3 (structured rewards). Since \(\alpha(s) \) depends only on the probabilities, condition (i) leads to the same \(D = \log \frac{\varepsilon(1 - \gamma)}{\log \gamma} \) as in the uniform case. However, now condition (ii) becomes important, so to obtain the size of \(S_{\varepsilon} \), we must only count near-optimal nodes up to depth \(D \).

Consider the set of nodes in \(T_\infty \) which do not belong to the optimal policy, but lie below nodes that are at depth \(d' \) on this policy. An example is enclosed by a dashed line in Figure 3, where \(d' = 1 \). All these nodes are sub-optimal to the extent of the loss incurred by not choosing the optimal action at their parent, namely: \(\left(\frac{\gamma}{N} \right)^{d'} \left(\frac{1}{1 - \gamma} \right) \). Note these nodes do belong to a policy that is near-optimal to this extent, one which makes the optimal choices everywhere except at their parent. Looking now from the perspective of a given depth \(d \), for any \(m \leq d \) there are \(N^d K^m \) nodes at this depth that are \(\left(\frac{\gamma}{N} \right)^{d-m} \left(\frac{1}{1 - \gamma} \right) \)-optimal. Condition (ii), written \(\left(\frac{\gamma}{N} \right)^{d-m} \left(\frac{1}{1 - \gamma} \right) \leq \frac{N}{\gamma} \left(\frac{n}{\gamma} \right)^b \), leads to \(m \leq \frac{\log N}{\log \frac{\varepsilon(1 - \gamma)}{\log \gamma}} + 1 \).

Then:

\[
|S_{\varepsilon}| \leq \sum_{d=0}^{D} N^d K^{d - \frac{\log N}{\log \frac{\varepsilon(1 - \gamma)}{\log \gamma}}} + 1 \leq K \sum_{d=0}^{D} \left(\frac{NK}{\log \frac{\varepsilon(1 - \gamma)}{\log \gamma}} \right)^d
\]

If \(N > 1 \):

\[
|S_{\varepsilon}| = O\left(\left(\frac{NK}{\log \frac{\varepsilon(1 - \gamma)}{\log \gamma}}\right)^D\right) = O\left(\left(\frac{NK}{\log \frac{\varepsilon(1 - \gamma)}{\log \gamma}}\right) \left(\frac{\varepsilon(1 - \gamma)}{\log \gamma}\right)\right)\]

yielding the desired value of \(\beta_{\text{rew}} = \frac{\log N}{\log \frac{\varepsilon(1 - \gamma)}{\log \gamma}} \).

If \(N = 1 \) (deterministic case), \(\beta_{\text{rew}} = 0 \) and:

\[
|S_{\varepsilon}| = \sum_{d=0}^{D} 1 \cdot K = (D + 1)K = \left(\frac{\log \varepsilon(1 - \gamma)}{\log \gamma} + 1\right) K \leq a \log 1/\varepsilon
\]
for small ε and some constant a, which is of the form (6) for b = 1. From Theorem 1, the regret is $O(\exp(-\frac{b}{a}))$.

Proof of Proposition 4 (structured probabilities). We will show that the quantities of nodes with sizable contributions on the subtree of one policy, and respectively on the whole tree, satisfy:

$$n(\lambda) = \{s \in T_\infty | c(s) \geq \lambda\} = \bar{O}(\lambda^{-\delta})$$
$$n_h(\lambda) = \{s \in T_h | c(s) \geq \lambda\} = \bar{O}(\lambda^{-\delta_h})$$

for constants δ_h and δ; and we will find values for these constants. (Note $n_h(\lambda)$ is not a function of h, since all policies have the same probability structure.) Then, since condition (ii) always holds and nodes in pC policies have the same probability structure.) Then, above a certain maximum depth d, we count all the nodes up to m and we will find values for these constants. (Note $n_h(\lambda)$ is not a function of h, since all policies have the same probability structure.) Then, since condition (ii) always holds and nodes in S_c only have to satisfy condition (i):

$$|S_c| = \{s \in T_\infty | n(s)c(s) \geq \varepsilon\}\geq \{s \in T_\infty | n_h(c(s))c(s) \geq \varepsilon\} \leq \{s \in T_\infty | \beta c(s)\log 1/c(s)\geq \varepsilon\} = \bar{O}(\varepsilon^{-\frac{1}{\log \lambda}})$$

where we used $n(s) \leq n_h(c(s))$ and $n_h(c(s)) = \bar{O}(c(s)^{-\delta_h})$. Thus $\beta = \frac{\delta}{1-\delta_h}$.

Consider now $n_h(\lambda)$. The nodes at each depth d correspond to a binomial distribution with d trials, so there are C^m_d nodes with contribution $c(s) = p_d^m(1-p)^{d-m}$, for $m = 0, 1, \ldots, d$. Since these contributions decrease monotonically with d, and as with m at a certain depth, condition $c(x) \geq \lambda$ eliminates all nodes above a certain maximum depth D, as well as at every depth d all nodes above a certain $m(d)$, where:

$$\frac{(p\gamma)^d}{1-\gamma} \geq \lambda \Rightarrow d \leq \frac{\log 1/(\lambda(1-\gamma))}{\log 1/(p\gamma)} = D$$
$$m \leq \frac{\log 1/(\lambda(1-\gamma))}{\log p/(1-p)} - d \frac{\log 1/(p\gamma)}{\log p/(1-p)} = m(d)$$

Note in the condition for D we set $m = 0$ to obtain the largest probability. So, $m(d)$ decreases linearly with d, so that up to some depth m^*, $m(d) \geq d$ and we count all the nodes up to $m = d$; while above m^*, $m(d) < d$ and we count fewer nodes. The depth m^* is obtained by solving $m(d) = d$, leading to $m^* = \frac{\log 1/(\lambda(1-\gamma))}{\log 1/(p\gamma)} = \frac{\log 1/(p\gamma)}{\log 1/(1-p)}D = \eta D$ with the notation $\eta = \frac{\log 1/(p\gamma)}{\log 1/(1-p)}$. The structure of the subtree satisfying $c(s) \geq \lambda$ is represented in Figure 5.

Figure 5: Schematic representation of the subtree satisfying $c(s) \geq \lambda$, shown in gray. Nodes with larger probabilities are put to the left. The thick line represents the fringe $m(d)$ where nodes stop being counted.

Now:

$$n_h(\lambda) = \sum_{d=0}^{D} \sum_{m=0}^{\min\{m(d),d\}} C^m_d \leq \sum_{d=0}^{D} \sum_{m=0}^{\min\{m(d),d\}} \left(\frac{de}{m}\right)^m$$
$$\leq \sum_{d=0}^{D} \sum_{m=0}^{\eta D} \left(\frac{De}{m}\right)^{m^*} = Dm^* \left(\frac{De}{m^*}\right)^{m^*}$$
$$= \eta D^2 \left(\frac{e}{\eta}\right)^{\eta D} = \bar{O}\left(\left(\frac{e}{\eta}\right)^{\eta D}\right)$$

where we used $C^m_d \leq (\frac{de}{m})^m$ as well as $\left(\frac{de}{m}\right)^m \leq (\frac{De}{m})^{m^*}$. The latter inequality can be shown by noticing that $\left(\frac{De}{m}\right)^m$, as a function of m, increases up to $m = D$, and $m^* \leq D$ is on the increasing part. Denoting now $\eta' = \frac{e}{\eta}$ and continuing:

$$n_h(\lambda) = \bar{O}(\eta D) = \bar{O}(\eta^{\frac{\log 1/(\lambda(1-\gamma))}{\log 1/(p\gamma)}}) = \bar{O}(\lambda^{-\frac{\log \eta'}{\log 1/(p\gamma)}})$$

leading to the value for $\delta_h = \frac{\log \eta'}{\log 1/(p\gamma)}$. 3

Similarly, it is shown that $n(\lambda) = \bar{O}(\lambda^{-\frac{\log K}{\log 1/(p\gamma)}})$ and thus $\delta = \frac{\log K}{\log 1/(p\gamma)}$, where the extra K comes from the fact we count the nodes corresponding to all K^d policies rather than just one.

The desired result is immediate: $\beta_{\text{prob}} = \frac{\delta}{1-\delta_h} = \frac{\log K}{\log 1/(p\gamma \eta')}$. Note throughout, we silently used the fact that p is close to 1; indeed, this is required for some of the steps to be meaningful, such as having $\log 1/(p\gamma \eta') > 0$. 3

3 The definition of $n(s)$ in fact only requires counting the leaves of the subtree corresponding to $n_h(\lambda)$ (thick line in Figure 5), while we counted all the nodes (gray area). Exploiting this property is unlikely to be helpful, however, since in the upper bound derived for $n_h(\lambda)$ the inner term in the sum (corresponding to C^m_d, the number of nodes having a certain probability) is dominant. The fact that the whole tree is taken into account only enters the logarithmic component of the bound.