Supplementary material to "Optimistic planning for Markov decision processes": Proofs

Proof of main result

Recall that to prove Theorem 1, it must first be shown that the regret of the algorithm is related to the smallest α among expanded nodes (which will be done in Lemma 6), and then that the algorithm always works to decrease this smallest α (done in Lemma 7). A preliminary result is also needed.
Lemma 5. The ν-values of the near-optimal policy classes increase over iterations: $\nu\left(H_{t+1}^{*}\right) \geq \nu\left(H_{t}^{*}\right)$, where $H_{t}^{*} \in \arg \max _{H \in \mathcal{T}_{t}} \nu(H)$.

Proof. Consider first one policy class H, split by expanding some leaf node $s \in \mathcal{L}\left(\mathcal{T}_{H}\right)$. One child class H^{\prime} is obtained for each action u, and we have $\mathcal{L}\left(\mathcal{T}_{H^{\prime}}\right)=$ $\left(\mathcal{L}\left(\mathcal{T}_{H}\right) \backslash\{s\}\right) \cup \mathcal{C}(s, u)$. By easy calculations, since the rewards are positive, the terms that nodes $\mathcal{C}(s, u)$ contribute to $\nu\left(H^{\prime}\right)$ add up to more than the term of s in $\nu(H)$, and the other terms remain constant. Thus $\nu\left(H^{\prime}\right) \geq \nu(H)$. Then, among the policy classes $H_{t} \in \mathcal{T}_{t}$, some are split in \mathcal{T}_{t+1} and some remain unchanged. For the children of split classes ν-values are larger than their parents'; while ν-values of unchanged classes remain constant. Thus, the maximal ν-value increases across iterations. Note it can similarly be shown that $b\left(H_{t+1}^{\dagger}\right) \leq b\left(H_{t}^{\dagger}\right)$.

Lemma 6. Define $\alpha_{t}=\alpha\left(s_{t}\right)$, the α value of the node expanded at iteration t; and $\alpha^{*}=\min _{t=0, \ldots, n-1} \alpha_{t}$. The regret after n expansions satisfies $\mathcal{R}_{n} \leq \frac{N}{\gamma} \alpha^{*}$.

Proof. We will first bound, individually at each iteration t, the suboptimality of $\nu\left(H_{t}^{*}\right)$, by showing:

$$
\begin{equation*}
v^{*}-\nu\left(H_{t}^{*}\right) \leq \operatorname{diam}\left(H_{t}^{\dagger}\right) \leq \frac{N}{\gamma} \alpha_{t} \tag{7}
\end{equation*}
$$

To this end, observe that:

$$
\begin{equation*}
\nu\left(H_{t}^{\dagger}\right) \leq \nu\left(H_{t}^{*}\right) \leq v^{*} \leq b\left(H_{t}^{\dagger}\right) \tag{8}
\end{equation*}
$$

The inequality $\nu\left(H_{t}^{*}\right) \leq v^{*}$ is true by definition $\left(\nu\left(H_{t}^{*}\right)\right.$ is a lower bound on the value of some policy, itself smaller than v^{*}). For the leftmost inequality, H_{t}^{*} maximizes the lower bound across all policy classes compatible with the current tree, so its lower bound is at least as large as that of the optimistic policy class H_{t}^{\dagger}. Similarly, for the rightmost inequality, since H_{t}^{\dagger} maximizes the upper bound, its upper bound is immediately larger than the true optimal value. Using this
string of inequalities, we get:

$$
\begin{align*}
v^{*}-\nu\left(H_{t}^{*}\right) & \leq b\left(H_{t}^{\dagger}\right)-\nu\left(H_{t}^{\dagger}\right) \\
& =\operatorname{diam}\left(H_{t}^{\dagger}\right)=\sum_{s \in \mathcal{L}\left(\mathcal{T}_{H_{t}^{\dagger}}\right)} c(s) \tag{9}
\end{align*}
$$

We now investigate the relationship between this diameter and α_{t}. Consider the subtree $\mathcal{T}_{H_{t}^{\dagger}}$ of policy class H_{t}^{\dagger}, represented schematically in Figure 4 using a black continuous outline (this subtree has a branching factor of N). We are thus interested in finding an upper bound for $\sum_{s \in \mathcal{L}\left(\mathcal{T}_{H_{t}^{\dagger}}\right)} c(s)$ as a function of α_{t}. Consider the tree $\mathcal{T}_{h s_{t}}$, as introduced earlier in the definition of $n(s)$, which is included in $\mathcal{T}_{H_{t}^{\dagger}}$ and is the same for any $h \in H_{t}^{\dagger}$. To see this, recall that s_{t} maximizes c among the leaves of $\mathcal{T}_{H_{t}^{\dagger}}$. Since additionally c strictly decreases along paths, any node with a contribution larger than $c\left(s_{t}\right)$ must be above these leaves, and this holds for any $h \in H_{t}^{\dagger}$.

Denote in this context $\mathcal{T}_{h s_{t}}$ more simply by \mathcal{T}^{\prime}, shown in gray in the figure, and its leaves by \mathcal{L}^{\prime}, shown as a gray outline. Denote the children of \mathcal{L}^{\prime} by $\mathcal{L}^{\prime \prime}$, shown as a dashed line.

Figure 4: Tree of the optimistic policy class and various subtrees.

Recall that for any h and $s \in \mathcal{T}_{h}, \sum_{s^{\prime} \in \mathcal{C}(s, h(s))} c\left(s^{\prime}\right)=$ $\gamma c(s)$. This also means the sum of contributions for the leaves of any subtree of \mathcal{T}_{h} having some s as its root is smaller than $c(s)$. Using these properties, we have:

$$
\begin{aligned}
\sum_{s \in \mathcal{L}\left(\mathcal{T}_{H_{t}^{\dagger}}\right)} c(s) & \leq \sum_{s^{\prime} \in \mathcal{L}^{\prime}} c\left(s^{\prime}\right)=\frac{1}{\gamma} \sum_{s^{\prime \prime} \in \mathcal{L}^{\prime \prime}} c\left(s^{\prime \prime}\right) \leq \frac{1}{\gamma} \sum_{s^{\prime \prime} \in \mathcal{L}^{\prime \prime}} c\left(s_{t}\right) \\
& \leq \frac{1}{\gamma} N\left|\mathcal{L}^{\prime}\right| c\left(s_{t}\right) \leq \frac{1}{\gamma} N n\left(s_{t}\right) c\left(s_{t}\right)=\frac{N}{\gamma} \alpha_{t}
\end{aligned}
$$

where we additionally exploited the facts that $c\left(s^{\prime \prime}\right) \leq$ $c\left(s_{t}\right)$ (otherwise $s^{\prime \prime}$ would have been in \mathcal{T}^{\prime}), that each node in \mathcal{L}^{\prime} has N children in $\mathcal{L}^{\prime \prime}$, and that by the definition of $n(s)\left|\mathcal{L}^{\prime}\right| \leq n\left(s_{t}\right)$. From this and also (9), the desired intermediate result (7) is obtained.

Using now (8) and (7), as well as Lemma 5, we have:

$$
\begin{aligned}
\mathcal{R}_{n} & =\max _{u} Q^{*}\left(x_{0}, u\right)-Q^{*}\left(x_{0}, H_{n}^{*}\left(s_{0}\right)\right) \\
& \leq v^{*}-\nu\left(H_{n}^{*}\right) \leq b\left(H_{t^{*}}^{\dagger}\right)-\nu\left(H_{t^{*}}^{\dagger}\right) \\
& =\operatorname{diam}\left(H_{t^{*}}^{\dagger}\right) \leq \frac{N}{\gamma} \alpha^{*}
\end{aligned}
$$

where $H_{n}^{*}\left(s_{0}\right)$ is the action chosen by OP at the root (i.e., in state x_{0}), and $t^{*} \in \arg \min _{t=0, \ldots, n-1} \alpha_{t}$. The first inequality is true because $\max _{u} Q^{*}\left(s_{0}, u\right)=$ v^{*} and $Q^{*}\left(s_{0}, H_{n}^{*}\left(s_{0}\right)\right) \geq \nu\left(H_{n}^{*}\right) \quad$ (the return $Q^{*}\left(s_{0}, H_{n}^{*}\left(s_{0}\right)\right)$ is obtained by choosing optimal actions below level 0 , whereas H_{n}^{*} may make other suboptimal choices). The proof is complete.

Lemma 7. All nodes expanded by the algorithm belong to $S_{\alpha^{*}}$, so that $n \leq\left|S_{\alpha^{*}}\right|$.

Proof. We show first that $s_{t} \in S_{\alpha_{t}}$ at any iteration t. Condition (i) in the definition (5) of $S_{\alpha_{t}}$ is immediately true. For condition (ii), an $\frac{N}{\gamma} \alpha_{t}$-optimal policy h whose tree \mathcal{T}_{h} contains s_{t} is needed. Choose any $h \in H_{t}^{\dagger}$, then $s_{t} \in \mathcal{T}_{h}$ and:

$$
v^{*}-v(h) \leq b\left(H_{t}^{\dagger}\right)-\nu\left(H_{t}^{\dagger}\right)=\operatorname{diam}\left(H_{t}^{\dagger}\right) \leq \frac{N}{\gamma} \alpha_{t}
$$

where we used some of the inequalities derived in the proof of Lemma 6. Thus $s_{t} \in S_{\alpha_{t}}$. Furthermore, $\alpha^{*} \leq$ α_{t} implies $S_{\alpha_{t}} \subseteq S_{\alpha^{*}}$, and we are done.

Proof of Theorem 1. Exploiting Lemma 7 in combination with (6):

- if $\beta>0, n=\tilde{O}\left(\alpha^{*-\beta}\right)$, thus for large $n, \alpha^{*}=$ $\tilde{O}\left(n^{-\frac{1}{\beta}}\right)$;
- if $\beta=0, n \leq a\left(\log \frac{1}{\alpha^{*}}\right)^{b}$, thus $\alpha^{*} \leq \exp \left[-\left(\frac{n}{a}\right)^{\frac{1}{b}}\right]$.

By Lemma $6, \mathcal{R}_{n} \leq \frac{N}{\gamma} \alpha^{*}$ which immediately leads to the desired results.

Proofs for values of β in special cases

Proof of Proposition 2 (uniform case). We study the size of S_{ε}. Due to the equal rewards all the policies are optimal, and condition (ii) in (5) does not eliminate any nodes. The contribution of a node is $c(s)=P(s) \frac{\gamma^{d(s)}}{1-\gamma}=\left(\frac{\gamma}{N}\right)^{d(s)} \frac{1}{1-\gamma}$ since the probability
of reaching a node at depth $d(s)$ is $\left(\frac{1}{N}\right)^{d(s)}$. This also means that, for any policy h, the tree $\mathcal{T}_{h s}$ consists of all the nodes s^{\prime} up to the depth of s. The number of leaves of this tree is $N^{d(s)}$ (recall that a policy tree has only branching factor N), and since this number does not depend on the policy, $n(s)$ is also $N^{d(s)}$. Therefore, $\alpha(s)=n(s) c(s)=\frac{\gamma^{d(s)}}{1-\gamma}$ and condition (i) eliminates nodes with depths larger than $D=\frac{\log \varepsilon(1-\gamma)}{\log \gamma}$. The remaining nodes in the whole tree, with branching factor $N K$, form S_{ε}, which is of size:
$\left|S_{\varepsilon}\right|=O\left((N K)^{D}\right)=O\left((N K)^{\frac{\log \varepsilon(1-\gamma)}{\log \gamma}}\right)=O\left(\varepsilon^{-\frac{\log N K}{\log 1 / \gamma}}\right)$ yielding for β the value: $\beta_{\text {unif }}=\frac{\log N K}{\log 1 / \gamma}$. So, for large n the regret $\mathcal{R}_{n}=\tilde{O}\left(n^{-\frac{\log 1 / \gamma}{\log N K}}\right)$. In fact, as can be easily checked by examining the proof of Theorem 1, the logarithmic component disappears in this case and $\mathcal{R}_{n}=O\left(n^{-\frac{\log 1 / \gamma}{\log N K}}\right)$.

Proof of Proposition 3 (structured rewards). Since
$\alpha(s)$ depends only on the probabilities, condition (i) leads to the same $D=\frac{\log \varepsilon(1-\gamma)}{\log \gamma}$ as in the uniform case. However, now condition (ii) becomes important, so to obtain the size of S_{ε}, we must only count near-optimal nodes up to depth D.

Consider the set of nodes in \mathcal{T}_{∞} which do not belong to the optimal policy, but lie below nodes that are at depth d^{\prime} on this policy. An example is enclosed by a dashed line in Figure 3, where $d^{\prime}=1$. All these nodes are sub-optimal to the extent of the loss incurred by not choosing the optimal action at their parent, namely: $\left(\frac{\gamma}{N}\right)^{d^{\prime}} \frac{1}{1-\gamma}$. Note these nodes do belong to a policy that is near-optimal to this extent, one which makes the optimal choices everywhere except at their parent. Looking now from the perspective of a given depth d, for any $m \leq d$ there are $N^{d} K^{m}$ nodes at this depth that are $\left(\frac{\gamma}{N}\right)^{d-m} \frac{1}{1-\gamma}$-optimal. Condition (ii), written $\left(\frac{\gamma}{N}\right)^{d-m} \frac{1}{1-\gamma} \leq \frac{N}{\gamma} \frac{\gamma^{d}}{1-\gamma}$, leads to $m \leq d \frac{\log N}{\log N / \gamma}+$ 1. Then:

$$
\left|S_{\varepsilon}\right| \leq \sum_{d=0}^{D} N^{d} K^{d \frac{\log N}{\log N / \gamma}+1} \leq K \sum_{d=0}^{D}\left(N K^{\left.\frac{\log N}{\log N / \gamma}\right)^{d}}\right.
$$

If $N>1$:

$$
\begin{aligned}
\left|S_{\varepsilon}\right| & =O\left(\left(N K^{\frac{\log N}{\log N / \gamma}}\right)^{D}\right)=O\left(\left(N K^{\left.\left.\frac{\log N}{\log N / \gamma}\right)^{\frac{\log \varepsilon(1-\gamma)}{\log \gamma}}\right)}\right.\right. \\
& =O\left(\varepsilon^{-\frac{\log N}{\log 1 / \gamma}\left(1+\frac{\log K}{\log N / \gamma}\right)}\right)
\end{aligned}
$$

yielding the desired value of $\beta_{\text {rew }}=\frac{\log N}{\log 1 / \gamma}\left(1+\frac{\log K}{\log N / \gamma}\right)$.
If $N=1$ (deterministic case), $\beta_{\text {rew }}=0$ and:

$$
\begin{aligned}
\left|S_{\varepsilon}\right| & =\sum_{d=0}^{D} 1 \cdot K=(D+1) K=\left(\frac{\log \varepsilon(1-\gamma)}{\log \gamma}+1\right) K \\
& \leq a \log 1 / \varepsilon
\end{aligned}
$$

for small ε and some constant a, which is of the form (6) for $b=1$. From Theorem 1, the regret is $O\left(\exp \left(-\frac{n}{a}\right)\right)$.

Proof of Proposition 4 (structured probabilities). We will show that the quantities of nodes with sizable contributions on the subtree of one policy, and respectively on the whole tree, satisfy:

$$
\begin{aligned}
n(\lambda) & =\left|\left\{s \in \mathcal{T}_{\infty} \mid c(s) \geq \lambda\right\}\right|=\tilde{O}\left(\lambda^{-\delta}\right) \\
n_{h}(\lambda) & =\left|\left\{s \in \mathcal{T}_{h} \mid c(s) \geq \lambda\right\}\right|=\tilde{O}\left(\lambda^{-\delta_{h}}\right)
\end{aligned}
$$

for constants δ_{h} and δ; and we will find values for these constants. (Note $n_{h}(\lambda)$ is not a function of h, since all policies have the same probability structure.) Then, since condition (ii) always holds and nodes in S_{ε} only have to satisfy condition (i):

$$
\begin{aligned}
\left|S_{\varepsilon}\right| & =\left|\left\{s \in \mathcal{T}_{\infty} \mid n(s) c(s) \geq \varepsilon\right\}\right| \\
& \leq\left|\left\{s \in \mathcal{T}_{\infty} \mid n_{h}(c(s)) c(s) \geq \varepsilon\right\}\right| \\
& \leq\left|\left\{s \in \mathcal{T}_{\infty} \mid a[\log 1 / c(s)]^{b} c(s)^{1-\delta_{h}} \geq \varepsilon\right\}\right| \\
& =\tilde{O}\left(\varepsilon^{-\frac{\delta}{1-\delta_{h}}}\right)
\end{aligned}
$$

$\underset{\sim}{\text { where }}$ we used $n(s) \leq n_{h}(c(s))$ and $n_{h}(c(s))=$ $\tilde{O}\left(c(s)^{-\delta_{h}}\right)$. Thus $\beta=\frac{\delta}{1-\delta_{h}}$.
Consider now $n_{h}(\lambda)$. The nodes at each depth d correspond to a binomial distribution with d trials, so there are C_{d}^{m} nodes with contribution $c(s)=p^{d-m}(1-$ p) $\frac{\gamma^{d}}{1-\gamma}$, for $m=0,1, \ldots, d$. Since these contributions decrease monotonically with d, as well as with m at a certain depth, condition $c(x) \geq \lambda$ eliminates all nodes above a certain maximum depth D, as well as at every depth d all nodes above a certain $m(d)$, where:

$$
\begin{aligned}
& \frac{(p \gamma)^{d}}{1-\gamma} \geq \lambda \quad \Rightarrow \quad d \leq \frac{\log 1 /(\lambda(1-\gamma))}{\log 1 /(p \gamma)}=D \\
& m \leq \frac{\log 1 /(\lambda(1-\gamma))}{\log p /(1-p)}-d \frac{\log 1 /(p \gamma)}{\log p /(1-p)}=m(d)
\end{aligned}
$$

Note in the condition for D we set $m=0$ to obtain the largest probability. So, $m(d)$ decreases linearly with d, so that up to some depth $m^{*}, m(d) \geq d$ and we count all the nodes up to $m=d$; while above $m^{*}, m(d)<d$ and we count fewer nodes. The depth m^{*} is obtained by solving $m(d)=d$, leading to $m^{*}=\frac{\log 1 /(\lambda(1-\gamma))}{\log 1 /(\gamma(1-p))}=\frac{\log 1 /(p \gamma)}{\log 1 /(\gamma(1-p))} D=\eta D$ with the notation $\eta=\frac{\log 1 /(p \gamma)}{\log 1 /(\gamma(1-p))}$. The structure of the subtree satisfying $c(s) \geq \lambda$ is represented in Figure 5 .

Figure 5: Schematic representation of the subtree satisfying $c(s) \geq \lambda$, shown in gray. Nodes with larger probabilities are put to the left. The thick line represents the fringe $m(d)$ where nodes stop being counted.

Now:

$$
\begin{aligned}
n_{h}(\lambda) & =\sum_{d=0}^{D} \sum_{m=0}^{\min \{m(d), d\}} C_{d}^{m} \leq \sum_{d=0}^{D} \sum_{m=0}^{\min \{m(d), d\}}\left(\frac{d e}{m}\right)^{m} \\
& \leq \sum_{d=0}^{D} \sum_{m=0}^{m^{*}}\left(\frac{D e}{m^{*}}\right)^{m^{*}}=D m^{*}\left(\frac{D e}{m^{*}}\right)^{m^{*}} \\
& =\eta D^{2}\left(\frac{e}{\eta}\right)^{\eta D}=\tilde{O}\left(\left(\frac{e}{\eta}\right)^{\eta D}\right)
\end{aligned}
$$

where we used $C_{d}^{m} \leq\left(\frac{d e}{m}\right)^{m}$ as well as $\left(\frac{d e}{m}\right)^{m} \leq$ $\left(\frac{D e}{m}\right)^{m} \leq\left(\frac{D e}{m^{*}}\right)^{m^{*}}$. The latter inequality can be shown by noticing that $\left(\frac{D e}{m}\right)^{m}$, as a function of m, increases up to $m=D$, and $m^{*} \leq D$ is on the increasing part. Denoting now $\eta^{\prime}=\left(\frac{e}{\eta}\right)^{\bar{\eta}}$ and continuing:

$$
n_{h}(\lambda)=\tilde{O}\left(\eta^{\prime D}\right)=\tilde{O}\left(\eta^{\frac{\log 1 /(\lambda(1-\gamma))}{\log 1 /(p \gamma)}}\right)=\tilde{O}\left(\lambda^{-\frac{\log \eta^{\prime}}{\log 1 /(p \gamma)}}\right)
$$

leading to the value for $\delta_{h}=\frac{\log \eta^{\prime}}{\log 1 /(p \gamma)} \cdot{ }^{3}$
Similarly, it is shown that $n(\lambda)=\tilde{O}\left(\lambda^{-\frac{\log K \eta^{\prime}}{\log 1 /(p \gamma)}}\right)$ and thus $\delta=\frac{\log K \eta^{\prime}}{\log 1 /(p \gamma)}$, where the extra K comes from the fact we count the nodes corresponding to all K^{d} policies rather than just one.

The desired result is immediate: $\beta_{\text {prob }}=\frac{\delta}{1-\delta_{h}}=$ $\frac{\log K \eta^{\prime}}{\log 1 /\left(p \gamma \eta^{\prime}\right)}$. Note throughout, we silently used the fact that p is close to 1 ; indeed, this is required for some of the steps to be meaningful, such as having $\log 1 /\left(p \gamma \eta^{\prime}\right)>0$.

[^0]
[^0]: ${ }^{3}$ The definition of $n(s)$ in fact only requires counting the leaves of the subtree corresponding to $n_{h}(\lambda)$ (thick line in Figure 5), while we counted all the nodes (gray area). Exploiting this property is unlikely to be helpful, however, since in the upper bound derived for $n_{h}(\lambda)$ the inner term in the sum (corresponding to C_{d}^{m}, the number of nodes having a certain probability) is dominant. The fact that the whole tree is taken into account only enters the logarithmic component of the bound.

