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1 Proof of Theorem 1

1.1 First kind error

Here, we prove that the asymptotic �rst kind error of
the test ψσ does not exceed the prescribed level α. To
this end, denote τ∗ a real number such that, under H0,
∀j ≥ 1, c#j = eijτ∗cj . We skip the dependence of τ∗ on
c and c#. Using the inequality

min
τ

Nσ∑
j=1

∣∣Yj − e−ijτY #

j

∣∣2 ≤ σ2
Nσ∑
j=1

∣∣ξj − e−ijτ∗ξ#j
∣∣2,

we get that α(ψσ,Θ0) equals

sup
Θ0

Pc,c#
(minτ

∑Nσ
j=1

∣∣Yj − e−ijτY #

j

∣∣2
4σ2
√
Nσ

−
√
Nσ > qα

)
≤ P

( 1

4
√
Nσ

Nσ∑
j=1

(
η2
j + η̃2

j − 4
)
> qα

)
,

where ηj , η̃j
iid∼ N (0, 2).

Finally, using Berry-Esseen's inequality (cf. Theo-
rem 2), we get

α(ψσ,Θ0) ≤ α+
1√

2πNσ
,

and this gives the desired asymptotic level.

1.2 Second kind error

It remains to study the second kind error of the test,
and to show that it tends to 0. Our proof is based
on the heuristic given in the main paper: we decom-
pose λσ(Nσ) into several terms, and make use of their
respective orders of magnitude. The decomposition
gives

β(ψσ,Θ1) ≤ sup
Θ1

Pc,c#

(
Dσ(c, c#)− σ2

√
NσAσ

− 2σ2Bσ ≤ 4qασ
2
√
Nσ

)
.

with the notation:



Dσ(c, c#) = minτ

{∑Nσ
j=1 |cj − e−ijτ c#j |2

+2σ
∑Nσ
j=1 Re

(
(cj − e−ijτ c#j)(ξj − e−ijτξ#j )

)}
,

Aσ =
∣∣∣∑Nσ

j=1

|ξj |2+|ξ#j |
2−4

√
Nσ

∣∣∣,
Bσ = maxτ

∣∣∣∑Nσ
j=1 Re

(
eijτξjξ#j

)∣∣∣.
In addition to cs,L, introduced in the de�nition of Nσ,
we will need the constant c′ and ε, de�ned as

 c′ =
√

256 cs,L
4s+1 ,

ε = 1
2

(
C2 − 4L2c−2s

s,L −
√

256 cs,L
4s+1

)
.

Separating the di�erent terms to study them indepen-
dently, we write

β(ψσ,Θ1) ≤ sup
Θ1

Pc,c#

(
Dσ(c, c#) ≤ κσρ2

σ

)
+ P

(
σ2
√
NσAσ > ερ2

σ

)
+ P

(
2σ2Bσ > c′ρ2

σ

)
,

with κσ = c′ + ε+
4qα
√
cs,L√

log σ−1
.

• Let us �rst study supΘ1
Pc,c#

(
Dσ(c, c#) ≤ κσρ

2
σ

)
,

which contains the dominant term when ρσ is too

large. Denoting δ =
√
C2 − 4L2c−2s

s,L , Lemma 1 al-

lows to apply Lemma 2 with x0 = δρσ and M =
κσρ

2
σ. The choice of the parameters yields for σ

small enough

(δ
4
− c′ + ε

4δ
−

4qα
√
cs,L

δ
√

log σ−1

)
ρσ > 0 ,
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so that the second part of Lemma 2 holds:

sup
Θ1

Pc,c#

(
Dσ(c, c#) ≤ κσρ2

σ

)
≤ 2

(
1 +

Lmax{1, N1−s
σ }

δρσ

)
×
[

exp
{
−
(
δ2 − κσ

)2 ρ2
σ

32δ2σ2

}
+ exp

{
− ρ2

σδ
2

8σ2

}]
→ 0.

• Let us now turn to P

(
σ2
√
NσAσ > ερ2

σ

)
. Prior to

using Berry-Esseen's inequality (cf. Theorem 2), we

derive
ερ2σ

4σ2
√
Nσ
≥ ε

4
√
c

√
log σ−1, so that

P

(
σ2
√
NσAσ > ερ2

σ

)
≤
√

2

πNσ
+

√
32c

πε2
σ
ε2

32c√
log σ−1

→ 0.

• Finally, it remains to control P

(
2σ2Bσ > c′ρ2

σ

)
.

We apply Lemma 3:

P
(

2σ2Bσ > c′ρ2
σ

)
≤ 2c(log σ−1)

−1
4s+1σ

c′2
64c−

4
4s+1 + e−Nσ/2

≤ 2c(log σ−1)
−1

4s+1 + e−Nσ/2 → 0.

2 Proof of Theorem 2

2.1 First kind error

Here, we prove that the �rst kind error of the test ψ̃σ
converges to 0. To this end, denote τ∗ a real number
such that, under H0, ∀j ≥ 1, c#j = eijτ∗cj . We skip the
dependence of τ∗ on c and c#. Using the inequality

min
τ

Nσ∑
j=1

∣∣Yj − e−ijτY #

j

∣∣2 ≤ σ2
Nσ∑
j=1

∣∣ξj − e−ijτ∗ξ#j
∣∣2,

we get that α
(
ψ̃σ,Θ0

)
is smaller than∑

N∈N
P

(
1

4
√
N

N∑
j=1

(η2
j + η̃2

j − 4) >
√

2 log log σ−1

)
,

where ηj , η̃j
iid∼ N (0, 2).

Thus, using Berry-Esseen's inequality (cf. Theo-
rem 2),

α
(
ψ̃σ,Θ0

)
≤

∑
N∈N (s1,s2)

1√
2πN

+
exp(− log log σ−1)√

4π log log σ−1

≤ 1√
2π

CardN (s1, s2)√
Nσ(s2)

+
1√
4π

CardN (s1, s2)

log σ−1
√

log log σ−1
.

As CardN (s1, s2) = 1 +
[

(s2 − s1) log σ−1
]
is of log-

arithmic order, this implies that α
(
ψ̃σ,Θ0

)
→ 0.

2.2 Second kind error

Finally, we study the second kind error and prove that
it converges to 0.

For s ∈ [s1, s2], de�ne S = max
{
t ∈ Σ | t ≤ s

}
, where

we omit the dependence of S in s for simplicity sake.
Note that 0 ≤ s− S ≤ 1

log σ−1 . S is an approximation
of s which will be su�cient for our purpose according
to Lemma 6.

We introduce the notation

Ds
σ(c, c#) = minτ

{∑Nσ(s)
j=1 |cj − e−ijτ c#j |2

+2σ
∑Nσ(s)
j=1 Re

(
(cj − e−ijτ c#j)(ξj − e−ijτξ#j )

)}
,

Asσ =
∣∣∣∑Nσ(s)

j=1

|ξj |2+|ξ#j |
2−4√

Nσ(s)

∣∣∣,
Bsσ = maxτ

∣∣∣∑Nσ(s)
j=1 Re

(
eijτξjξ#j

)∣∣∣.
and computations similar to those of the previous sec-
tion yield

sup
[L1,L2]

sup
[s1,s2]

β(ψ̃σ,Θ
s,L
1 ) ≤ P1 + P2 + P3,

with

P1 = sups,L supΘs,L1
Pc,c#

(
DS
σ (c, c#) ≤Mσ(S)

)
,

Mσ(S) = σ2
√

32Nσ(S) log log σ−1 + C
2 ρ

2
σ(S),

P2 =
∑
s∈Σ P

(
σ2
√
Nσ(s)Asσ >

C
4 ρ

2
σ(s)

)
,

P3 =
∑
s∈Σ P

(
2σ2Bsσ >

C
4 ρ

2
σ(s)

)
.

• Let us study P1. Lemma 6 implies(
Nσ(S) + 1

)−2s ≤ ρ∗σ(S)2 ≤ e
8

(4s1+1)2 ρ∗σ(s)2,

so that, denoting δ2 = C2r2
σ−4L2e

8
(4s1+1)2 , Lemma 1

allows to apply Lemma 2 with x0 = δρ∗σ(s) andM =
Mσ(S). On the other hand, the convergence of rσ
to +∞ and the choice of δ entail that for σ small
enough and for every s in [s1, s2],(δ

4
− Cr2

σ

8δ

)
ρ∗σ(s)−

σ2
√

2Nσ(S) log log σ−1

δρ∗σ(s)
> 0.

Hence, applying the second part of Lemma 5, we get
an inequality where the right-hand side vanishes as
σ tends to 0:

P1 ≤ 2

(
1 + δ−1Lρσ(s2)−1 max{1, Nσ(s1)1−s}

)
×
[

exp− (δ2ρ2
σ(s1)−Mσ(s1))2

32δ2σ2
+ exp−ρ

2
σ(s2)δ2

8σ2

]
.
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• Consider the second term. Berry-Esseen's theorem
(cf. Theorem 2) implies the following inequality,
where the right-hand side converges to 0 as σ tends
to 0:

P2 ≤ CardN (s1, s2)

×
[√

2

πNσ(s2)
+

√
128

πCr2
σ

σ
Cr2σ
128√

log σ−1

]
.

• Let us turn to the third term. We apply Lemma 3
and get an inequality where once again the right-
hand side vanishes as σ tends to 0:

P3 ≤ CardN (s1, s2)

×
[

2(log σ−1)
−1

4s2+1σ
C2r4σ
1024 −

4
4s1+1 + e−Nσ/2

]
.

3 Proof of Theorem 3

Consider a randomized test ψ in the shifted curve
model. We will de�ne a corresponding test in the clas-
sical model with smaller �rst and second kind errors,
and it is su�cent to establish the result.

First note that there is a measurable function f
with respect to the σ-algebra engendered by the se-
quences Y and Y # and with values in [0, 1] such that
ψ = f(Y ,Y #). Denoting ε a sequence of i.i.d ran-
dom variables N (0, σ2) independent from Y , we de�ne
ψclass = Eε

(
f(Y , ε)|Y

)
, where Eε is the integration

with respect to the probability engendered by ε. ψclass

is σ(Y )-measurable and thus constitutes a test for the
classical model.

This testing procedure can be interpreted as a test
in the shifted curve model when c# = 0. Indeed,
d(c, c#) = ‖c‖2 when c# = 0, so that Θclass

0 × 0 ⊆ Θ0

and Θclass
1 × 0 ⊆ Θ1. By Tonelli-Fubini's theorem,

ψclass satis�es

αclass(ψclass,Θclass
0 ) = sup

Θclass
0

Ec
(
ψclass

)
= sup

Θclass
0

Ec,0
(
f(Y ,Y #)

)
≤ α(ψ,Θ0).

A similar inequality holds concerning the second kind
error.

4 Lemmas

Lemma 1. Let c = (c1, c2, . . .) and c̃ = (c̃1, c̃2, . . .) in
Fs,L, with s > 0, be such that d(c, c̃) ≥ Cρ, and let

N + 1 ≥ cρ−1/s. Then

min
τ

N∑
j=1

|cj − e−ijτ c̃j |2 ≥ (C2 − 4L2c−2s)ρ2.

Proof of Lemma 1. Since both c and c̃ belong to the
Sobolev ball, it holds that∑

j>N

|cj − e−ijτ c̃j |2 ≤
∑
j>N

(
2|cj |2 + 2|c̃j |2

)
≤ 2(N + 1)−2s

∑
j>N

j2s
(
|cj |2 + |c̃j |2

)
≤ 4L2(N + 1)−2s.

Consequently, taking into account that

∞∑
j=1

|cj − e−ijτ c̃j |2 ≥ d2(c, c̃) ≥ C2ρ2,

we get that
∑N
j=1 |cj − e−ijτ c̃j |2 equals

∞∑
j=1

|cj − e−ijτ c̃j |2 −
∑
j>N

|cj − e−ijτ c̃j |2

≥ C2ρ2 − 4L2(N + 1)−2s,

and the result follows in view of N + 1 ≥ cρ−1/s.

Lemma 2. Let N be some positive integer, let ξj,

ξ̃j, j = 1, . . . , N be independent complex valued ran-
dom variables such that their real and imaginary parts
are independent standard Gaussian variables, and let
c = (c1, . . . , cN ), c̃ = (c̃1, . . . , c̃N ) be complex vectors.
Denote ξ = (ξ1, . . . , ξN ), ξ̃ = (ξ̃1, . . . , ξ̃N ) and

Dσ,N (c, c̃) = minτ

{∑N
j=1 |cj − e−ijτ c̃j |2

+2σ
∑N
j=1 Re

(
(cj − e−ijτ c̃j)(ξj − e−ijτ ξ̃j)

)}
,

dN,τ (c, c̃) =
√∑N

j=1

∣∣cj − e−ijτ c̃j
∣∣2,

uN (ξ, c, c̃) = supτ

∣∣∣∑N
j=1

Re
[
ξj(cj−e−ijτ c̃j)

]
dN,τ (c,c̃)

∣∣∣.
Assume that x0 ≤ minτ dN,τ (c, c̃), then for every real
M ,

P

(
Dσ(c, c̃) ≤M

)
≤ 2P

(
σuN (ξ, c, c̃) ≥ x0

4
− M

4x0

)
+ 2P

(
x0

2
< σuN (ξ, c, c̃)

)
.

Assume further that c and c̃ are in Fs,L and that x0

4 −
M
4x0

> 0, then combining the last result with Lemma 5,

P

(
Dσ(c, c̃) ≤M

)
≤ 2
(

1 + x−1
0 L max{1, N1−s}

)
×
(

exp
{
− (x2

0 −M)2/32x2
0σ

2
}

+ exp
{
− x2

0/8σ
2
})
.
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Proof of Lemma 2.

N∑
j=1

∣∣cj − e−ijτ c̃j
∣∣2 + 2σRe(cj − e−ijτ c̃j)(ξj − e−ijτ ξ̃j)

≥ d2
N,τ (c, c̃)− 2σdN,τ (c, c̃)uN (ξ, c, c̃)

− 2σdN,τ (c, c̃)uN (ξ̃, c̃, c),

where uN (ξ, c, c̃) = supτ

∣∣∣∑N
j=1

Re
[
ξj(cj−e−ijτ c̃j)

]
dN,τ (c,c̃)

∣∣∣.
Further,

Dσ(c, c̃) ≥ min
x≥x0

(x2 − ax),

with a = 2σuN (ξ, c, c̃)+2σuN (ξ̃, c̃, c). Now, using the
fact that minx≥x0

(x2 − ax) is reached at the point x0

if x0 ≥ a
2 , we get

P

(
Dσ(c, c̃) ≤M

)
≤ P

(
x2

0 − 2x0σuN (ξ, c, c̃)− 2x0σuN (ξ̃, c̃, c) ≤M
)

+ P

(
x0 < σuN (ξ, c, c̃) + σuN (ξ̃, c̃, c))

)
≤ 2P

(
σuN (ξ, c, c̃) ≥ x0

4
− M

4x0

)
+ 2P

(
x0

2
< σuN (ξ, c, c̃)

)
,

since uN (ξ, c, c̃) and uN (ξ̃, c̃, c) have the same distri-
bution.

Lemma 3. Let ξj , ξ̃j be independent complex val-
ued random variables such that their real and imag-
inary parts are independent standard Gaussian vari-
ables, let c, s and σ be some positive real numbers.

Denote ρσ = (σ2
√

log σ−1)
2s

4s+1 , Nσ = [cρ
−1/s
σ ] and

B = maxτ

∣∣∣∑Nσ
j=1 Re

(
eijτξj ξ̃j

)∣∣∣. Then, for σ small

enough,

P

(
2σ2Bσ > c′ρ2

σ

)
≤ 2c(log σ−1)

−1
4s+1σ

c′2
64c−

4
4s+1 +e−Nσ/2.

Proof of Lemma 3. Applying Lemma 2, we state that,
for σ small enough,

P
(
Bσ > 4x

√
Nσ log(σ−1)

)
≤ 2c(log σ−1)

−1
4s+1σx

2− 4
4s+1 + e−Nσ/2,

from which follows that

P
(
Bσ > 4xρ−1/2s

σ

√
c log(σ−1)

)
≤ 2c(log σ−1)

−1
4s+1σx

2− 4
4s+1 + e−Nσ/2.

We conclude, observing that 4xρ
−1/2s
σ

√
c log(σ−1) =

8xρ2σ
√
c

2σ2 .

Lemma 4. Let N be some positive integer and let
ξj, ξ̃j, j = 1, . . . , N , be independent complex val-
ued random variables such that their real and imag-
inary parts are independent standard Gaussian vari-
ables. Let u = (u1, . . . , uN ) be a vector of real num-

bers. Denote S(t) =
∑N
j=1 uj Re

(
eijtξj ξ̃j

)
for every t

in [0, 2π] and ‖S‖∞ = supt∈[0,2π] |S(t)|. Then for all
x, y > 0,

P
(
‖S‖∞ >

√
2x
(
‖u‖2 + y‖u‖∞

))
≤ (N + 1)e−x

2/2 + e−y
2/2.

Proof of Lemma 4. We refer to Appendix B, Lemma
3, where this lemma was �rst stated and proved.

Lemma 5. Let c = (c1, c2, . . .) and c̃ = (c̃1, c̃2, . . .)
in Fs,L with s > 0 and let N be an integer. Denoting

ηj , η̃j
iid∼ N (0, 1), we de�ne

S(t) =

N∑
j=1

ηj Re(cj − e−ijtc̃j) + η̃j Im(cj − e−ijtc̃j)√∑N
j=1

∣∣cj − e−ijtc̃j
∣∣2

for every t in [0, 2π]. Then P
(
‖S‖∞ ≥ x

)
is smaller

than ( L ·max{1, N1−s
σ }√

minτ
∑N
j=1 |cj − e−ijτ c̃j |2

+ 1
)
e−

x2

2 .

First recall Berman's formula, that we will need in the
proof.

Theorem 1 (Berman (1988)). Let N be a positive in-
teger, a < b some real numbers and gj, j = 1, . . . , N
be continuously di�erentiable functions on [a, b] satis-

fying
∑N
j=1 gj(t)

2 = 1 for all t ∈ R and j ∈ [1, N ], and
ηj, j = 1, . . . , N , some independent standard Gaussian
variables. Then

P

(
sup
[a,b]

N∑
j=1

gj(t)ηj ≥ x
)
≤ I

2π
e−

x2

2 +

∫ ∞
x

e−
t2

2

√
2π

dt

with I =

∫ b

a

[ n∑
j=1

g′j(t)
2

]1/2

dt.

Proof of Lemma 5. Denote
fj(t) =

Re(cj−e−ijtc̃j)√∑Nσ
k=1 |ck−e−iktc̃k|2

,

gj(t) =
Im(cj−e−ijtc̃j)√∑Nσ
k=1 |ck−e−iktc̃k|2

.
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We compute that

Nσ∑
j=1

(
f ′j(t)

2 + g′j(t)
2
)

=

∑Nσ
j=1 j

2|c̃j |2∑Nσ
k=1 |ck − e−iktc̃k|2

−
(∑Nσ

k=1 Im(kck c̃ke
−ikt)∑Nσ

k=1 |ck − e−iktc̃k|2

)2

≤ L2 max{1, N2−2s
σ }

mint
∑Nσ
k=1 |ck − e−iktc̃k|2

.

The conclusion follows from Berman's formula.

Lemma 6. Let σ be a positive real number and s, S in
[s1, s2] ⊆ R+

∗ be such that 0 ≤ s−S ≤ 1
log σ−1 . Denote

ρ∗σ(s) =
(
σ2
√

log σ−1
) 2s

4s+1

, then, for σ small enough,

ρ∗σ(S)

ρ∗σ(s)
≤ e

4
(4s1+1)2 .

Proof of Lemma 6. By the de�nition of ρ∗σ(s), we have

ρ∗σ(S)

ρ∗σ(s)
=
(
σ2
√

log(σ−1)
) 2(S−s)

(4s+1)(4S+1)

,

which, when σ is so small that σ2
√

log σ−1 ≤ 1, leads,
with the hypothesis on s and S,

ρ∗σ(S)

ρ∗σ(s)
≤
(
σ2
√

log(σ−1)
) −2

(4s1+1)2 log σ−1

.

Then, we compute(
σ2
√

log(σ−1)
) −2

(4s1+1)2 log σ−1

= exp
{ −2

(4s1 + 1)2 log σ−1
(2 log σ +

1

2
log log σ−1)

}
= exp

{ 4

(4s1 + 1)2
(1− log log σ−1

4 log σ−1
)
}

≤ e
4

(4s1+1)2 ,

and this concludes the proof.

Finally, we recall here Berry-Esseen's inequality, in a
simpler version than Theorem 5.4 of Petrov (1995).

Theorem 2 (Berry-Esseen's inequality). Let N be a

positive integer and X1, . . . , XN
iid∼ X be such that

E(X) = 0,Var(X) = γ2,E|X|3 = m3 < +∞. Denote
FN (x) = P

(
1√
Nγ

∑N
j=1Xj < x

)
and Φ the distribu-

tion function of the standard Gaussian variable. Then

sup
x
|FN (x)− Φ(x)| ≤ Am3

γ3

1√
N
,

for an absolute constant number A. Moreover, in the
case when X has a centered Gaussian distribution, and
using the majoration A ≤ 1

2 ,

sup
x
|FN (x)− Φ(x)| ≤ 1√

2πN
.
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