Fast, Exact Model Selection and Permutation Testing for ℓ_2 -Regularized Logistic Regression

Bryan Conroy Columbia University New York, NY bc2468@columbia.edu

1 APPENDIX - SUPPLEMENTARY MATERIAL

Proof. (Lemma 1): Given the linear system $A_p w_p = Xm_p$, with $A_p = XR_pX^T + C$ and X = QZ. Let the columns of Q^{\perp} span the orthogonal complement of range(Q). Then we have:

$$Q^{\perp T}(XR_pX^T + C)w_p = Q^{\perp T}Xm_p \qquad (1)$$

$$Q^{\perp T} C w_p = 0 \tag{2}$$

This implies that $Cw_p \in \operatorname{range}(Q)$, so that $w_p \in \operatorname{range}(C^{-1}Q)$.

Proof. (Lemma 2): Let U = [Q, W] be a matrix with orthonormal columns that is a basis for range($[Q, C^{-1}Q]$). From Lemma 1, we know that the solution w_p to $Aw_p = Xm_p$ satisfies $w_p \in \text{range}(U)$. Thus, write w_p as:

$$w_p = Q\tilde{w}_p + W\alpha_p \tag{3}$$

Then we may factorize $A_p w_p = X m_p$ as:

$$U^{T}(XR_{p}X^{T}+C)U\begin{bmatrix}\tilde{w}_{p}\\\alpha_{p}\end{bmatrix} = U^{T}Xm_{p}$$
$$\begin{bmatrix}ZR_{p}Z^{T}+Q^{T}CQ & Q^{T}CW\\W^{T}CQ & W^{T}CW\end{bmatrix}\begin{bmatrix}\tilde{w}_{p}\\\alpha_{p}\end{bmatrix} = \begin{bmatrix}Z\\0\end{bmatrix}m_{p}$$

The above may be separated into two systems of linear equations:

$$(ZR_pZ^T + Q^TCQ)\tilde{w}_p + Q^TCW\alpha_p = Zm_p (4)$$
$$W^TCQ\tilde{w}_p + W^TCW\alpha_p = 0$$
(5)

Using the second system of equations to solve for α_p in terms of \tilde{w}_p yields:

$$\alpha_p = -F\tilde{w}_p \tag{6}$$

where $F = -(W^T C W)^{-1} W^T C Q$.

Paul Sajda Columbia University New York, NY psajda@columbia.edu

Substituting (6) into (4) yields:

$$\tilde{A}_p \tilde{w}_p = Z m_p \tag{7}$$

where $\tilde{A}_p = ZR_pZ^T + \tilde{C}$ and $\tilde{C} = Q^TCQ - Q^TCWF$.

After solving (7) for \tilde{w}_p , and using (3) and (6), w_p may be computed as:

$$w_p = Q\tilde{w}_p + W\alpha_p$$
$$= (Q - WF)\tilde{w}_p$$