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Abstract

The problem of curve registration appears in
many different areas of applications ranging
from neuroscience to road traffic modeling.
In the present work, we propose a nonpara-
metric testing framework in which we de-
velop a generalized likelihood ratio test to
perform curve registration. We first prove
that, under the null hypothesis, the result-
ing test statistic is asymptotically distributed
as a chi-squared random variable. This re-
sult, often referred to as Wilks’ phenomenon,
provides a natural threshold for the test of a
prescribed asymptotic significance level and a
natural measure of lack-of-fit in terms of the
p-value of the y?-test. We also prove that
the proposed test is consistent, i.e., its power
is asymptotically equal to 1. Finite sample
properties of the proposed methodology are
demonstrated by numerical simulations.

1 Introduction

Boosted by applications in different areas such as biol-
ogy, medicine, computer vision, the problem of curve
registration has been explored in a number of recent
statistical studies. The model used for deriving sta-
tistical inference represents the input data as a finite
collection of noisy signals such that each input signal
is obtained from a given signal, termed mean template
or structural pattern, by a parametric deformation and
by adding a white noise. Hereafter, we refer to this as
the deformed mean template (DMT) model. The main
difficulties for developing statistical inference in this
problem are caused by the nonlinearity of the defor-
mations and the fact that not only the deformations
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but also the mean template used to generate the ob-
served data are unknown.

While the problems of estimating the mean template
and the deformations was thoroughly investigated in
recent years, the question of the adequacy of modeling
the available data by the DMT model received little at-
tention. By the present work, we intend to fill this gap
by introducing a nonparametric goodness-of-fit testing
framework that allows us to propose a measure of ap-
propriateness of a DMT model. To this end, we focus
our attention on the case where the only allowed de-
formations are translations and propose a measure of
goodness-of-fit based on the p-value of a chi-squared
test.

1.1 Model description

We consider the case of functional data, that is each
observation is a function on a fixed interval, taken
for simplicity equal to [0,1]. More precisely, assume
that two independent samples, denoted {X;}i=1, . n
and {X*},—1 _n», of functional data are available such
that within each sample the observations are inde-
pendent identically distributed (iid) drifted and scaled
Brownian motions. Let f and f* be the corresponding
drift functions: f(t) = % and f*(t) = %E(t)].
Then, X;(t) = fot f(u)du + sB;(u) where s > 0 is the
scaling parameter and B;s are independent Brownian
motions. An analogous relation with a different pa-
rameter s* holds for X*s. Since we assume that the
entire paths are observed, the scale parameters s and
s* can be recovered with arbitrarily small error using
the quadratic variation. So, in what follows, these pa-
rameters are assumed to be known.

The goal of the present work is to provide a statistical
testing procedure for deciding whether the curves of
the functions f and f* coincide up to a translation.
Considering periodic extensions of f and f* on the
whole real line, this is equivalent to checking the null
hypothesis

Ho:3r € [0,1] s.t. f() = f*C+79). (1)
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If the null hypothesis is satisfied, we are in the set-up
of a DMT model, where f(-) plays the role of the mean
template and spatial translations represent the set of
possible deformations.

Starting from Golubev [21] and Kneip and Gasser [25],
semiparametric and nonparametric estimation in dif-
ferent instances of the DMT model have been inten-
sively investigated [4,6,8-11,13,14,18,22,30-32] with
applications to image warping [5,20]. However, prior
to estimating the common template, the deformations
or any other object involved in a DMT model, it is nat-
ural to check its appropriateness, which is the purpose
of this work.

To achieve this goal, we first note that the pair of
sequences of complex-valued random variables Y =
(Yo, Y1,...) and Y* = (Y, Y¥,...), defined by

[V, Y}] == Z/

constitutes a sufficient statistic in the model generated
by the data ({X;}i=1,.. . n;{XF}i=1,. n#). Therefore,
without any loss of information, the initial (functional)
data can be replaced by the transformed data (Y, Y™*).
It is clear that the latter satisfy

)} 27igt dt

#
YJ_CH’\/HGJ’ Y] =4+ =9 jEN, (2)
where ¢; = folf(x) e2ime dw,C}‘* = fol fH(x) 2™ dy

are the complex Fourier coefficients. The complex val-
ued random variables ¢;, e;? are i.i.d. standard Gaus-
sian: ¢, ¢% ~ Nc(0,1), which means that their real
and imaginary parts are independent A/(0,1) random
variables. In what follows, we will use boldface let-
ters for denoting vectors or infinite sequences so that,
for example, ¢ and ¢* refer to {c¢;;5 = 0,1,...} and
{cf;5=0,1,...}, respectively.

Under the mild assumption that f and f* are squared
integrable, the likelihood ratios of the Gaussian pro-
cess Y** = (Y, Y") is well defined. Using the nota-
tion ¢** = (¢, c*), 0 = s/y/n and o* = s*//n* the
corresponding negative log-likelihood is given by

Y —ell} Y- "3

UY** e = 0’ o O

In the present work, we present a theoretical analy-
sis of the penalized likelihood ratio test (PLR) in the
asymptotics of large samples, i.e., when both n and n*
tend to infinity, or equivalently, when ¢ and o* tend
to zero. The finite sample properties are examined
through numerical simulations. The testing procedure
will be described for any pair (o, %), but to keep the-
oretical developments readable, we will assume in our
main results that o = o*.
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1.2 Some motivations

Even if the shifted curve model is a very particular
instance of the general DMT model, it plays a central
role in several applications. To cite a few of them:
Road traffic forecast: In [26], a road traffic fore-
casting procedure is introduced. For this,
archetypes of the different types of road traffick-
ing behavior on the Parisian highway network are
built, using a hierarchical classification method.
In each obtained cluster, the curves all represent
the same events, only randomly shifted in time.

Keypoint matching: An important problem in
computer vision is to decide whether two points
in a same image or in two different images corre-
spond to the same real-world point. The points
in images are then usually described by the re-
gression function of the magnitude of the gradi-
ent over the direction of the gradient of the image
restricted to a given neighborhood (cf. [27]). The
methodology we shall develop in the present paper
allows to test whether two points in images coin-
cide, up to a rotation and an illumination change,
since a rotation corresponds to shifting the argu-
ment of the regression function by the angle of the
rotation.

1.3 Relation to previous work

The problem of estimating the parameters of the defor-
mation is a semiparametric one, since the deformation
involves a finite number of parameters that have to be
estimated by assuming that the unknown mean tem-
plate is merely a nuisance parameter. In contrast, the
testing problem we are concerned with is clearly non-
parametric. The parameter describing the probability
distribution of the observations is infinite-dimensional
not only under the alternative but also under the null
hypothesis. Surprisingly, the statistical literature on
this type of testing problems is very scarce. Indeed,
while [23] analyzes the optimality and the adaptivity
of testing procedures in the setting of a parametric null
hypothesis against a nonparametric alternative, to the
best of our knowledge, the only papers concerned with
nonparametric null hypotheses are [1,2] and [19]. Un-
fortunately, the results derived in [1,2] are inapplicable
in our set-up since the null hypothesis in our problem
is neither linear nor convex. The set-up of [19] is closer
to ours. However, they only investigate the minimax
rates of separation without providing the asymptotic
distribution of the proposed test statistic, which gener-
ally results in an overly conservative testing procedure.

1.4 Our contribution

We adopt, in this work, the approach based on the
Generalized Likelihood Ratio (GLR) tests, cf. [16] for
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a comprehensive account on the topic. The advantage
of this approach is that it provides a general framework
for constructing testing procedures which asymptoti-
cally achieve the prescribed significance level for the
first kind error and, under mild conditions, have a
power that tends to one. It is worth mentioning that
in the context of nonparametric testing, the use of the
generalized likelihood ratio leads to a substantial im-
provement upon the likelihood ratio, very popular in
parametric statistics. In simple words, the generalized
likelihood allows to incorporate some prior information
on the unknown signal in the test statistic which intro-
duces more flexibility and turns out to be crucial both
in theory and in practice [17]. We prove that under
the null hypothesis the GLR test statistic is asymp-
totically distributed as a y2?-random variable. This
allows us to choose a threshold that makes it possi-
ble to asymptotically control the test significance level
without being excessively conservative. Such results
are referred to as Wilks’ phenomena.

2 PLR test statistic

We are interested in testing the hypothesis (1), which
translates in the Fourier domain to

Hy: 377 €[0,27] s.t. ¢ = eiiﬁ*czF Vi =N.

Indeed, one easily checks that if (1) is true, then!
C; _ fol Ft — T*)€2ij7rt dt = 2iinT fol f(z)€2ij7rz dy —
eI c¢; and, therefore, the aforementioned relation
holds with 7% = 2#x7*. If no additional assumptions
are imposed on the functions f and f*, or equivalently
on their Fourier coefficients ¢ and c¢*, the nonparamet-
ric testing problem has no consistent solution. A nat-
ural assumption widely used in nonparametric statis-
tics is that ¢ = (co,c1,...) and ¢* = (b, ct,...) be-
long to some Sobolev ball Fs ; = {u = (up, u1,...) :
Z;_:Og 3%*|u;|* < L*}, where the positive real numbers
s and L stand for the smoothness and the radius of
the class Fs r.

Since we will also be interested by establishing the
(uniform) consistency of the proposed testing proce-
dure, we need to precise the from of the alternative. It
seems that the most compelling form for the null and
the alternative is

Hy: 37" st. c¢j=e Vi e N.
Hy: inf, Z;r:og lcj —e TP > p

—ij 7"
J

(4)

for some p > 0. In other terms, under Hy the graph
of the function f* is obtained from that of f by a
translation.

'"We use here the change of the variable z =t — 7* and
the fact that the integral of a 1-periodic function on an
interval of length one does not depend on the interval of
integration.
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To present the penalized likelihood ratio test, which
is a variant of the GLR test, we introduce a penaliza-
tion in terms of weighted £2-norm of ¢®*#. In this con-
text, the choice of the £2-norm penalization is mainly
motivated by the fact that Sobolev regularity assump-
tions are made on the functions f and f*. For a se-
quence of non-negative real numbers, w, we define the
weighted £ norm [|¢||2, , = 250 wjle;|?. We will also
use the standard notation [lull, = (3; |u;|P)Y/P for
any p > 0. Using this notation, the penalized log-
likelihood is given by

Y —cl3+ el
202
IY* — 5+ [I*]12, - 5)
2(0%)?2 :

pl(Y** c**)

The resulting penalized likelihood ratio test is based
on the test statistic
A(Y**)=  min

c®*:Hy is true

pE(Y.,#’ c.,#)
- m.i£1p€(Y"#, c**). (6)

It is clear that A(Y**) is always non-negative. Fur-
thermore, it is small when Hj is satisfied and is large
if Hy is violated. The minimization of the quadratic
functionals in (6) can be done explicitly and leads to
the following result.

Proposition 1. For any pair of sequences Y and Y*
from €2, the test statistic A(Y **) defined by (6) has
the following simplified form:

o2 + (0%)?2
2(o0*)?

+oo |Y7 _ ez’jTy#|2
min § 173
T Wi
5=0 T

A(Y*?) = (7)

Proof. The minimization of the quadratic functional
(5) is an easy exercise and leads to

1 W Y.i2 Y2
g =352 5+ )
21'1927( ) 2;1+wj o + o*

(8)
To compute the first term in the right hand side of (6),
remark that it is equal to the minimum with respect
to (w.r.t.) 7 € [0,27[ and ¢ € £2 of the function

T Y — ¢ +wsleg P | 1Y = e9Te P 4+ wjles
3>0 20° 2(c*)? .

The minimization w.r.t. ¢ is attained when ¢; = (1 +
wj)fl(afz + (0#)72)71(}/}072 + e*ijTYj#(U#)*% and

vi)2 VP
. Y Y.’# o.#y | J J
CO,#:HI}})ntruep ( '€ ) jz>:0 |: 20’2 + 2(0'#)2
—igT 2
71111112 (o) Y, ¢ ’ YJ#
Tt (@) |02 (o)
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Combining this relation with (8), we get the result
stated in the proposition. O

From now on, it will be more convenient to use the no-
tation v; = 1/(1 4+ w;). The elements of the sequence
v = {v;; j > 0} are hereafter referred to as shrinkage
weights. They are allowed to take any value between 0
and 1. Even the value 0 will be authorized, correspond-
ing to the limit case when w; = 400, or equivalently to
our belief that the corresponding Fourier coeflicient is
0. To ease notation, we will use the symbol o to denote
coeflicient-by-coefficient multiplication, also known as
the Hadamard product, and e(7) will stand for the se-

quence (1,e717,e=27 ). The test statistic can then
be written as:
% + (o*)?
A Yo,# 2 T\¥ ) . y_ Y# 9 0
(V) = gt 2 Y =)oY Tz, O

and the goal is to find the asymptotic distribution of
this quantity under the null hypothesis.

3 Main results

The test based on the generalized likelihood ratio
statistic involves a sequence v, which is completely
modulable by the user. However, we are able to pro-
vide theoretical guarantees only under some conditions
on these weights. To state these conditions, we fo-
cus on the case 0 = o* and choose a positive integer
N = N, > 2, which represents the number of Fourier
coeflicients involved in our testing procedure. In ad-
dition to requiring that 0 < v; < 1 for every j, we
assume that:
(A) i =1land v; =0, Vj > N,

(B) Zj>1 IJJZ > ¢N, for some constant ¢ > 0.

Moreover, we will use the following condition in the
proof of the consistency of the test:

(C) there exists ¢ > 0, such that min{j > 0,v; <
c} — 4o0,as 0 — 0.

In simple words, this condition implies that the num-
ber of terms v; that are above a given strictly positive
level goes to 400 as o converges to 0. If N, — 400
as ¢ — 0, then all the aforementioned conditions
are satisfied for the shrinkage weights v of the form
Vi1 = h(j/N,), where h : R — [0,1] is an integrable
function, supported on [0, 1], continuous in 0 and sat-
isfying h(0) = 1. The classical examples of shrinkage
weights include:

Tii<n,ys (projection weight)
i \»
Lgenay/{1+ ()" )

1=

vj = (Tikhonov weight)

(Pinsker weight)
(10)
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with x, > 0. Note that condition (C) is satisfied in
all these examples with ¢ = 0.5, or any other value in
(0,1). Here on, we write A, (Y **) instead of A(Y**)
in order to stress its dependence on o.

Theorem 1 (Wilks’ phenomenon). Let ¢ € Fy, 1 and
le1] > 0. Assume that the shrinkage weights v; are
chosen to satisfy conditions (A), (B), Ny — +00 and
o2 N2/ log(N,) = o(1). Then, under the null hypoth-
esis, the test statistic A, (Y **) is asymptotically dis-
tributed as a Gaussian random variable:

A, (Y —dlvlh 2
Al l2

N(0,1). (11)

o—0
The main outcome of this result is a test of hypothesis
Hj that is asymptotically of a prescribed significance

level @ € (0,1). Indeed, let us define the test that
rejects Hy if and only if

Ao (Y*¥) 2 4|yl +4z1-alv 2, (12)

where z;_, is the (1 — a)-quantile of the standard
Gaussian distribution.

Corollary 1. The test of hypothesis Hy defined by
the critical region (12) is asymptotically of significance
level a.

Remark 1. Let us consider the case of projection
weights v; = 1(j < N,). One can reformulate the
asymptotic relation stated in Theorem 1 by claiming
that 1A, (Y**) is approximately N (2N,,4N,) dis-
tributed. Since the latter distribution approaches the
chi-squared distribution, we get:

% A, (Y*H) 2 XaN, as o—0.
In the case of general shrinkage weights satisfying the

assumptions stated in the beginning of this section, an
D
el AU(Y°’#) ~

2[lvli3

2 .
X2 /w3 > 35 0 = 0. This type of results are often

analogous relation holds as well:

referred to as Wilks’ phenomenon.

Remark 2. The p-value of the aforementioned test
based on the Gaussian or chi-squared approximation
can be used as a measure of the goodness-of-fit or, in
other terms, as a measure of alignment for the pair of
curves under consideration. If the observed two noisy
curves lead to the data y** then the (asymptotic)
p-value is defined as

o H#)
a*:@@a(y ) 4||,,||1>7

Af|v [l

where ® stands for the c.d.f. of the standard Gaussian
distribution.

So far, we have only focused on the behavior of the test
under the null without paying attention on what hap-
pens under the alternative. The next theorem fills this
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gap by establishing the consistency of the test defined
by the critical region (12).

Theorem 2. Let condition (C) be satisfied and let
o*N, tend to 0 as 0 — 0. Then the test statistic T, =
Ao (Y ) —d|lv

4]l
o—0.

. . P
diverges under Hy, i.e., T, — +00, as

In other words, the result above claims that the power
of the test defined via (12) is asymptotically equal to
one as the noise level o decreases to 0.

Remark 3. The previous theorem tells us nothing
about the (minimax) rate of separation of the null hy-
pothesis from the alternative. In other words, Theo-
rem 2 does not provide the rate of divergence of Ty .
However, a rate is present in the proof (cf. Section D).
In fact, in most situations min{j > 0;j < ¢} is of the
order N,, in which case we prove that

o &+ O(N;?) + Op(oy/log No)
- 402\/N,

as 0 — 0. This implies that, for instance, if N, — +00
and satisfies /N, = O(1) then T, tends to infinity
if and only if p/(0+/log N,) — co. This argument can
be made rigorous to establish that the minimax rate
of separation is at least o'/2(logo—1)'/%. However,
we will not go into the details here since we believe
that this rate is not optimal and intend to develop the
minimax approach in a future work.

T,

4 Numerical experiments

We have implemented the proposed testing procedure
(12) in Matlab and carried out a certain number of
numerical experiments on synthetic data. The aim of
these experiments is merely to show that the method-
ology developed in the present paper is applicable and
to give an illustration of how the different characteris-
tics of the testing procedure, such as the significance
level, the power, etc, depend on the noise variance o2
and on the shrinkage weights v.

4.1 Convergence of the test under Hj

In order to illustrate the convergence of the test (12)
when o tends to zero, we made the following ex-
periment. We chose the function HeaviSine, consid-
ered as a benchmark in the signal processing com-
munity, and computed its complex Fourier coefficients
{¢j;5 = 0,...,10%}. For each value of o taken from
the set {2*’“/2, k=1,...,15}, we repeated 5000 times
the following computations:

e set N, =500 1/2,
o generate the noisy sequence {Y;;j = 0,...,N,}
by adding to {c;} an ii.d. Ng(0,0?) sequence

{&h
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Convergence to the nominal level under Hy
T

1 T T

Proportion-of True-Negatives

-+=Projection shrinkage weights

o1l —— Tikhonov shrinkage weights ||

- = =Pinsker shrinkage weights

I L L L
2 4 6

8 10 12 14
n=—2log, (o)

Figure 1: The proportion of true negatives in the first
experiment described in Section 4 as a function of
log, 02 for three different shrinkage weights: projec-
tion (Left), Tikhonov (Middle) and Pinsker (Right).
One can observe that for ¢ = 271%/2 ~ 5 x 1073,
the proportion of true negatives is almost equal to
the nominal level 0.95. Another observation is that
the Pinsker and the Tikhonov weights lead to a faster
convergence to the nominal significance level.

e randomly choose a parameter 7% uniformly dis-
tributed in [0, 2], independent of {¢;},

e generate the shifted noisy sequence {Yf; j =
0,...,N,} by adding to {e¥" ¢;} an iid.
Nc (0, 02) sequence {€#}, independent of {¢;} and
of 7%,

e compute the three values of the test statistic A,
corresponding to the classical shrinkage weights
defined by (10) and compare these values with
the threshold for o = 5%.

We denote by plelept(0): Paceopt () and pieissi(o) the

proportion of experiments (among 103 that have been
realized) leaded to a value of the corresponding test
statistic lower than the threshold, i.e., the proportion
of experiments leading to the acceptance of the null
hypothesis. We plotted in Figure 1 the (linearly in-
terpolated) curves k +— pggggpt(JkL k — ng}glpt(ok)
and k — pgci;‘g};t(ak), with o, = 27%/2. Tt can be
clearly seen that for 0 = 277 ~ 8 x 1073, the pro-
portion of true negatives is almost equal to the nom-
inal level 0.95. It is also worth noting that the three
curves are quite comparable, with a significant ad-
vantage for the curve corresponding to Pinsker’s and
Tikhonov’s weights: this curves converge a faster to
the level 1 — a = 95% than the curve corresponding to

the projection weights.
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4.2 Power of the test

In the previous experiment, we illustrated the behavior
of the penalized likelihood ratio test under the null hy-
pothesis. The aim of the second experiment is to show
what happens under the alternative. To this end, we
still use the HeaviSine function as signal f and define
f* = f 4+ ~vp, where v is a real parameter. Two cases
are considered: p(t) = ccos(4t) and p(t) = ¢/(1 +t2),
where c is a constant ensuring that ¢ has an L? norm
equal to 1. For each of these two pairs of functions
(f, /*), we repeated 5000 times the following compu-
tations:

e set 0 =1 and N, = 500~1/2,

e compute the complex Fourier coefficients {c;;j =
0,...,10% and {c};j = 0,...,10%} of f and f*,
respectively,

o generate the noisy sequence {Y;;j5 = 0,...,N,}
by adding to {c;} an ii.d. Ng(0,0?) sequence
{&h

e generate the shifted noisy sequence {Yj#; J

0,...,N,} by adding to {c}} an iid. Nc(0,0%)
sequence {¢*}, independent of {{;},

e compute the value of the test statistic A, corre-
sponding to the projection weights and compare
this value with the threshold for a = 5%.

To show the dependence of the behavior of the test
under H; when the distance between the null and the
alternative varies, we computed for each ~y the propor-
tion of true positives, also called the empirical power,
among the 5000 random samples we have simulated.
The results, plotted in Figure 2 show that even for
moderately small values of v, the test succeeds in tak-
ing the correct decision. It is a bit surprising that the
result for the case ¢(t) = ccos(4t) is better than that
for p(t) = ¢/(1 + t?). Indeed, one can observe that
the curve at the right panel approaches 1 much faster
than the curve of the left panel.

5 Conclusion

In the present work, we provided a methodological and
theoretical analysis of the curve registration problem
from a statistical standpoint based on the nonparamet-
ric goodness-of-fit testing. In the case where the noise
is white Gaussian and additive with a small variance,
we established that the penalized log-likelihood ra-
tio (PLR) statistic is asymptotically distribution free,
under the null hypothesis. This result is valid for
the weighted [2-penalization under some mild assump-
tions on the weights. Furthermore, we proved that
the test based on the Gaussian (or chi-squared) ap-
proximation of the PLR statistic is consistent. These
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results naturally carry over to other nonparametric
models for which asymptotic equivalence (in the Le
Cam sense) with the Gaussian white noise has been
proven [7,15,28].

Some important issues closely related to the present
work have not been treated here and will be done
in near future. Perhaps the most important one is
to determine the minimax rate of separation of the
null hypothesis from the alternative. The results we
have shown tell us that this rate is not slower than
o'/2(logo=")'/%. However, it is very likely that this
latter rate is suboptimal. There is a large body of lit-
erature on the topic of minimax rates of separation (cf.
the book by Ingster and Suslina [24] and the references
therein), but they mainly concentrate on the case of a
simple null hypothesis. We expect that the composite
character of the null hypothesis in our set-up will slow
down the rate of convergence at least by a logarithmic
factor.

Appendix

In order to respect the space limitations imposed by the
conference, only the sketches of the proofs are presented.
We refer the interested reader to the technical report [12]
for more details.

A Maxima of random sums

In this section, we will give some technical lemmas which
will be useful in the proofs of this paper. The proofs of
Lemmas can be found in the technical report [12].
Proposition 2 (Berman [3]). Suppose that g; are contin-
uwously differentiable functions satisfying Z?:1 gi(t)? =1
for all t, and &; w N(0,1). Then, for every x > 0, we
have

2
t
2 +oo e~ T

- Lo _s2
P(sup 9;(t)&; Zm) < —e 2 +/ dt,
[a,b]; TN 27 s V27

with Lo = [* [X7_, g4(t)?]"/? dt.

a j=197

We will also use the following fact about moderate devia-
tions of the random variables that can be written as the
sum of squares of independent centered Gaussian random
variables.

Lemma 1. Let N be some positive integer and let
77;, j = 1,...,N be independent complex valued ran-
dom wvariables such that their real and imaginary parts

are independent standard Gaussian variables. Let s =
(s1,...,8~) be a vector of real numbers. For any y >
0, it holds that P{Z;\Izl s3nil? > 2|Isll5 + 2v2[s|liy +

2sl2y°} < e_y2/2, with the standard notations ||s]|ec =
N
max;—1,..~ |s;] and ||s||§ = D757, [s;]%

Lemma 2. Let N be some positive integer and let nj;,
17;, 7 = 1,...,N be independent complex valued ran-
dom wariables such that their real and imaginary parts
are independent standard Gaussian variables. Let s =
(s1,...,8N) be a vector of real numbers. Denote S(t) =
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Figure 2: The proportion of true positives in the second experiment described in Section 4 as a function of the
parameter v measuring the distance between the true parameter and the set of parameters characterizing the
null hypothesis. The main observation is that both curves tend to 1 very rapidly.

Z;V:1 sj Re (e9'n;nf) for every t in [0,27] and ||S|e =
SUPse(o,2n) [S(t)]- Then, for all z,y > 0, P{[|S]lc >
Var(lsll + yllslle) } < (N +1)e™/2 4 e7v"/2,

B An auxiliary result

Proposition 3. Assume that Ho is satisfied. Let ¢ €
Fir and |er| > 0. If the shrinkage weights v; sat-
isfy conditions (A) and (B), then the solution 7 to the
optimization problem max|,_z« <. M (1), with M(r) =
2iso0Vi Re(e“TYij#) satisfies the relation |7 — 7% =
o+/log N(,(l + O'NS/Z)OP(I), as o — 0.

—ij7

* # # :
Proof. If we set n; = e €; and n; = €;, we can write

the decomposition
M(7) = E[M(7)] 4+ 0S(1) + 6> D(1 + 7*),

with E[M(7)] 20 vjlei|? cosli(t — 7%)], S(7)
ijo vj Re (eiﬁ(c_jnj + Cjﬁ?)) and D(7) ijo Vi X
Re (eianjn_;?). On the one hand, using the assumption
|c1] > 0 along with condition (A), we get that

E[M(7)] —E[M(7*)] < —1/1|01|21 cos(T — 7")
(7-_7_-*)2 - (7-_7—-*)2
< 2er] o C<0

Therefore, M (1) — M(7") is equal to
E[M(7) = M(7")] + o[S(7) = S(77)] + ¢*[D(r) = D(77)]
which is obviously bounded by
7 =7 {llS"llso + o*[ID'lloc — Clr = 7"}
Using this result, for every a > 0, we get

P(|# =7 >a) <P{ sup M(r)— M(7*) >0}

|[T—T*|>a

< P{0||S o +*|D'||sc > Ca}.
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The choice a o+v/log N (2 + aNg/z)z implies that

the probability P(\f' — 7| > o/log N, (1 + JNg/Q)z) is
bounded by

P(||S]|oe > 2C2\/log No) +P(||D’||oc > Czv/NZlog Ny ).

On the other hand, since 5'(t) = 3~ jlc;|v; Re (¢77¢;),
where (; are i.i.d. complex valued random variable, whose
real and imaginary parts are independent A/(0, 2) variables,
the large deviations of the sup-norm of S’ can be controlled
by using the following lemma.

Lemma 3. The sup-norm of the function S(t)

Ef:o si{cos(jt)&;+sin(jt)&;}, where {&;} and {&;} are two
independent sequences of i.i.d. N'(0,1) random variables,
satisfies P(||S]loe > |I8]l22) < (K + 1)e™="/2, ¥z > 0.

Proof. This results is a direct consequence of Berman’s in-
equality that we recall in Section A for the reader’s conve-
nience. O

Using this lemma and the fact that N, > 2, we get that
P([|9|lc > 2LC+/2ylog Ny) < 2Ng~¥ < 2°7Y for every
y > 1. Finally, the large deviations of the term ||D’||s are
controlled by using Lemma 2 below. Putting these inequal-
ities together, we find that for any « € (0,1), there exists
z > 0 such that P(\i’—f*\ > o+/log N, (1 +O‘N3/2)Z) < a.
In conclusion, we get that 7 — 7" is, in probability, at most

of the order ov/log N, (1 + aNg/Z). O

C Proof of Theorem 1

The term A, (Y**) = ?15 min, [Z;r:og I/j|Yj _ efij-ryvj#|2]
can be written under Hy as

A (Y min {Dy(7) +2C5(7) + Po(7)},

0? |r|<w

(13)
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where we have used the notation:

D, (1) = thoo Vj\cj|2|1 — eV
,JZ

+OO _ #12
Py(r)=0" Ej vile; —e TR,

’

viRe [¢;(1 - e_lj(T_‘F*)) (e —eme")],

(Since Hp is assumed satisfied, there exists 7° € [0, 27
such that ¢; = e797 ¢ for all j > 0.) We denote by 7 the
pseudo-estimator of 7* defined as the minimizer of the RHS
of (13) and study the asymptotic behavior of the terms Dy,
Co and P, separately. For the deterministic term, it holds
that

\<Z (7 —7%)?

< L(# -7 ={6*(1 + 0°>N2)log N, } O,(1).

J VJ|CJ‘

Let us turn now to the cross term. It holds that Co(7) =
JZ;;’S Vj{(l — cos[j(t — 7)) Re [cj(ej —e*iﬁ*éﬁ)} +
sin[j(7* —7)] Im [¢; (¢; + e=7"€*) ] }. Combining this with
Cy(7*) = 0, we have |Co(7)] < |7 — 7| - ||Cs]lo. By
arguments similar to those used in the proof of Proposi-

tion 3, we check that ||Cy || is of the order {U\/W}
in probablhty Therefore, it holds that |C, (7)] = {o*(1 +
oNZ/?)log Ny} O, (1).

Let us now study the last term,
a? Zj:og vile; — efijTeﬂz, which  will
asymptotic behavior of the test statistic. Now denoting
n; = €77 ¢; and n} = €}, we can rewrite this term as
Py(1) =02 Zj:og viln; — eiij(Tf?*)nﬂQ. We wish to prove
now that under Ho, if conditions (A), (B), No — +o0
and 02Ny/?log(N,) = op(1) are fulfilled, then

P (1) =
determine the

P,(7) — 40 Zkzo Ve o

T, (7T) =
(7) 102(Tyno VI)V2 o0

We start by writing T, (7*) as the sum over j € {1,..., N, }
of random variables Xjo = v;(|n; — nf|°> — 4)/4||1/||27 and
applying the Berry-Esseen inequality [29, Theorem 5.4].

Since we have B, = Z Var(Xj U) =1 and L, =
Zj:o E|X;,|* < CN, 1/2, the Berry-Esseen inequal-
ity yields sup, |Fo(z) — ®(z)] < K L,, where F,(z) =

P(B 1/22 0 Xjo < ), ® is the c.d.f. of N(0,1) and

K is an absolute constant. Hence T, (7") i()) N(0,1).
o—

It remains now to prove that R, = T,(7) — T-(7") tends
to 0 in probability, which—by Slutski’s lemma—will be
sufficient for completing the proof. It holds that

“+oo
Vj
=3 _Y_g
)= 2 e

_ Z jVJ T — T
2||V||2

mr (7770 - 1)
Re (e ‘”nﬁ)

with some t € [7,7"]. Then, by virtue of Lemma 2, |R, (7)|
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is bounded by

[ — 7| e
(e n;n?)

———— sup ‘ JVj Re
2|2 te[0,2n] Z !

={oc(1+ azvg/2)z\fcr log N, } - Op(1).

Hence, R,(7) = op(1) and the desired result follows.

D Proof of Theorem 2

The aim of this section is to present a proof of Theo-
rem 2. To this end, we study the test statistic T, =
(Ao (Y**) — 4||lv||1)/4|lv||2, and show that it tends to +oo
in probability under Hi. Actually, the hypothesis H; will
be supposed to be satisfied throughout this section. The
term A, (Y **) is bounded from below by

1]7‘ #2
—2 min Z/J|cj —e %]
02 r¢f0,2n

2 —ijT # —ijT _#
— = max vile; —e TG - |eg —e T e
o T€[0,27] =0

Let us focus on the first term. Denoting §o = min{j >

0,v; < ¢}, we get by condition (C) that §, — +o00, which

implies that for any 7, the term > . vjlc; — e T
= So —ijT

can be bounded from below by €27 [¢; — e 7 ¢]|? >

e(p—4Ls;?

| L —ijT # | L
vileg—e Vel |ej —e

Jj=0

). Now, the second term satisfies

ijT #|
€5

# #
< max (el VIEN Y (Ies]+ [<]]).

Jj=0

On the one hand, standard inequalities on the tails of Gaus-
sian random variables combined with the union bound im-
ply that max;—o,....n, (|e;| V |ef]) = Op(v/Iog No). On the
other hand, one can also check that 3>, (les| + Ifl) <
_on1/2 ) 2\1/2 .
(Ejgo] 2) / (ZjZO ]2(|Cj‘ + ‘Cﬂ) ) /= O(1). Putting
all these together, we get
Ao (Y*F) —4|vls
vl

tp —4Leb,* + Op(0v/IogNy) p

> — 4o00.
4024/ N,
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