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Abstract
We consider the problem of learning classifiers
for labeled data that has been distributed across
several nodes. Our goal is to find a single clas-
sifier, with small approximation error, across all
datasets while minimizing the communication
between nodes. This setting models real-world
communication bottlenecks in the processing of
massive distributed datasets. We present sev-
eral very general sampling-based solutions as
well as two-way protocols which have a prov-
able exponential speed-up over any one-way pro-
tocol. We focus on core problems for noise-
less data distributed across two or more nodes.
The techniques we introduce are reminiscent of
active learning, but rather than actively probing
labels, nodes actively communicate with each
other, each node simultaneously learning impor-
tant data from another node.

1 Introduction
Distributed learning [Bekkerman et al., 2011] is the study
of machine learning on data distributed across multiple lo-
cations. Examples of this setting include data gathered
from sensor networks, or from data centers located across
the world, or even from different cores on a multicore archi-
tecture. In all cases, the challenge lies in solving learning
problems with minimal communication overhead between
nodes; learning algorithms cannot afford to ship all data to
a central server, and must use limited communication effi-
ciently to perform the desired tasks.

In this paper, we introduce a framework for studying dis-
tributed classification that treats inter-node communication
as a limited resource, and present a number of algorithms
for this problem that uses inter-node interaction to reduce
communication. Our main technique is the use of carefully
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chosen data and classifier descriptors that convey the most
useful information about one node to another; in that re-
spect, our work makes use of (in spirit) the active learning
paradigm [Settles, 2009].

For distributed classification, the dominant strategy [Predd
et al., 2006, McDonald et al., 2010, Mann et al., 2009,
Lazarevic and Obradovic, 2001] is to design local classi-
fiers that work well on individual nodes. These classifiers
are then communicated to a central server, and then aggre-
gation strategies like voting, averaging, or even boosting
are used to compute a global classifier. These approaches,
while designed to improve communication, do not study
communication as a resource to be used sparingly, and
ignore the fact that interactions between nodes might re-
duce communication even further by allowing them to learn
from each others’ data.

Problem definition. There are many aspects to formal-
izing the problem of learning classifiers with limited com-
munication, including discussion of the data sources (i.i.d.
or adversarial), data quality (noiseless or noisy), commu-
nication models (one-way, two-way or k-way) and classi-
fier models (linear, non-linear, mixtures). In this paper, we
focus on a simple core model that illustrates both the chal-
lenges and the benefits of focusing on the communication
bottleneck.

In our model, we first consider one-way and two-way com-
munication between two parties Alice and Bob that receive
noiseless data sets DA and DB that result from partitioning
a larger data set D = DA ∪DB. Thereafter, we consider
one-way and two-way communication between k parties
P1,P2, . . . ,Pk that receive noiseless data sets D1,D2, . . . ,Dk
partitioned from D =

⋃k
i=1 Di. In either case, the partition-

ing may be done randomly, but might also be adversarial:
indeed, a number of recent discussions [Cesa-Bianchi et al.,
2009, Dekel et al., 2010, Laskov and Lippmann, 2010, adv,
2010, Hsu and Langford, 2011] highlight the need to con-
sider adversarial data in learning scenarios.

In our model, the nodes together learn (via communication)
a classifier hk (hAB for two nodes A and B) from a family
of classifiers such as linear classifiers. Let h∗ denote the
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Hypothesis Dimen- Communication Error Communication Complexity Reference
Class sions Protocol Two-party k-party

generic d one-way ε O(ν/ε logν/ε) O(k(ν/ε) logν/ε) Theorem 3.1 & 5.1
thresholds 1 one-way 0 2 2k Lemma 3.1 & 5.2

aa-rectangles d one-way 0 4d 4dk Theorem 3.2 & 5.2
hyperplanes d one-way ε Ω(1/ε) Ω(k/ε) Theorem 3.3 & 3.4
hyperplanes 2 two-way ε O(log1/ε) O(k2 log1/ε) Theorem 4.1 & 5.3

Table 1: Summary of results obtained for different hypotheses classes under an adversarial model with one-way and two-
way communications. All results are for the noiseless setting. ν denotes the VC-dimension for the family of classifiers.

optimal classifier that can be learned on D. Let ED(h) de-
note the number of points misclassified by some classifier
h on D. We say that hk has ε-approximation error (ε-error
for short) on D if ED(hk)−ED(h∗)≤ ε|D|. The goal is for
hk to have at most ε-error (0 < ε < 1) while minimizing
inter-node communication.

In this paper, we phrase the learning task in terms of train-
ing error, rather than generalization. This is motivated by
numerous results that indicate that low training error com-
bined with limits on the hypothesis class used lead to good
generalization bounds [Kearns and Vazirani, 1994].

Technical contributions. Our overall contribution, in
this paper, is to model communication minimization (in
distributed classification) as an active probing problem.
We start in Section 2 by showing that, within our pro-
posed framework, the one-way communication problem
can be solved trivially under i.i.d. assumptions (ref. Sec-
tion 2). Hence in this work most of our effort is focused
on adversarial distributions. In all subsequent cases, we
first help build intuition by discussing a two-party protocol
and thereafter extend the two-party results to the k-party
case. In Section 3 we show that with one-way commu-
nication, it is possible to learn optimal classifiers exactly
(i.e., with 0-error) for thresholds (in R1), intervals (in R1)
and axis-aligned rectangles (in Rd) with only a constant
amount of communication. For the case of linear sepa-
rators, we present an Ω(1/ε) lower bound. Thereafter in
Section 4, we present our two-way, two-party communi-
cation protocol ITERATIVESUPPORTS which learns an ε-
error classifier (under adversarial distributions) using only
O(log1/ε) communication – an exponential improvement
over the one-way case! Next in Section 5, we use the results
of Section 4 to obtain an O(k2 log1/ε) bound for k-parties
using two-way communication. In Section 6, we present
results that demonstrate the correctness and convergence of
the linear separator algorithms and also empirically com-
pare its performance with a few other baselines.

Table 1 summarizes the results obtained with references
to appropriate sections of this paper. All our results per-
tain to the noiseless setting which assumes the existence of
a classifier that perfectly separates the data. However, in
Section 7, we propose some ways to extend our proposed
results to noisy data.

2 Randomly Partitioned Distributions
We first consider the case when the data is partitioned ran-
domly among nodes. Specifically, each node i can view
its data Di as being drawn iid from D ⊂ Rd . We can
now apply learning theory results for any family of clas-
sifiers H with bounded VC-dimension ν . Any classifier
hS ∈ H which perfectly separates a random sample S of
s = O((ν/ε) log(ν/ε)) samples from D has at most ε-
classification error on D, with constant probability [An-
thony and Bartlett, 2009]. Thus each Di can be viewed as
such a sample S and if Di is large enough, with no commu-
nication a node can return a classifier with small error.

Theorem 2.1. Let {D1, . . . ,Dk} randomly partition D ⊂
Rd . In the noiseless setting a node i can produce a classifier
from (Rd ,H) (with VC-dimension ν) with at most ε-error
for ε = O((ν/|Di|) log |Di|), with constant probability.

A similar result (with slightly worse dependence on the Di)
can be obtained for the noisy setting. These results indicate
that the k-party (and hence also two-party) setting is triv-
ial to solve if we assume random partitioning of D. Thus,
for the remainder of the paper we focus on protocols for
adversarially partitioned data.

3 One-way Two-Party Protocols
Consider first a generic setting, with D⊂ Rd and family of
hypothesis H ⊂ 2D so (Rd ,H) has VC-dimension ν .

Theorem 3.1. Assume there exists a 0-error classifier h∗ ∈
H on D where (D,H) has VC-dimension ν . Then A send-
ing sε = O((ν/ε) log(ν/ε)) random samples (SA ⊂ DA) to
B allows B to, with constant probability, produce an ε-error
classifier h ∈H.

Proof. The classifier returned by B will have 0 error on
DB∪SA; thus it only has error on DA. Since SA is an ε-net
of DA with constant probability, then it has at most ε-error
on DA and hence at most ε-error on DA∪DB = D.

A similar result with sε = O(ν/ε2) applies to the noisy set-
ting. An important technical contribution of this paper is to
show that in many cases we can improve upon these general
results.

283
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3.1 Specific Hypothesis Classes

Thresholds. First we describe how to find a threshold
t ∈ T ⊂ R such that all points p ∈ D with p < t are neg-
ative and with p > t are positive. A sends to B a set SA
consisting of two points in DA: its largest negative point
p− and its smallest positive point p+. Then B returns a
0-error classifier on DB∪SA.

Lemma 3.1. In O(1) one-way communication we can find
a 0-error classifier in (D,T).
Proof. The optimal classifier t ∈ T must lie in the range
[p−, p+] otherwise, it would misclassify some point in DA,
breaking our noiseless assumption. Then any 0-error clas-
sifier on DB within this range is has 0 error on D.

Intervals. We can now apply Lemma 3.1 to get stronger
bounds. In particular, this generalizes to the family I of
intervals in R1. First A finds hA, its optimal classifier for
DA. This interval has two end points each of which lies in
between a pair of a positive and a negative point (if there
are no negative or no positive points, A returns the empty
set). These two pairs of points form a set SA that A sends
to B. B now returns the classifier that optimally separates
DB∪SA, and if SA is empty then the interval classifier is as
small as possible.

Lemma 3.2. In O(1) one-way communication we can find
a 0-error classifier h ∈ I.
Proof. When SA is nonempty, this encodes two versions of
Lemma 3.1. Assume without loss of generality that the pos-
itive points are contained in an interval with negative points
lying outside the interval. Then we can pick any positive
point p from either set DA or DB and consider the points
greater than p in the first instance of Lemma 3.1 and points
less than p in the second instance. Invoking Lemma 3.1
proves this case. When SA is empty, and a perfect classifier
exists, then the minimal separating interval on DB will not
violate any points in SA, and will have no error.

Axis-aligned rectangles. We now consider finding a 0-
error classifier from the family Rd of all axis-aligned rect-
angles in Rd . An axis-aligned rectangle R ∈ Rd can be de-
fined by d-values in Rd , a minimum and maximum value
along each coordinate axis. Given a data set P, the min-
imum axis-aligned rectangle for P is the smallest axis-
aligned rectangle that contains all of P; that is, it has the
smallest maximum coordinate possible along each coor-
dinate axis and the largest minimum coordinate possible
along each coordinate axis. These 2d terms can be opti-
mized independently as long as P is non-empty.

For a dataset DA we can define two minimum axis-align
rectangles R+

A and R−A defined on the positive and negative
points, respectively. If the positive or negative point set is
empty, then each coordinate minimum and maximum is set
to a special character /0. Two such rectangles can be defined
for DB and D = DA∪B in the same way.

Theorem 3.2. A one-way protocol where A sends R+
A and

R−A to B is sufficient to find a 0-error classifier hAB ∈ Rd

in the noiseless setting. It requires O(d) communication
complexity.

Proof. The key observation is that the minimum axis-
aligned rectangle that contains R+

A and R+
B is precisely R+

A∪B
(and symmetrically for negative points). Since the mini-
mum and maximum for each coordinate axis is set inde-
pendently, then we can optimize each using that value from
R+

A and R+
B . Thus B can compute this using points from DB

and R+
A .

First, consider the case where positive points are inside the
classifier and negative points are outside. Since there exist
a 0-error classifier h∗, then R+

A∪B must be contained in that
classifier, since no smaller classifier can contain all positive
points. It follows by our assumption that h∗ and thus also
R+

A∪B contains no negative points, and can be returned as
our 0-error classifier hAB. B can determine if positive or
negative points are inside by which of R+

A∪B and R−A∪B is
smaller. If R+

A or R−A is /0, then R+
A∪B = R+

B or R−A∪B = R−B ,
respectively.

Hyperplanes in R2. The positive results from simpler
geometric concepts do not extend to hyperplanes. We
present the following two results but defer any formal anal-
ysis to a full version.

Theorem 3.3. Using only one-way communication from A
to B, it requires Ω(1/ε) communication to find an ε-error
linear classifier in R2.

Note that due to Theorem 2.1, this is tight up to a log(1/ε)
factor for one-way communication.

We can extend this lower bound to the k-node one-way
model of computation where we assume each node Pi can
only send data to Pi+1. In this case, we give node A’s in-
put to P1, and node B’s input to node Pk, and nodes Pi for
i ∈ [2,k− 1] have no data. Then each node Pi is forced to
send the Ω(1/ε) communication that A wants to send to B
along the chain.

Theorem 3.4. Using only one-way communication among
k-players in a chaining model, it requires Ω(k/ε) commu-
nication to find an ε-error linear classifier in R2.

4 Two-way Two-Party Protocols for Linear
Separators

In this section, we present a two-party algorithm that uses
two-way communication to learn an ε-optimal combined
classifier hAB.

4.1 Algorithm Overview

Our algorithm proceeds in rounds. In each round both
nodes send a constant number of points to the other. The

284



Protocols for Learning Classifiers on Distributed Data

CA
UA

pl

pr
vr

vl

v

Figure 1: 3 support points chosen from UA, and the family
of 0-error classifiers for A parallel to hA.

goal is to limit the number of rounds to O(log(1/ε)) result-
ing in a total communication complexity of O(log(1/ε)).
At the end of O(log(1/ε)) rounds of communication, the
algorithm yields a combined classifier hAB that has ε error
on D.

In order to bound the number of rounds, each node must
maintain information about which points the other node
might be classifying correctly or not at any stage of the
algorithm. Specifically, suppose node A is sent a classi-
fier hB from node B (learned on DB and hence has zero
error on DB) and this classifier misclassifies some points
in DA. We denote these points as the Set of Disagree-
ment (SOD) where SOD ⊆ DA. The remaining points in
DA can be divided into the Set of Total Agreement (SOTA),
which are the points on which classifiers from A and B
will continue to agree on in the future, and the Set of Luck
(SOL), which are points on which the two nodes currently
agree, but might disagree later on. The set of disagreement
and the set of luck together form the Set of Uncertainty
SOU= SOD∪SOL, representing all points that may or may
not be classified incorrectly by B in the future.

Our goal will be to show that the SOU decreases in cardi-
nality by a constant factor in each round. Achieving this
will guarantee that at the end of log(1/ε) rounds, the size
of the SOU will be at most an ε-fraction of the total in-
put. Since |SOU| ≥ |SOD|, we obtain the desired ε-error
classifier.

Definitions and notation. Let P+
A and P−A denote poly-

topes that contain positive and negative points in DA, re-
spectively. Let C+

A and C−A denote the convex hulls formed
by the positive and negative SOTA in DA after the ith round,
respectively. In general, when sets have a + or − su-
perscript it will denote the restriction of that set to only
positive or negative points, respectively. Often to simplify
messy but usually straightforward technical details we will
drop the superscript and refer to either or both sets simulta-
neously. We denote the region of uncertainty UA as PA\CA,
and note UA = UA∩DA.

In each round A will send to B a set SA ⊂ DA; these points
imply a max-margin classifier hA on SA that has 0 error on
DA; see Figure 1. Then B will either terminate with an ε-
error classifier hB, or symmetrically return a set of points
SB ⊂ DB. This process is summarized in Algorithm 1.

Algorithm 1 ITERATIVESUPPORTS

Input: DA and DB
Output: hAB (classifier with ε-error on DA∪DB)
SA := SUPPORT(DA); send SA to B;
while (1) do

——— B’s move ———
compute error (err) using hA (from SA) on DB;
if(err ≤ ε|DB|) then exit;
DB = DB∪SA; SB := SUPPORT(DB); send SB to A;
——— A’s move ———
compute error (err) using hB (from SB) on DA;
if(err ≤ ε|DA|) then exit;
DA = DA∪SB; SA := SUPPORT(DA); send SA to B;

end while

Two aspects remain: determining if a player may exit the
protocol with a ε-error classifier (early termination), and
computing the support points in the function SUPPORT.

4.2 Early Termination

Note that in Algorithm 1, under certain early-termination
conditions, player B may terminate the protocol and return
a valid classifier, even if hA has more than ε error on DB.
Any classifier that is parallel to hA and is shifted less than
the margin of the max-margin classifier also has 0 error
on DA. Thus if any such classifier has at most ε-error on
DB, player B can terminate the algorithm and return that
classifier.

early termination counter-clockwise clockwise

P−
A

P+
A

hA

P−
B

P+
B hB

Figure 2: Cases for either early termination, or for the di-
rection of the normal to the linear separator being forced
counter-clockwise or clockwise.

This early-termination observation is important because it
allows B to send to A information regarding a 0-error clas-
sifier, with respect to hA, and the points SA that define it. If
B cannot terminate, then either some point in DB must be
completely misclassified by all separators within the mar-
gin, or some negative point in DB and some positive point
in DB must both be in the margin and cannot be separated;
see Figure 2. Either scenario implies that any ε-error clas-
sifier on DB must rotate in some direction (either clockwise
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or counter-clockwise) relative to hA. This is important, be-
cause it informs A that all points on ∂PA (the boundary of
PA) in the clockwise (resp. counter-clockwise) direction
from SA will never be misclassified by B if hB rotates in
the counterclockwise (resp. clockwise) direction from hA,
increasing the SOTA, and decreasing the SOU.

4.3 Choice of Support Points

What remains is describing how A chooses a set SA, i.e.
how to implement the subroutine SUPPORT in Algorithm 1.
If the set SA always has half of UA on either side, then this
process will terminate in at most O(log(1/ε)) rounds, via
the consequences of no early-termination. But if no points
are on one side of SA and B’s response always forces hA to
rotate towards the other side, then this cannot be assured.
Thus the set SA should be chosen judiciously to ensure that
|UA| decreases by at least half each round.

We present two methods to choose SA. This first does not
have the half-on-either-side guarantee, but is a very simple
heuristic that often works quite well, even in higher dimen-
sions (see Section 6). The second is only slightly more
complicated and is designed precisely to have this half-on-
either-side guarantee. Both methods start by computing the
region of uncertainty UA and the set of its points DA which
lie in that region UA.

The first is called MAXMARG, and simply chooses the
max-margin support points as SA. These points may in-
clude points sent over in previous iterations from B to A.

The second is called MEDIAN, and is summarized in Al-
gorithm 2 (shown from A’s perspective). It projects all of
UA onto ∂PA (the boundary of PA); this creates a weight
for each edge of ∂PA, defined by the number of points pro-
jected onto it. Then MEDIAN chooses the weighted median
edge E. Finally, the orientation of hA is set parallel to edge
E, and the corresponding support vectors are constructed.

Algorithm 2 SUPPORT implemented as MEDIAN

1: Input: D = DA∪{SB}
2: Output: SA (a set of support points)
3: project points in UA onto ∂PA;
4: E := weighted median edge of ∂PA;
5: hA := classifier on D parallel to edge E;
6: SA := support points of hA;

We mention the number of rounds required by ITERA-
TIVESUPPORTS to converge, with the detailed proof de-
ferred to a full version.

Theorem 4.1. The 2-player two-way protocol for lin-
ear separators always terminates in at most O(log(1/ε))
rounds, using at most O(log(1/ε)) communication.

5 Multiparty

In the noiseless setting, extending from a two-party pro-
tocol to a k-party (where data is distributed to k disjoint
nodes) can be achieved by allowing an additional factor k
or k2 communication, depending on the hypothesis class.

5.1 One-way Protocols

For k-players one-way protocols pre-determine an ordering
among players P1 < P2 < .. . < Pk, and all communication
goes from Pi to Pi+1 for i ∈ [1,k− 1]. In this section, we
show that for k-players, ε-error classifiers can be achieved
even with this restricted communication pattern. All dis-
cussed protocols can also be transformed into hierarchical
one-way protocols that may have certain advantages in la-
tency, or where all nodes just send information one-way to
a predetermined coordinator node.

Sampling results for k-players. In sampling-based pro-
tocols, along the chain of players, player Pi maintains a ran-
dom sample Ri of size O((ν/ε) log(ν/ε)) from

⋃i
j=1 Di

and the total size mi = ∑i
j=1 |Di|. This can be easily

achieved with reservoir sampling [Vitter, 1985]. The fi-
nal player Pk computes and returns a 0-error classifier on
Rk−1∪Dk.

Theorem 5.1. Consider any family of hypothesis (Rd ,A)
that has VC-dimension ν . Then there exists a one-way k-
player protocol using O(k(ν/ε) log(ν/ε)) total communi-
cation that achieves ε-error, with constant probability.

Proof. The final set Rk−1 is an ε-net, so any 0-error clas-
sifier on Rk−1, is an ε-error classifier on

⋃k−1
j=1 Di. So

since the total number of points misclassified is at most
∑k−1

j=1 ε|D j| ≤ ε|D|, this achieves the proper error bound.
The communication cost follows by definition of the proto-
col.

0-Error protocols for k-players. Any 0-error one-way
protocol extends directly from 2-player to k-players. This
requires that each player can send exactly the subset of the
family of classifiers that permit 0 error to the next player in
the sequence. This chain of players only refines this subset,
so by our noiseless assumption that there exists some 0-
error classifier, the final player can produce a classifier that
has 0-error on all data.

Theorem 5.2. In the noiseless setting, any one-way two-
player 0-error protocol of communication complexity C ex-
tended to a one-way k-player 0-error protocol with O(Ck)
communication complexity.

This implies that k-players can execute a one-way 0-error
protocol for axis-aligned rectangles with O(dk) communi-
cation. Classifiers from the families of thresholds and in-
tervals follow as special case.
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(a) DATA1 (b) DATA2 (c) DATA3

Figure 3: Red represents A and blue represents B. Positive and negative examples (for all datasets) are denoted by ‘+’s and
‘◦’s, respectively.

5.2 Two-way Protocols

When not restricted to one-way protocols, we assume all
players take turns talking to each other in some precon-
ceived or centrally organized fashion. This fits within stan-
dard techniques of organizing communication among many
nodes that prevents transmission interference.

Linear separators in R2 with k players. We proceed in
a series of epochs. In each epoch, each player takes one
turn as coordinator. On its turn as coordinator, player Pi
plays one round of the 2-player protocol with each other
player. That is, it sends out its proposed support points,
and each other player responds with either early termina-
tion or an alternative set of support points, including at
least one that “violates” the family of linear separators pro-
posed by the coordinator. The protocol terminates if all
non-coordinators agree to terminate early and their pro-
posed family of linear separators all intersect. Note that
even if all other players may want to terminate early, they
might not agree on a single linear separator along the pro-
posed direction; but by replying with a modified set of sup-
port points, they will designate a range, and the manner in
which these ranges fail to intersect will indicate to the co-
ordinator a “direction” to turn.

Theorem 5.3. In the noiseless setting, k-parties can find an
ε-error classifier over halfspaces in R2 in O(k2 log(1/ε))
communication.

Proof. Each epoch requires O(k2) communication; each of
k players uses a turn to communicate a constant number of
bits with each of k other players. We now just need to argue
that the algorithm must terminate in at most O(log(1/ε))
epochs.

We do so by showing that each player decreases its region
of uncertainty by at least half for each turn it spends at co-
ordinator, or it succeeds in finding a global separating half
space and terminates. If any non-coordinator does not ter-
minate early, it rules out at least half of the coordinator’s
points in the region of uncertainty since by Lemma ??, the

coordinator’s broadcasted support points represent the me-
dian of its uncertain points. If all non-coordinators agree
on the proposed direction, and return a range of offsets that
intersect, then the coordinator terminates the algorithm and
can declare victory, since the sum of all error must be at
most ∑i ε|Di| ≤ ε|D| in that range.

The difficult part is when all non-coordinators individually
want to terminate early, but the range of acceptable offsets
along the proposed normal direction of the linear separa-
tor do not globally intersect. This corresponds to the right-
most picture in Figure 2 where the direction is forced clock-
wise or counter-clockwise because a negative point from
one non-coordinator is “above” the positive point from a
separate non-coordinator. The combination of these points
thus allow the coordinator to prune half of its region of un-
certainty just as if a single non-coordinator did not termi-
nate early.

6 Experiments
In this section, we present results to empirically demon-
strate the correctness and convergence of ITERATIVESUP-
PORTS.

6.1 Two-Party Results

For the two-party results, we empirically compare the fol-
lowing methods: (a) NAIVE- a naive approach that sends all
points in A to B and then learns at B, (b) VOTING- a simple
voting strategy that uses the majority voting rule to com-
bine the predictions of hA and hB on D = DA∪DB; ties are
broken by choosing the label whose prediction has higher
confidence, (c) RANDOM- A sends a random sample (an ε-
net SA of size (d/ε) log(d/ε)) of DA to B and B learns on
DB ∪ SA, (d) MAXMARG- ITERATIVESUPPORTS that se-
lects informative points heuristically (ref. Section 4), and
(e) MEDIAN- ITERATIVESUPPORTS that selects informa-
tive points with convergence guarantees (ref. Section 4).
SVM was used as the underlying classifier for all afore-
mentioned approaches. In all cases, the errors are reported
on the dataset D with an ε value of 0.05 (where applicable).
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(a) DATA1 (b) DATA2 (c) DATA3

Figure 4: Red represents A, blue represents B, green represents C and black represents D. Positive and negative examples
(for all datasets) are denoted by ‘+’s and ‘◦’s, respectively.

The above methods have been evaluated on three syntheti-
cally generated datasets (DATA1, DATA2, DATA3). For all
datasets, both A and B contain 500 data points each (250
positive and 250 negative). Figure 3 pictorially depicts the
data.

Method DATA1 DATA2 DATA3
Acc Cost Acc Cost Acc Cost

NAIVE 100% 500 100% 500 100% 500
VOTING 100% 500 100% 500 50% 500
RANDOM 100% 65 100% 65 99.62% 65
MAXMARG 100% 4 100% 4 100% 12
MEDIAN 100% 6 100% 6 100% 10

Table 2: Accuracy (Acc) and communication cost (Cost) of
different methods for 2-dimensional noiseless datasets.

Table 2 compares the accuracies and communication costs
of the aforementioned methods for the dataset in 2-
dimensions. For all datasets, MAXMARG and MEDIAN re-
quired the least amount of communication to learn an opti-
mal classifier. For cases when it is easy to separate the pos-
itive from the negative samples (e.g. DATA1 and DATA2)
MAXMARG converges faster than MEDIAN. However,
DATA3 show that there exists difficult datasets where ME-
DIAN requires less communication than MAXMARG. This
reinforces our theoretical convergence claims for MEDIAN
that hold for any input dataset. DATA3 in Table 2 shows
that there exists cases when both VOTING and RANDOM
perform worse than MEDIAN and with a much higher com-
munication overhead; for DATA3, VOTING performs as bad
as random guessing. Finally, neither VOTING nor MAX-
MARG provide any provable error guarantees.

Method DATA1 DATA2 DATA3
Acc Cost Acc Cost Acc Cost

NAIVE 100% 500 100% 500 100% 500
VOTING 100% 500 100% 500 81.8% 500
RANDOM 100% 100 100% 100 99.1% 100
MAXMARG 100% 4 100% 4 98.27% 40

Table 3: Accuracy (Acc) and communication cost (Cost) of
different methods for 10-dimensional noiseless datasets.

Table 3 presents results for DATA1, DATA2, DATA3 ex-
tended to dimension = 10. As can be seen, our proposed
heuristic MAXMARG outperforms all other baselines in
terms communication cost while having comparable accu-
racies.

6.2 k-Party Results

The aforementioned methods have been appropriately
modified for the multiparty scenario. For NAIVE, VOT-
ING and RANDOM, a node is fixed as the coordinator and
the remaining (k− 1) nodes send their information to the
coordinator node which aggregates all the received infor-
mation. For MAXMARG and MEDIAN, in each epoch, one
of the k-players takes a turn to act as the coordinator and
updates its state by receiving information from each of the
remaining (k−1) nodes. We experiment with a k value of
4 (i.e., four nodes A,B,C,D). As earlier, for all datasets
each of A,B,C,D, contain 500 examples (250 positive and
250 negative). The datasets are shown in Figure 4.

Method DATA1 DATA2 DATA3
Acc Cost Acc Cost Acc Cost

NAIVE 100% 1500 100% 1500 100% 1500
VOTING 98.75% 1500 100% 1500 50% 1500
RANDOM 100% 195 100% 195 99.76% 195
MAXMARG 97.61% 14 100% 2 97.38% 38
MEDIAN 99.0% 36 100% 6 98.75% 29

Table 4: Accuracy (Acc) and communication cost (Cost) of
different methods for 2-dimensional noiseless datasets.

As shown in Table 4, for the k-party case, ITERA-
TIVESUPPORTS substantially outperforms the baselines on
all datasets. As earlier, for the difficult dataset DATA3,
MEDIAN incurs less communication cost as compared to
MAXMARG. We observed that for DATA1 and DATA2,
both MAXMARG and MEDIAN require the same number
of iterations to converge. However, the cost for MEDIAN
is higher due to its quadratic dependency on k. One of our
future goals is to get rid of an extra k factor and reduce the
dependency from quadratic to linear in k (ref. Section 7.2).
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7 Discussion
This paper introduces the problem of learning classifiers
across distributed data where the communication between
datasets is the bottleneck to be optimized. This model focus
on real-world communication bottlenecks is increasingly
prevalent for massive distributed datasets. In addition, this
paper identifies several very general solutions within this
framework and introduces new techniques which provide
provable exponential improvement by harnessing two-way
communication.

7.1 Comparison with Related Approaches

As mentioned earlier, techniques like classifier vot-
ing [Bauer and Kohavi, 1999] and mixing [McDonald et al.,
2010, Mann et al., 2009] are often used in a distributed
setting to obtain global classifiers. Interestingly, we have
shown that if the different classifiers are restricted to train
on disjoint data subsets then there exist specific exam-
ples (under the adversarial model) where voting will al-
ways yield sub-optimal results. We have presented such
examples in Section 6. Additionally, parameter mixing
(or averaging [Collins, 2002]), which has been primarily
proposed for maximum entropy (MaxEnt) models [Mann
et al., 2009] and structured perceptrons [McDonald et al.,
2010, Collins, 2002], have shown to admit convergence re-
sults but lack any bounds on the communication. Indeed,
parameter-mixing for structured perceptrons uses an itera-
tive strategy that performs a large amount of communica-
tion.

The body of literature that lies closest to our pro-
posed model relates to prior work on label compression
bounds [Floyd and Warmuth, 1995, Helmbold and War-
muth, 1995]. In the label compression model, both A
and B have the same data but only A knows the labels.
The goal is to efficiently communicate labels from A to B.
Whereas in our model, each player (A and B) have “dis-
joint labeled” datasets and the goal is to efficiently com-
municate so as to learn a combined final ε-optimal classi-
fier on DA∪DB. Indeed some of our one-way results derive
bounds similar to the cited work, as they all build on the
theory of ε-nets. In particular, there exists a label com-
pression method [Helmbold and Warmuth, 1995] based on
boosting, which gives O(log1/ε) size set for any concept
that can be represented as a majority vote over a fixed num-
ber of concepts. However, in our model, we show that for
certain concept classes (with one-way communication) we
need a linear amount of communication (ref. Theorem 3.3).
Furthermore, we demonstrate that using a two-way com-
munication model can provide an exponential improvement
(ref. Theorem 4.1) in communication cost.

7.2 Future Extentions

Although we have provided many core techniques for de-
signing protocols for minimizing communication in learn-

ing classifiers on distributed data, still many intriguing ex-
tensions remain. Thus we conclude by outlining three im-
portant directions to extend this work and provide outlines
of how one might proceed.

Higher dimensions. We provide several results for high-
dimensions: for axis-aligned rectangles, for bounded VC-
dimension families of classifiers, and a heuristic for lin-
ear separators. But for the most common high-dimensional
setting–SVMs computing linear separators on data lifted
to a high-dimensional feature space–our results either have
polynomial dependence on 1/ε or have no guarantees. For
this setting, it would be ideal to extend out MEDIAN routine
which requires O(log1/ε) communication in R2 to work
in Rd . The key insight required is extending our choice of
a median point to higher dimensions. Unfortunately, the
natural geometric generalization - a centerpoint - does not
provide the desired properties, but we are hopeful that a
clever analysis of a constant size net or cutting of the space
of linear separators will provide the desired bounds.

Noisy setting. Most of the results presented in this paper
generalize to noisy data. In fact, Theorem 2.1 and Theorem
3.1 have straight-forward extensions to the noisy case by
an ε-sample argument [Har-peled, 2011]. This would in-
crease the communication from O(1/ε) to about O(1/ε2).
It would of course be better to use communication only log-
arithmic in 1/ε . We suggest modifying ITERATIVESUP-
PORTS to work with noisy data with the following heuris-
tic, and defer any formal analysis. In implementing SUP-
PORT (based either on MAXMARG or MEDIAN) we sug-
gest sending over support points of linear separators that
allow for classifiers with exactly ε-error. That is, players
never propose classifiers with 0-error, even if one exists; or
at least they provide margins on classifiers allowing ε-error.
This would seem to describe the proper family of classifiers
tolerating ε-error of which we seek to find an example.

Efficient two-way k-party protocols. All simple one-
way protocols we present generalize naturally and effi-
ciently to k-players; that is, with only a factor k increase
in communication. In fact, a distributed random sample
of size t = O((ν/ε) log(ν/ε)) can be drawn with only
O(t + k) communication [Huang et al., 2011], so under a
different two-way coordinator model some results for the
one-way chain model we study could immediately be im-
proved. However, again it would be preferable to achieve
protocols for linear separators with communication linear
in k and logarithmic in 1/ε; our protocols are quadratic in
k. In particular, our protocol seems slightly wasteful in that
each player is essentially analyzing its improvements inde-
pendently of improvements obtained by the other players.
To improve the quadratic to linear dependence on k, we
would need to coordinate this analysis (and potentially the
protocol) to show that the joint space of linear separators
must decrease by a constant factor for each player’s turn as
coordinator, at least in expectation.
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