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A Positive-Definiteness of ©

Lemma 1. Let © = (0; ;) € R™*™ be a symmetric matriz such that 0;; =1 and »-, ;105 ;| <1 for all i € [m].
Then © is symmetric positive semidefinite.

Proof. Define vectors z1,...,2,, in R™ as follows. Let zi k1 denote coordinate (k — 1)m +{ of z;, and set

1_2#i|9i7j| if k=i=1

,/§|9M| if kAi=1

0 otherwise

Note that © is the Gram matrix of z1, ..., Z,. O

B Technical Result for Sec. 3

In the derivation of our algorithm in Sec. 3, we used the assertion that if

wew,ecRm T

HMH
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Li(wi, &) — _inf =N L(w,§) <R
t=1

Then it also holds that B
fwr) +h(€r) < f(W*)+R(€")+ R.

We will now show why this is true. By definition of (w*, £*, a*, 3%), as a saddle point solution, we have

T T
Zzt(wt,st) < glgzcxw,swm = inf) L(W.& a1, B) + TR
bl W, t:1

< 1nfsupZ£ (w,§,a,8) +TR = TL(w*,&",a",8")+TR

ARG
= T(f(w*)+h(€")) + TR,
where in the last transition we use the fact that at the saddle point, the terms other than the primal func-

tion vanishes, due to the KKT conditions. On the other hand, by definition of ay11,8;,; as maximizing the
Lagrangian with respect to wy, &, we have

T

T T
Zﬁt(wt7£t) = Z‘C(Wtaétvat+laﬁt+l Z w) + h(§,).
t=1 t=1 P

Let wp = % Z;‘ll w; and £, = % Zle &,. Combining the two inequalities above, and using Jensen’s inequality,
we get that

T
F(wr) + Z wi) +h(€) < f(W)+h(E)+R

’ﬂ \

as required.

C Proof of Thm. 1

We begin with a few definitions. First, note that we can write the function class H ®F G as

{x+ (h(x),g(x)),h € H* g € G},



There’s a Hole in My Data Space

where
HFY = {x = (hi(X),...,hx(x)) : hi,...,hy € H}
and
G" ={x— (1(x),...,9x(X)) : g1, ..., gr € G disjoint}.

For any fixed g € G¥, define
HE = {x— (h(x),g(x)) : h e }#F}.

Also, for any sequence of data points x = (x1,...,X;,), define
gy = {g(x1),....8(xm) : g€Gr}

Note that since G has VC-dimension dg, then by Sauer’s lemma, we for any fixed (x1,...,X;,) it holds that

em

dg
axa)eooogtxn) = g€ < (G0) 7 <
where we use the assumption that dg > 2 (note that the form of Sauer’s lemma used here assumes m > dg, but
our theorem holds vacuously otherwise). Therefore, we have
[ (7)

for any x. Finally, let

R 1 m
R (HE) = sup — Y o,f(x)
m g f€H§ m Zz:; 2 3
be the empirical counterpart of R,, (Hé) (without expectation over o;).

Let A > 0 be a parameter whose value will be determined later. We have the following:
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Let us now consider the random variable mR,, (’Hé) —E[mRm(”Hg)] Clearly, it is zero-mean. Also, it satisfies the
bounded difference property with parameter 2: namely, for any instantiation of oy, .., 0., changing one of these
values results in changing the value of mR,,(HE) = SUDfgcy) >, 0if(x;) by at most 2. Invoking McDiarmid’s
inequality, we get that
2
Pr (’mRm('Hé) - E[mRm('Hg)]‘ > x) < exp (—;) .

m
for all z > 0.

Using this inequality, and invoking Theorem 1 in [12] (which is a variant of Azuma’s inequality for Martingales
with subgaussian tails) with respect to the random variable mR, (HE) — E[mR ., (HE)], we get that Eq. (8) can
be upper bounded by

Z exp ()\mRm(’Hg) + 14mA?) .

g€egk
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Using Eq. (7), which bounds the cardinality of G, we can upper bound the above by

< m* exp | Am sup Rm(Hg) +14mA? |,
gegk

Now, recall that this is an upper bound on exp (/\mRm(’H, ®F g)), from which we started in Eq. (8). Taking
logarithms and dividing by Am, we get that

< kdg log(m)

R (H 2% G) + sup R (Hp) + 14X

- m geGF

Choosing A which minimizes the expression above, we get that

1
Ron(H @* G) < sup Ry (HE) +8 kdg log(m)
gegk m

It remains to upper bound the first term in the inequality above. For any fixed g € G*, let A; be the region of
the data space in which g;(x) = 1. Then we have
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Now, if we assume that R,,(H) < /dy /m for any sample of size m, then we can rewrite the above as

. k.
li:x; € Aj 1 li:x; € Aj dy
E sup — o:h(x;) < -
Z m he£|z:xieAj|lz ih(x;) ; m li:x; € Aj

j=1 13X, €EA;

B VdHZ?:1 V0 x; € Aj

- )
m

from which the result follows.



