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A Positive-Definiteness of Θ

Lemma 1. Let Θ = (θi,j) ∈ Rm×m be a symmetric matrix such that θi,i = 1 and
∑
j 6=i |θi,j | ≤ 1 for all i ∈ [m].

Then Θ is symmetric positive semidefinite.

Proof. Define vectors z1, . . . , zm in Rm2

as follows. Let zi,k,l denote coordinate (k − 1)m+ l of zi, and set

zi,k,l =



√
1−

∑
j 6=i |θi,j | if k = i = l

sign(θi,l)
√

1
2 |θi,l| if k = i 6= l√

1
2 |θi,k| if k 6= i = l

0 otherwise

.

Note that Θ is the Gram matrix of z1, . . . , zm.

B Technical Result for Sec. 3

In the derivation of our algorithm in Sec. 3, we used the assertion that if

1

T

T∑
t=1

Lt(wt, ξt)− inf
w∈W,ξ∈Rm

1

T

T∑
t=1

Lt(w, ξ) ≤ R.

Then it also holds that

f(w̄T ) + h(ξ̄T ) ≤ f(w?) + h(ξ?) +R.

We will now show why this is true. By definition of (w?, ξ?,α?,β?), as a saddle point solution, we have

T∑
t=1

Lt(wt, ξt) ≤ inf
w,ξ

T∑
t=1

Lt(w, ξ) + TR = inf
w,ξ

T∑
t=1

L(w, ξ,αt+1,βt+1) + TR

≤ inf
w,ξ

sup
α,β

T∑
t=1

L(w, ξ,α,β) + TR = TL(w?, ξ?,α?,β?) + TR

= T (f(w?) + h(ξ?)) + TR,

where in the last transition we use the fact that at the saddle point, the terms other than the primal func-
tion vanishes, due to the KKT conditions. On the other hand, by definition of αt+1,βt+1 as maximizing the
Lagrangian with respect to wt, ξt, we have

T∑
t=1

Lt(wt, ξt) =

T∑
t=1

L(wt, ξt,αt+1,βt+1) ≥
T∑
t=1

f(wt) + h(ξt).

Let w̄T = 1
T

∑T
t=1 wt and ξ̄T = 1

T

∑T
t=1 ξt. Combining the two inequalities above, and using Jensen’s inequality,

we get that

f(w̄T ) + h(ξ̄T ) ≤ 1

T

T∑
t=1

f(wt) + h(ξt) ≤ f(w?) + h(ξ?) +R

as required.

C Proof of Thm. 1

We begin with a few definitions. First, note that we can write the function class H⊗k G as

{x 7→ 〈h(x),g(x)〉,h ∈ Hk,g ∈ Gk},
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where
Hk = {x 7→ (h1(x), . . . , hk(x)) : h1, . . . , hk ∈ H}

and
Gk = {x 7→ (g1(x), . . . , gk(x)) : g1, . . . , gk ∈ G disjoint}.

For any fixed g ∈ Gk, define
Hkg = {x 7→ 〈h(x),g(x)〉 : h ∈ Hk}.

Also, for any sequence of data points x = (x1, . . . ,xm), define

Gkx = {g(x1), . . . ,g(xm) : g ∈ Gk}.

Note that since G has VC-dimension dG , then by Sauer’s lemma, we for any fixed (x1, . . . ,xm) it holds that

|{g(x1), . . . , g(xm) : g ∈ G}| ≤
(
em

dG

)dG
≤ mdG ,

where we use the assumption that dG > 2 (note that the form of Sauer’s lemma used here assumes m ≥ dG , but
our theorem holds vacuously otherwise). Therefore, we have

|Gkx| ≤ mkdG (7)

for any x. Finally, let

R̂m(Hkg) = sup
f∈Hk

g

1

m

m∑
i=1

σif(xi)

be the empirical counterpart of Rm(Hkg) (without expectation over σi).

Let λ > 0 be a parameter whose value will be determined later. We have the following:

exp
(
λmRm(H⊗k G)

)
= exp

(
λE

[
sup

g∈Gk,h∈Hk

m∑
i=1

σi〈g(xi),h(xi)〉

])

≤ E

[
exp

(
λ sup

g∈Gk,h∈Hk

m∑
i=1

σi〈g(xi),h(xi)〉

)]

= E

[
sup
g∈Gk

λ exp

(
sup
h∈Hk

m∑
i=1

σi〈g(xi),h(xi)〉

)]

≤
∑
g∈Gk

x

E

[
exp

(
λ sup

h∈Hk

m∑
i=1

σi〈g(xi),h(xi)〉

)]

=
∑
g∈Gk

x

E
[
exp

(
λmR̂m(Hkg)

)]
=

∑
g∈Gk

x

exp
(
λmRm(Hkg)

)
E
[
exp

(
λ
(
mR̂m(Hkg)−mRm(Hkg)

))]
(8)

Let us now consider the random variable mR̂m(Hkg)−E[mRm(Hkg)]. Clearly, it is zero-mean. Also, it satisfies the
bounded difference property with parameter 2: namely, for any instantiation of σ1, . . . , σm, changing one of these
values results in changing the value of mR̂m(Hkg) = supf∈Hk

g

∑
i σif(xi) by at most 2. Invoking McDiarmid’s

inequality, we get that

Pr
(∣∣∣mR̂m(Hkg)− E[mRm(Hkg)]

∣∣∣ > x
)
≤ exp

(
− x2

2m

)
.

for all x > 0.

Using this inequality, and invoking Theorem 1 in [12] (which is a variant of Azuma’s inequality for Martingales
with subgaussian tails) with respect to the random variable mR̂m(Hkg)− E[mRm(Hkg)], we get that Eq. (8) can
be upper bounded by ∑

g∈Gk
x

exp
(
λmRm(Hkg) + 14mλ2

)
.
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Using Eq. (7), which bounds the cardinality of Gkx, we can upper bound the above by

≤ mkdG exp

(
λm sup

g∈Gk

Rm(Hkg) + 14mλ2

)
,

Now, recall that this is an upper bound on exp
(
λmRm(H⊗k G)

)
, from which we started in Eq. (8). Taking

logarithms and dividing by λm, we get that

Rm(H⊗k G) ≤ kdG log(m)

λm
+ sup

g∈Gk

Rm(Hkg) + 14λ.

Choosing λ which minimizes the expression above, we get that

Rm(H⊗k G) ≤ sup
g∈Gk

Rm(Hkg) + 8

√
kdG log(m)

m
.

It remains to upper bound the first term in the inequality above. For any fixed g ∈ Gk, let Aj be the region of
the data space in which gj(x) = 1. Then we have

Rm(Hkg) = E sup
h1,...,hk

1

m

m∑
i=1

σi

k∑
j=1

hj(xi)gj(xi)

= E sup
h1,...,hk

1

m

k∑
j=1

∑
i:xi∈Aj

σihj(xi)

≤
k∑
j=1

E sup
h∈H

1

m

∑
i:xi∈Aj

σih(xi).

Now, if we assume that Rm(H) ≤
√
dH/m for any sample of size m, then we can rewrite the above as

k∑
j=1

|i : xi ∈ Aj |
m

E sup
h∈H

1

|i : xi ∈ Aj |
∑

i:xi∈Aj

σih(xi) ≤
k∑
j=1

|i : xi ∈ Aj |
m

√
dH

|i : xi ∈ Aj |

=

√
dH
∑k
j=1

√
|i : xi ∈ Aj |

m
,

from which the result follows.


