
Deterministic Annealing for Semi-Supervised
Structured Output Learning

Paramveer S. Dhillon S. Sathiya Keerthi1, Kedar Bellare1, Olivier Chapelle1,

Computer & Information Science
University of Pennsylvania

Philadelphia, PA
dhillon@cis.upenn.edu

S. Sundararajan2

Yahoo! Labs
1 Santa Clara, CA, 2 Bangalore, India

{selvarak|kedar|chap|ssrajan@yahoo-inc.com}

Abstract

In this paper we propose a new approach for
semi-supervised structured output learning.
Our approach uses relaxed labeling on un-
labeled data to deal with the combinatorial
nature of the label space and further uses do-
main constraints to guide the learning. Since
the overall objective is non-convex, we alter-
nate between the optimization of the model
parameters and the label distribution of un-
labeled data. The alternating optimization
coupled with deterministic annealing helps us
achieve better local optima and as a result
our approach leads to better constraint sat-
isfaction during inference. Experimental re-
sults on sequence labeling benchmarks show
superior performance of our approach com-
pared to Constraint Driven Learning (CoDL)
and Posterior Regularization (PR).

1 Introduction

Consider a structured output problem in which a data
instance consists of an input vector x and a label vector
y. For example, in sequence labeling, x is a sequence
of tokens {x1, . . . , xl} and y is a sequence of scalar
labels {y1, . . . , yl}. We are interested in discriminative
models to determine y for given x. This is done by
using a feature vector f(x,y) and a parameter vector
θ which define a scoring function s(x,y, θ) = θ·f(x,y).
Then inference is done as

y∗ = arg max
y

s(x,y, θ). (1)

Appearing in Proceedings of the 15th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume 11 of JMLR:
W&CP 11. Copyright 2012 by the authors.

In sequence labeling f(x,y) is a vector of factors asso-
ciated with a linear chain structure on the y sequence.
For probabilistic models, we can define conditional
probability using the scoring function: p(y|x, θ) ∝
exp(s(x,y, θ)). If (X,Y) is a set of data instances
{(x,y)}, then p(Y|X, θ) can be re-written as p(y|x, θ)
assuming independence of the y’s. For ease of nota-
tion we will simply refer to these quantities as pθ(Y)
and pθ(y).

Let (XL,YL) denote the set of all labeled instances,
(XL,YL) = {(xL,yL)}. Consider the supervised
learning problem of determining θ by solving

min
θ
S(θ) = R(θ) + L(YL; XL, θ), (2)

where R(θ) = ‖θ‖2/2σ2 is a regularizer and

L(YL; XL, θ) =
1

nL

∑

xL

LxL(yL; xL, θ) (3)

is the loss term and nL is the number of labeled in-
stances. LxL is the instance level loss; in the proba-
bilistic model

LxL(yL; xL, θ) = − log pθ(yL). (4)

We are interested in semi-supervised learning where
labeled data is limited and we have access to a (large)
set of unlabeled data instances X; let Y denote the
corresponding unknown set of label vectors. Recently
several effective methods have been proposed for this
problem (Mann & McCallum, 2010; Gärtner et al.,
2005; Ganchev et al., 2010; Bellare et al., 2009; Liang
et al., 2009; Chang et al., 2007). Constraints that
come from domain knowledge play a key role in these
methods, and consist of hard or soft restrictions on
the labels Y, possibly in a way that is dependent on
X. See (Chang et al., 2007; Ganchev et al., 2010)
for many examples of constraints in sequence label-
ing and other structured output tasks. These con-
straints are expressed through a vector of constraint

299

Deterministic Annealing for Semi-Supervised Structured Output Learning

functions φ(X,Y). For example, domain knowledge
might say that the constraints φ(X,Y) − c ≤ 0 hold
approximately. This information can be used in semi-
supervised learning by defining a constraint loss func-
tion C(φ(X,Y) − c) which is set up to penalize vi-
olations of φ(X,Y) − c ≤ 0. Enforcing constraints
exactly corresponds to putting infinite penalty on vi-
olations. Different methods use different forms of C;
see (Ganchev et al., 2010) for a detailed description of
several ways of doing constraint modeling.

Related Semi-Supervised Methods.

To motivate our approach and put it in the right per-
spective let us briefly review the key semi-supervised
methods. Constraint driven learning (CoDL) (Chang
et al., 2007) was one of the first methods that in-
terweaved constrained inference and perceptron style
learning steps, and was based on hard labeling of un-
labeled data.

Since then, several methods have been proposed which
are more general than CoDL. Generalized Expectation
(GE) (Mann & McCallum, 2010) is a method in which
learning is done by including the expected constraint
loss term with respect to pθ in the training objective:

min
θ
S(θ) + C(Epθ [φ(X,Y)]− c]). (5)

GE training is expensive because the gradient of the
constraint loss term involves the computation of the
covariance between model features f and constraint
features φ with respect to pθ. The Posterior Regu-
larization (PR) method (Ganchev et al., 2010; Liang
et al., 2009; Bellare et al., 2009; Gärtner et al., 2005)
was proposed to overcome this difficulty. This is done
by defining an auxiliary distribution q(Y) and replac-
ing the constraint loss term by two terms, one for ex-
pressing closeness of pθ with q and the other for mini-
mizing the expected constraint violation with respect
to q:

min
θ,q

S(θ) +KL(q||pθ) + C(Eq[φ(X,Y)]− c]). (6)

where KL denotes KL divergence. This problem is
solved using alternating optimization of θ and q. Each
of the two subproblems is simple to solve; also, the
computation of correlations between feature functions
and constraint functions is avoided.

The Entropy Regularization method (ER) (Grandvalet
& Bengio, 2003) includes an entropy term on pθ:

min
θ
S(θ) + ER(θ), ER(θ) = −

∑

Y

pθ(Y) log pθ(Y).

(7)
Although the original entropy regularization
method (Grandvalet & Bengio, 2003) does not

use domain constraints, these constraints are crucial
for getting good performance. Mann and McCallum
(2010) try the inclusion of the constraint loss term:

min
θ
S(θ) + ER(θ) + C(Epθ [φ(X,Y)]− c]). (8)

This can also be viewed as GE with the entropy term
added. A brief set of experiments on multi-class prob-
lems by (Mann & McCallum, 2010) shows that, while
(7) gives very poor performance, (8) gives a perfor-
mance better than GE. Thus entropy regularization is
useful in the presence of constraints.

A general issue with the probabilistic methods dis-
cussed above is that constraints are enforced only in
an expected sense. Thus it is possible that constraints
are violated badly when inference (1) is done. Note
that such a violation can happen even on the training
examples, X.

Large margin structured output models have also been
suggested for semi-supervised learning. (Zien et al.,
2007) extend the TSVM model of binary classifica-
tion (Joachims, 1999) to structured outputs by solving

min
θ,Y

S(θ) + L(Y; X, θ) + C(φ(X,Y)− c), (9)

where, like (3),

L(Y; X, θ) =
1

n

∑

x

Lx(y; x, θ) (10)

is the loss term corresponding to unlabeled data and
n is the number of unlabeled instances.

Unlike binary classification the solution of (9) is hard
due to each y in Y = {y} having combinatorial pos-
sibilities. To deal with the combinatorial issue, (Zien
et al., 2007) use the fact that, in large margin mod-
els, the number of active y’s is usually small. They
keep track of a small set of possible candidates for
each y, use smoothing of the large margin loss func-
tion and employ gradient based methods to optimize
θ. In their experiments on sequence labeling they do
not include constraints in any significant way; possibly
as a result of this, their experiments do not show their
semi-supervised method to be very useful.

In this paper we propose a new approach for semi-
supervised structured output learning that is close in
spirit to (9) and has the following properties:

• it ensures that constraints are closely satisfied
during inference;

• it applies to general loss functions;

• it deals with the combinatorial issue in Y in
a computationally tractable way while avoiding
poor local minima;

300

Paramveer S. Dhillon, S. Sathiya Keerthi, Kedar Bellare, Olivier Chapelle, S. Sundararajan

• and, it keeps the attractive property of avoiding
computation of correlations between model and
constraint features.

The paper is organized as follows. In section 2 we
describe the main idea behind our approach. Section 3
describes the use of deterministic annealing as applied
to general loss functions. In section 4 we specialize the
ideas for probabilistic models. Experiments comparing
our method with other methods are given in section 5.
Section 6 concludes the paper.

2 Our Approach

Our model training is a relaxed version of (9) in which,
instead of a single Y we work with a distribution
{a(Y)} and the loss function can be general:

min
θ,a

S(θ) +EaL(Y; X, θ) + C(Ea[φ(X,Y)]− c]). (11)

The relaxation from Y to {a(Y)} is for computational
tractability reasons, similar to LP-relaxation based
inference of complex graphical models (Rush et al.,
2010). Whereas dealing with Y brings combinatorial
issues, dealing with {a(Y)} leads to simplified compu-
tations. For example, when deterministic annealing is
used to solve (11) (in sections 3 and 4), {a(Y)} takes
a standard exponential form that is easy to deal with;
see, for example, the expressions for {a(Y)} derived
later, in (20) and (27).

Even though {a(Y)} is a distribution, it plays a role
quite different from pθ and q that are used to han-
dle constraints in GE, PR and ER methods. To ap-
preciate this, consider an example scenario in which
there are only hard constraints: φ(X,Y) − c ≤ 0
(this corresponds to defining: C(z) = 0 if z ≤ 0
and ∞ otherwise) and the model is probabilistic, i.e.,
the instance-level loss is Lx(y; x, θ) = − log pθ(y) =
−θ · f(x,y) + logZ(x). Now consider the problem of
optimizing a keeping θ fixed. For the example scenario
this problem reduces to:

min
a

1

n
Ea
∑

x

θ · f(x,y) s.t. Ea[φ(X,Y)]− c] ≤ 0.

(12)
This is a linear programming problem in {a(Y)}.
(Note that Ea[·] is linear in a and the distribution
{a(Y)} needs to satisfy distribution polytope con-
straints.) This problem is nothing but LP-relaxation
based inference (Rush et al., 2010) on the unlabeled
data1; the resulting {a(Y)} tends to be sparse (only a

1Constraints cause the combined inference of all unla-
beled instances. If each constraint involves only one in-
stance then (12) decouples into separate constrained infer-
ence problems, one for each instance.

few a(Y)’s are non-zero); most often a(Y) = 1 for a
single Y. Thus the training objective is in tune with
constraint satisfaction at the inference stage.

The terms EaL(Y; X, θ) and L(Y; X, θ) in (11) and
(9) are the losses on unlabeled data corresponding to
the labeling given by {a(Y)} and Y respectively. They
play an important role since, without them unlabeled
data has no effect on θ. In classification problems these
terms represent the geometric intuition that the clas-
sifier boundary passes through regions where data is
sparse. Like in entropy regularization, the unlabeled
loss terms play effective role in the presence of good
domain constraints.

The entropy term in (7) and (8) can also be viewed
as the expected loss (negative log-likelihood) of labels
chosen according to pθ. Note that (8) is an instance
of (11) with the additional constraint a = pθ. Thus,
for the probabilistic model, the EaL(Y; X, θ) term in
(11) can be viewed as relaxed entropy regularization.
Leaving out the a = pθ constraint allows for compu-
tational simplicity. As we will see in section 5, the
generalization performance is excellent in spite of this
relaxation.

The solution of (11) will be addressed in the following
sections.

3 Deterministic Annealing Solution

The objective function in (11) is non-convex, making it
susceptible to local minima issues. We employ deter-
ministic annealing (DA) (Peterson & Soderberg, 1989;
Sindhwani et al., 2006), which is a well established
tool for finding better local minima of non-convex ob-
jective functions. DA proceeds by adding the negative
entropy of the distribution {a(Y)} and controlling this
term using a temperature parameter T :

min
θ,a

S(θ) + EaL(Y; X, θ) + C(Ea[φ(X,Y)− c])

+
T

n

∑

Y

a(Y) log a(Y) s.t.
∑

Y

a(Y) = 1. (13)

We have omitted the non-negativity constraints on the
a(Y)’s since the presence of the negative entropy term
ensures that these variables naturally come out posi-
tive in the optimization. The denominator coefficients
nL in (3) and n in (10) and the negative entropy term
in (13) are simple normalization factors that make sure
various parts of the objective get equal weightage.

DA solves the problem by slowly decreasing (anneal-
ing) the temperature T from a reasonably big value
towards zero; at each T the optimization problem (13)
is solved using the (θ, a) obtained from the previous
T as the starting point. When T is large, the nega-

301

Deterministic Annealing for Semi-Supervised Structured Output Learning

tive entropy term plays a dominant role, allowing the
variables to move around easily; this corresponds to
the exploration phase of the method. As T moves
across a critical temperature the variables settle in val-
ues that are in the region of attraction of a good local
minimum. As T is further decreased towards zero,
the effect of the negative entropy term diminishes and
(θ, a) moves towards a good local minimum of (11);
this is the exploitation phase of the method. In prac-
tice, T is changed according to the annealing schedule,
Tnext = αT where 0 < α < 1, say α = 2/3.

DA has effectively been used for solving binary TSVM
in (Sindhwani et al., 2006). The application of DA to
structured output training such as (11) is more com-
plex because {a(Y)} has a very large number of vari-
ables and so {a(Y)} cannot be handled in a direct
fashion. Our approach to handling this issue will be-
come clear below.

At each T we use alternating optimization steps on
θ and {a(Y)} to solve (13). This is attractive since
both subproblems turn out to have convex program-
ming structure and, more importantly, the computa-
tion of the covariance between model and constraint
features is avoided.

Consider the subproblem corresponding to fixing
{a(Y)} and optimizing θ (with terms not dependent
on θ omitted):

min
θ
P1(θ; a) = S(θ) + EaL(Y; X, θ). (14)

This is a convex programming problem if the loss L
is convex in θ. Depending on the type of loss, a suit-
able optimization method can be used to solve (14).
Later, in section 4 we will look at the details for the
probabilistic model using the loss in (4).

Next, consider the subproblem corresponding to fixing
θ and optimizing {a(Y)} (with terms not dependent
on {a(Y)} omitted):

min
a

EaL(Y; X, θ) + C(Ea[φ(X,Y)− c]) +

T

n

∑

Y

a(Y) log a(Y) s.t.
∑

Y

a(Y) = 1. (15)

To proceed further we need to specify the model used
for C. As a running example let us consider the case
where constraints correspond to the domain knowledge
that φ(X,Y)− c ≤ 0 holds approximately.2 This can
be handled by defining a slack vector ξ, using the con-
straints φ(X,Y)−c ≤ ξ and setting the constraint loss
to be proportional to ‖ξ‖2. The same constraint model

2Equality constraints can be easily handled in a way
very similar to inequality constraints. Details are given
further below.

will be used in all the experiments reported in section
5. Using this model in our relaxed solution approach,
we get the following specific version of (15):

min
a,ξ
P2(a, ξ; θ) = EaL(Y; X, θ) +

T

n

∑

Y

a(Y) log a(Y) +
1

2ε
‖ξ‖2

s.t. Ea[φ(X,Y)− c] ≤ ξ;
∑

Y

a(Y) = 1. (16)

Note that hard inequality constraints can be handled
by taking ε towards zero.

We also make the assumption that the constraint func-
tion decomposes over the instances, {x} as sum, i.e.,
there exists a set of functions φ(x,y) such that

φ(X,Y) =
1

n

∑

x

φ(x,y). (17)

For efficient computation it is also necessary that each
φ(x,y) has a structure similar to the model feature
vector f(x,y). For example, in sequence labeling, we
require that φ(x,y) is a vector of factors associated
with a linear chain structure on the y sequence.

In practice, the above assumption on the structure of
constraint function is not restrictive. Let us look at
some constraint functions. Domain constraints are of
two types: instance level and corpus level. An instance
level constraint is some restriction placed on each in-
dividual instance (y,x), and so it easily falls into the
form (17); all that we need to do is set φ(x,y) = 0 for
all but one sequence. Examples of this type of con-
straint in sequence labeling tasks are: in a sequence,
a label (e.g., Paper Title of a citation) must occur at
most once as a contiguous list of words; in postal ad-
dress extraction, the label Street Number immediately
precedes the label Street Name with high probability.
Typically, in the case of an instance level constraint, we
will write one separate constraint for each instance. A
corpus level constraint involves labels across instances.
In sequence labeling, a good example is a soft/hard
specification of the number of contiguous occurrences
of a given label averaged over all sequences. Note that,
if we define φ(x,y) as k(x,y)/n where k(x,y) is the
number of contiguous occurrences of the given label
in sequence y and n is the total number of sequences,
then this constraint is expressible via a constraint func-
tion of the form (17).

As {a(Y)} consists of a very large number of variables
we turn to the dual of (16) to get a tractable solution.
This is similar to the dual ideas employed in other
methods such as PR. The Lagrangian associated with

302

Paramveer S. Dhillon, S. Sathiya Keerthi, Kedar Bellare, Olivier Chapelle, S. Sundararajan

(16) is given by

L(a, ξ, δ, γ) = EaL(Y; X, θ) +
T

n

∑

Y

a(Y) log a(Y) +

1

2ε
‖ξ‖2 + δ · (Ea[φ(X,Y)− c]− ξ) + γ(

∑

Y

a(Y)− 1),

where the vector δ ≥ 0 and γ are Lagrange multipliers.
The dual problem is:

max
δ≥0,γ

min
a,ξ

L(a, ξ, δ, γ). (18)

The nice structure in L (in conjunction with (17)) al-
lows us to solve the inner minimization problem in
closed form and eliminate {a(Y)} and ξ as well as γ
by expressing them in terms of δ:

a(Y) =
∏

y

a(y), (19)

a(y) =
exp((−Lx(y; x, θ)− δ · φ(x,y))/T)

Zδ(x)
, (20)

ξ = εδ, γ =
T

n
(log

∑

x

Zδ(x)− 1), (21)

where

Zδ(x) =
∑

y

exp((−Lx(y; x, θ)− δ ·φ(x,y))/T). (22)

These expressions can be used to simplify (18) as

max
δ≥0
D(δ) = −T

n

∑

x

logZδ(x)− c · δ − ε

2
· ‖δ‖2. (23)

If, in (16), one of the constraints, say the k-th, is an
equality instead of an inequality, then, in (23) and (18)
δk will be unconstrained instead of being non-negative.
The appendix gives the details behind the derivation
of (20)-(23). D is differentiable; its gradient is given
by

∂D
∂δ

= −c +
1

n

∑

x

Ea[φ(x,y)]− ε · δ. (24)

Any good gradient based method for minimizing a dif-
ferentiable function with non-negativity constraints,
such as LBFGS-B (Zhu et al., 1997) can be used to
solve (23). However care is needed in terminating the
solution. For the alternating optimization steps on θ
and (a, ξ) to work well it is important to ensure that
the primal P2(a, ξ; θ) decreases. We are solving the
dual to achieve this. If (23) is solved till optimality
then it is assured that the (a, ξ) resulting from the op-
timal δ via (20) achieves a decrease in P2(a, ξ; θ). How-
ever, during the solution of (23) the value of P2(a, ξ; θ)

tends to oscillate. Thus, when terminating the solu-
tion of (23) approximately, it is important to check
that a decrease in P2(a, ξ; θ) has been achieved; if not,
more optimization steps need to be taken.

Note from (20) that a(y) > 0 for all y. However, it
should be clear that, as T → 0, only those y that yield
the maximum value for (−Lx(y; x, θ)− δ ·φ(x,y)) will
have positive a(y) values. This is consistent with the
comment on sparsity of a that we made in section 2.

There is still one incomplete element in the solution of
(23) outlined above. Computation of Zδ(x) involves
Lx; if Lx(y; x, θ) does not decompose over edge and
node factors this computation can become unwieldy.
It turns out that, for the probabilistic model and the
corresponding loss in (4) this decomposition happens
cleanly; we take up the details of this in the next sec-
tion. For other losses such as the large margin loss,
this requires more intricate handling. For example, in
the case of large margin loss we need to maintain a
small set of active candidates for each y in order to
deal with Lx in the Zδ(x) computation.

We will take this up in future work.

4 Specialization to probabilistic models

The loss in (4) can be expanded as:

Lx(y; x, θ) = −θ · f(x,y) + logZ(x), (25)

where Z(x) is an instance specific normalization con-
stant. This allows Zδ(x) in (22) to be rewritten as

Zδ(x) = Z(x)−
1
T Z̃δ(x), where

Z̃δ(x) =
∑

y

exp
(θ · f(x,y)− δ · φ(x,y))

T
. (26)

The simplified expression for a(y) follows:

a(y) =
1

Z̃δ(x)
exp

(
θ · f(x,y)− δ · φ(x,y)

T

)
. (27)

Now the dual objective in (23) simplifies to:

D(δ) = −T
n

∑

x

log Z̃δ(x)− c · δ − ε

2
· ‖δ‖2 + z, (28)

where z =
∑

x logZ(x) is a constant that does not
depend on δ. The gradient in (24) remains unchanged.
Because of the simplified a in (27) standard CRF-style
computations can be used to compute D(δ) and its
gradient.

Also, with (25), the θ-subproblem in (14) can be solved
using a gradient based technique such as L-BFGS. The
problem is only slightly more complicated than stan-
dard CRF training: the unlabeled term involves a label

303

Deterministic Annealing for Semi-Supervised Structured Output Learning

distribution instead of a single label. Given the simpli-
fied expression for a(y) in (27), this becomes a minor
issue as the ingredients in CRF computations for func-
tion and gradient can be easily tweaked to handle this.
Specifically, computation of expectations with respect
to exponential distributions of the form (27) can be
easily done via standard forward-backward operations.

From (27) we can get

arg max
y

a(y) = arg max
y

(θ · f(x,y)− δ · φ(x,y)) .

(29)
We can extend this as a pseudo-inductive inference
rule for application to unseen data:

y∗ = arg max
y

(θ · f(x,y)− δ · φ(x,y)) . (30)

An advantage of this rule over the inductive inference
rule in (1) is that it also makes use of the constraint
functions through δ.

It is interesting to note that, if, in the deterministic
annealing solution for probabilistic models outlined in
this section, we set T = 1 and do not do any anneal-
ing, then the solution is identical to posterior regu-
larization. This is a mere coincidence and does not
mean any systematic connection between the two ap-
proaches. As T → 0 the deterministic annealing solu-
tion becomes quite different from posterior regulariza-
tion.

5 Experiments

In this section we evaluate the empirical performance
of our approach on two standard real world sequence
labeling datasets, citations and apartment listings (we
will refer to this as the apartments dataset), and
demonstrate the effectiveness of our approach. These
two datasets, which originated in (Grenager et al.,
2005), have been used to benchmark the performance
of sequence labeling methods in the context of infor-
mation extraction. We compare the labeling accuracy
obtained from our solution with state of the art ap-
proaches.

5.1 Data Description

The apartments dataset contains 300 hand-labeled ads
(sequences) from craigslist.org. Each token of a se-
quence takes one of 12 possible labels (e.g. features,
rent, size, neighborhood, utilities). The aver-
age sequence length is 119 tokens with 8.7 labels.

The citations data consists of 500 hand annotated cita-
tions of computer science papers. Each token of a cita-
tion takes one of 13 possible labels (e.g. author, ti-
tle, journal, pages). The average sequence length
in this case is 35 tokens with 5.5 labels.

The description and sizes of splits of the datasets used
are given in Table 1. In order to ensure fairness of
comparison, the train, development, test, unlabeled
splits and also the tokenization are exactly the same
as was used by all the previous works which used these
datasets, namely (Grenager et al., 2005; Chang et al.,
2007; Mann & McCallum, 2010; Bellare et al., 2009).

5.2 Types of Constraints

The constraints that we used3 for the two datasets can
be broadly classified into two types: corpus level and
instance level; the former places constraints on statis-
tics accumulated over the instances while the latter
puts constraints at each instance level. In the training
objective function a corpus level constraint leads to a
single term that is the square of a sum of terms while
an instance level constraint leads to the sum of squares
of several terms. Some constraints can be implemented
either as corpus level constraints or instance level con-
straints. Corpus level constraints are computationally
attractive since the number of φ elements (and so the
number of δ variables) does not grow with the size of
the unlabeled data set. However, instance level con-
straints allow us to specify background knowledge at a
more fine-grained level. For example, if we know that
all citation sequences may not contain any volume
label (i.e. it is an optional label), we can inject this
domain knowledge into our learning procedure easily
as an instance level constraint. Let us now describe the
two types of constraints in more detail using examples.

Corpus Level Constraints: These constrain the ac-
cumulated statistics across the entire unlabeled cor-
pus. In our experiments, we use three types of corpus
level constraints:

1. Token Level Constraints: These are the sim-
plest kind of constraints and constrain certain to-
kens to have a particular label (or a set of la-
bels), e.g. “The words CA, NY, Australia are lo-
cation”. They are implemented as corpus level
constraints; for the example mentioned above, we
set the constraint function as the fraction of oc-
curences of CA, NY and Australia that take the
label location and set the corresponding com-
ponent of c to 1. Token level constraints can
also be easily handled at the time of inference by
constraining the Viterbi solution in (1); however
this procedure would not help with generalization
since it would not effect the model parameters θ.
We set the c value of such constraints to be 1.

3The competing methods also employed exactly the
same constraints.

304

Paramveer S. Dhillon, S. Sathiya Keerthi, Kedar Bellare, Olivier Chapelle, S. Sundararajan

Dataset # Train # Dev. # Unlab. # Test.
Citations 5, 20, 300 100 1000 100

Apartments 5, 20,100 100 1000 100

Table 1: Data Statistics

2. Label Regularization Constraints: These
constraints are similar in spirit to the la-
bel balance constraints that are employed in
TSVMs (Joachims, 1999). They constrain the
fraction of total number of tokens which can have
a particular label, e.g. “30% of tokens should
be labeled authors”. The values of these con-
straints (30% in the example above) are estimated
from the training data.

3. Edge Level Constraints: Such constraints con-
sider the labels of two consecutive tokens and con-
strain them. An example is: “Label transitions
should only occur on punctuation marks”. We im-
plement this constraint as: the fraction of label
transitions that happen at non-punctuation char-
acters is 0.01.

In our experiments, all corpus constraints described
above are implemented as equality constraints (satis-
fied in a least squares sense as described in section 4).

Instance Level Constraints: These constrain ag-
gregate statistics only at the level of a single instance,
e.g. “author can only appear at most once in each
citation sequence and should be a contiguous list of to-
kens”. We implement this constraint as an inequality
constraint with its value set to be less than or equal
to 1. This is because we do not expect all instances to
have all the labels present; so, an equality constraint
saying “note can occur only once” in a citation which
doesn’t have the label note at all is problematic.

The detailed list of constraints we used are given in
Table 2.

5.3 Experimental Setup and Results

Our model pθ(y|x) is a simple linear chain CRF with
feature functions of the form f(yt−1, yt,x). We used
a very simple set of model features: (1) Identity of
the token; (2) Start, End features indicating the start
and end of a sequence; (3) Regular expression fea-
tures (Capitalization, hyphenation, number, suffixes,
prefixes) in a window of 1 around the current token;
and, (4) Brown Clustering (100 clusters) (Brown et al.,
1992) features for the tokens.

As mentioned in (3) and (10), we normalize the labeled
and unlabeled losses by the total number of labeled
and unlabeled instances, to ensure that the unlabeled

Citations Dataset
Each label must be a consecutive list of words, and can
appear at most once in a citation.
Label transitions must occur on punctuation marks.
Words pp., pages are page.
Four digits starting numbers 20XX, 19XX are date.
Quotations can only appear in title.
The words note, submitted, appear are note.
The words CA, Australia, NY are location.
The words tech, tech report are tech report.
The words proc, journal, proceedings, ACM are journal
or booktitle.
The words ed, editors are editor.

Apartments Dataset
Label transitions must occur on punctuation marks or new-
line symbol.
Words laundry, kitchen, parking are features.
Words sq, ft, bdrm are size.
The words $, *money* are rent.
The words close, near, shopping are neighborhood.
The (normalized) words phone, email are contact.
The words smoking, dogs, cats are restrictions.
The words http, image, link are photos.
The words address, carlmont, st, cross are address.
The words utilities, pays, electricity are utilities.

Table 2: List of constraints used for the Citations and

Apartments datasets.

data term does not exert undue influence in the objec-
tive function. The values of the hyperparameters i.e.
σ (associated with the `2 norm regularizer on θ) and
ε (weight of constraint term) were tuned on the devel-
opment set. We used different ε’s for different types of
constraints as each of them encodes a different kind of
prior information.

At each temperature we performed 10 alternating op-
timizations of θ and {a(Y)} and, within each alter-
nating step the θ and {a(Y)} optimizations were done
for 40 and 100 LBFGS iterations respectively. In our
experiments we found that this combination was good
enough to achieve good convergence of the overall ob-
jective function. The annealing temperature T was
started at 2 and decreased slowly (Tnext = 0.9T) for
10 iterations.

We compare our approach against the following ap-
proaches4: Supervised Baseline: A CRF trained
on just the labeled examples; Constraint Driven
Learning (CoDL) (Chang et al., 2007); and, Pos-
terior Regularization (PR) (Ganchev et al., 2010;

4The hyperparameters of all these approaches were
tuned in the same way as in our approach.

305

Deterministic Annealing for Semi-Supervised Structured Output Learning

Citations Dataset N Sup. Baseline CoDL PR (I) PR (T) DASO (I) DASO (T)
5 0.631 0.710 0.730 0.741 0.752 0.773

20 0.791 0.794 0.827 0.844 0.849 0.860
300 0.899 0.888 0.901 0.906 0.911 0.921

Apartments Dataset N Sup. Baseline CoDL PR (I) PR (T) DASO (I) DASO (T)
5 0.651 0.660 0.665 0.671 0.679 0.685

20 0.727 0.746 0.749 0.761 0.762 0.769
100 0.764 0.786 0.790 0.799 0.800 0.804

Table 3: Comparison of methods. N denotes the number of labeled examples. Note: (1) DASO is our approach

i.e. Deterministic Annealing for Structured Outputs. (2) (I), (T) denote whether it is the inductive performance or

transductive accuracy. (3) Bold numbers indicate that the results are significant at 5% level in a paired t-test. Significance

was tested among corresponding numbers only i.e. inductive against inductive and transductive against transductive.

Bellare et al., 2009).

A fair comparison against GE (Mann & McCallum,
2010) was not feasible since handling edge level and
instance level constraints requires approximate infer-
ence for computing the covariance matrix of constraint
and model features. This is still a subject of ongoing
research.5 Additionally, GE currently does not allow
inequality constraints that we use in our experiments.
Hence, the comparison against this approach is left as
future work.

For PR and our approach, test set labels were found
either transductively (T) (including the test set as a
part of unlabeled data so that constraints are applied
on them, and then using (30)6) or inductively (I) (not
using the test data as part of the unlabeled data and
then applying (1)). The accuracy is measured as token
labeling accuracy on test data. The results averaged
over 5 random subsets of the data are shown in Table 3.

As can be seen from the results, our approach performs
significantly better than the other methods in a vari-
ety of settings. The gain over competing approaches is
particularly good when the number of labeled exam-
ples is small.

The relative improvements in constraint satisfication
of our approach over PR (averaged over all the con-
straints) on the Citations test data are 4.4%, 3.5% and
3.1% respectively for N = 5, 20, 300, where N is the
number of labeled examples. Here, constraint viola-
tion is computed by summing (φk(X,Yviterbi) − ck)2

and max(0, (φk(X,Yviterbi) − ck))2 for equality and
inequality constraints respectively; here Yviterbi is the
output obtained via (1). As we can see our approach
results in better constraint satisfaction (closer to the
Viterbi solution) on test data.

5.3.1 Effect of Annealing Temperature

The annealing schedule (Ti+1 = αTi) is an important
parameter. It has been shown that for binary classi-
fication any reasonable schedule performs well (Sind-

5Personal communication with Gregory Druck.
6Recall that setting T = 1 in our approach gives PR.

hwani et al., 2006). We experimented with a variety of
different schedules i.e., starting temperatures and an-
nealing rates (α). Particularly, we experimented with
starting temperatures of 1, 2 and 5, with α of 0.9, 0.7
and 0.5. In addition to this, we also tested the hypoth-
esis, Do we need annealing at all?, by evaluating the
performance of the method that directly starts at the
stop temperature and does no further annealing. The
results are shown in Table 4.

Start T α Stop T DASO (UA) DASO (A)
1 0.9 0.3486 0.721 0.771
1 0.7 0.0282 0.729 0.769
1 0.5 0.0009 0.707 0.761
2 0.9 0.6973 0.742 0.773
2 0.7 0.0564 0.738 0.770
2 0.5 0.0019 0.728 0.762
5 0.5 0.0012 0.725 0.755

Table 4: Effect of annealing on Citations dataset (5 labeled

examples averaged over 5 subsets). Note: (1) These ex-

periments were performed in the transductive setting. (2)

DASO (A) is the performance with annealing and DASO

(UA) is the performance if we start at the stop temperature

and do not do any annealing. (3) The bold numbers indi-

cate that they are significantly better than the un-annealed

version in a paired t-test at 5% significance level.

As can be seen annealing helps in all the settings when
compared to starting at the end temperature and not
doing any annealing. Annealing is reasonably robust
to the starting temperature and annealing rate; how-
ever, if the annealing is rapid (α = 0.5), accuracy
suffers due to the optimization following a bad con-
tour and reaching poor optima. This phenomenon was
not observed for binary classification (Sindhwani et al.,
2006); in sequence labeling, this possibly happens due
to the sequential nature of the data and errors getting
propagated within a sequence.

Our method is slower (5-10 times) than CoDL/PR as
it needs to solve the optimization problem at several T
values while they solve it only once. However, doing so
allows us to get better local optima compared to other
approaches. As future work, it would be interesting to
investigate if annealing can even help other methods
i.e. CoDL/ PR/GE.

306

Paramveer S. Dhillon, S. Sathiya Keerthi, Kedar Bellare, Olivier Chapelle, S. Sundararajan

6 Appendix (Supplementary Material)

Here we derive (20)-(23). Consider the solution of (18).
Setting ∂ L/∂ a(Y) = 0 we get

L(Y; X, θ) +
T

n
+
T

n
log a(Y) + δ · φ(X,Y) + γ = 0.

This leads to

T log a(Y) = −(nL(Y; X, θ) +T +nδ ·φ(X,Y) +nγ),

which gives
∑

Y

a(Y) = Zδ(X) exp((−T − nγ)/T), (31)

where

Zδ(X) =
∑

Y

exp((−nL(Y; X, θ)− nδ · φ(X,Y))/T)

=
∏

x

Zδ(x)

and

Zδ(x) =
∑

y

exp((−Lx(y; x, θ)− δ · φx(x,y))/T).

Setting ∂ L/∂ ξ = 0 we get ξ = ε · δ. Use of the
derivations above allows us to simplify (18) to

max
δ≥0,γ

−T
n

∑

Y

a(Y)− c · δ − γ − ε

2
· ‖δ‖2.

Using (31) this further simplifies to

max
δ≥0,γ

−T
n
Zδ(X) exp((−T −nγ)/T)−c ·δ−γ− ε

2
·‖δ‖2.

(32)
Optimizing γ first with fixed δ yields γ =
T
n (logZδ(X) − 1). Putting this in (32) reduces the
lagrangian dual problem (18) to (23). The expressions
in (20)-(22) follow easily from the above derivations.

References

Bellare, K., Druck, G., & McCallum, A. (2009). Al-
ternating projections for learning with expectation
constraints. Proceedings of the Twenty-Fifth Con-
ference on Uncertainty in Artificial Intelligence (pp.
43–50). Arlington, Virginia, United States: AUAI
Press.

Brown, P., deSouza, P., Mercer, R., Pietra, V. D., &
Lai, J. (1992). Class-based n-gram models of natural
language. Comput. Linguist., 18, 467–479.

Chang, M.-W., Ratinov, L.-A., & Roth, D. (2007).
Guiding semi-supervision with constraint-driven
learning. ACL.

Ganchev, K., Graca, J., Gillenwater, J., & Taskar, B.
(2010). Posterior regularization for structured la-
tent variable models. Journal of Machine Learning
Research, 11.

Gärtner, T., Le, Q. V., Burton, S., Smola, A. J., &
Vishwanathan, S. V. N. (2005). Large-scale multi-
class transduction. NIPS.

Grandvalet, Y., & Bengio, Y. (2003). Semi-supervised
learning by entropy minimization. NIPS.

Grenager, T., Klein, D., & Manning, C. D. (2005).
Unsupervised learning of field segmentation models
for information extraction. Proceedings of the 43rd
Annual Meeting on Association for Computational
Linguistics (pp. 371–378). Ann Arbor, Michigan:
Association for Computational Linguistics.

Joachims, T. (1999). Transductive inference for text
classification using support vector machines. ICML
(pp. 200–209).

Liang, P., Jordan, M. I., & Klein, D. (2009). Learning
from measurements in exponential families. Proceed-
ings of the 26th Annual International Conference on
Machine Learning (pp. 641–648). New York, NY,
USA: ACM.

Mann, G. S., & McCallum, A. (2010). Generalized ex-
pectation criteria for semi-supervised learning with
weakly labeled data. Journal of Machine Learning
Research, 11, 955–984.

Peterson, C., & Soderberg, B. (1989). A new method
for mapping optimization problems onto neural net-
works. International Journal of Neural Systems, 1,
3–22.

Rush, A. M., Sontag, D., Collins, M., & Jaakkola, T.
(2010). On dual decomposition and linear program-
ming relaxations for natural language processing. In
Proc. EMNLP.

Sindhwani, V., Keerthi, S. S., & Chapelle, O. (2006).
Deterministic annealing for semi-supervised kernel
machines. ICML (pp. 841–848).

Zhu, C., Byrd, R. H., & Nocedal, J. (1997). Algo-
rithm 778: L-BFGS-B, fortran routines for large
scale bound constrained optimization. ACM Trans-
actions on Mathematical Software, 23, 550–560.

Zien, A., Brefeld, U., & Scheffer, T. (2007). Trans-
ductive support vector machines for structured vari-
ables. ICML.

307

