
Lifted coordinate descent for learning with trace-norm regularization

Miroslav Dud́ık Zaid Harchaoui Jérôme Malick
Yahoo! Research, NY INRIA and LJK, Grenoble CNRS and LJK, Grenoble

Abstract

We consider the minimization of a smooth
loss with trace-norm regularization, which is
a natural objective in multi-class and multi-
task learning. Even though the problem is
convex, existing approaches rely on optimiz-
ing a non-convex variational bound, which
is not guaranteed to converge, or repeat-
edly perform singular-value decomposition,
which prevents scaling beyond moderate ma-
trix sizes. We lift the non-smooth con-
vex problem into an infinitely dimensional
smooth problem and apply coordinate de-
scent to solve it. We prove that our approach
converges to the optimum, and is competitive
or outperforms state of the art.

1 Introduction

A large set of machine learning techniques including
SVMs, logistic regression or boosting can be phrased
as convex optimization among the set of linear pre-
dictors. The optimization objective has typically two
parts: empirical risk, measuring a goodness of fit to
the data, and regularization, measuring the complex-
ity of the model and thus controlling its capacity to
overfit. Here, we study variants where the model takes
the form of a matrix, such as in multi-class or multi-
task learning problems, and the regularization takes
the form of the trace norm [36, 1, 2, 24, 30]. The trace
norm (i.e., the sum of singular values) is the convex
envelope of the rank of a matrix (on a special ball,
see [15, 31]); thus it encourages matrices of low rank.
Even though the resulting problems are convex, the ex-
isting techniques for trace-norm regularized optimiza-
tion [36, 1, 24, 30] either do not scale beyond moder-
ately sized matrices, or are not guaranteed to converge

Appearing in Proceedings of the 15th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume XX of JMLR:
W&CP XX. Copyright 2012 by the authors.

to the optimum. Here we propose a simple approach
based on coordinate descent which is guaranteed to
converge to the minimum of the convex objective and
also scales to large matrix sizes.

Previous approaches for trace-norm regularized prob-
lems fall into two categories. The first set of ap-
proaches adapts general-purpose convex optimization
to trace norm. Here, the most scalable ones are com-
posite optimization techniques [24, 30]. Composite op-
timization relies on the implementation of the proxi-
mal operator. For trace-norm regularization, the key
operation in the proximal operator is singular-value
decomposition (SVD), which is a bottleneck in scaling
to large matrix sizes. The second set of approaches
uses variational characterizations of trace norm [36, 1]
and proceeds by alternating minimization. These tech-
niques either rely on SVD calculations [1], which pre-
vents their scaling, or lack global convergence guaran-
tees [36], and thus they are sensitive to the starting
point and may require extensive problem-specific tun-
ing.

Our approach is based on coordinate descent, which
has demonstrated extremely good performance in ℓ1-
regularized optimization [17, 39]. Since the trace norm
is a natural generalization of the ℓ1-norm to matri-
ces with the coordinates replaced by rank-one matri-
ces (see, e.g., [31]), we should expect that coordinate
descent algorithms will generalize to matrix settings
as long as we replace the coordinates by the suitable
rank-one matrices. The challenge is determining which
rank-one matrices. Ideally, we would like to use the
rank-one matrices from the SVD of the solution. How-
ever, except for least-squares regression problems, it
is not clear how to determine these matrices without
first finding the solution. This conceptual obstacle has
prevented the application of coordinate-descent tech-
niques to matrix setting [35, Chapter 11].

In this paper, we overcome this conceptual obstacle by
considering all possible (normalized) rank-one matri-
ces as coordinates. This set of matrices forms an over-
complete and uncountable infinite basis of the space of
matrices. We show that a simple strategy of perform-
ing a coordinate descent on this lifted space actually

327

Lifted coordinate descent for learning with trace-norm regularization

converges to the right solution. Picking the coordi-
nate corresponding to the steepest descent direction
amounts to calculating the top singular-vector pair.
This operation is an order of magnitude faster than
SVD. In our experiments we demonstrate that our
approach is competitive and often outperforms exist-
ing approaches. Various tricks of the trade from ℓ1-
based optimization, such as regularization path calcu-
lation [17], can be adapted to our setting.

The idea of coordinate descent in infinite dimensional
(or functional) spaces is explored in the boosting lit-
erature [25, 11, 40]. In linear programming, this tech-
nique is known as column generation [12]. However,
these techniques have not been previously applied and
analyzed for trace-norm objectives. Several authors
[19, 22, 33] have used rank-one updates in convex op-
timization settings, but their techniques were tailored
to quadratic objectives and the focus was on the case
of low-rank matrix approximation (e.g., in collabora-
tive filtering) rather than the general purpose trace-
norm optimization, which is the subject of this paper.
Finally, there are some similarities between our algo-
rithm and algorithms of [34] and [38] for ℓ1 regularized
least-squares regression. Both algorithms rely on co-
ordinate descent techniques to identify a subspace of
interesting “active” variables.

In Sec. 2, we describe our problem setting in more de-
tail. In Sec. 3, we lift the non-smooth matrix objective
to a smooth objective in infinite dimensions, describe
our algorithm and prove its convergence. Finally, in
Sec. 4 we evaluate our method on several synthetic and
real-world data sets.

2 Supervised learning with
trace-norm regularization

We begin by reviewing two supervised learning prob-
lems and the associated optimization objectives where
the parameters naturally form a matrix. Then we in-
troduce trace-norm regularized optimization.

2.1 Multi-class classification

Our first problem is multi-class classification by multi-
nomial logistic regression. For example, in image clas-
sification classes correspond to different object cate-
gories, such as human faces, cars, or animals, and each
training example is described by a vector of features
derived from the pixel representation of the image.

Let (x1, y1), . . . , (xn, yn) be a set of labeled train-
ing data, where xi ∈ Rd are feature vectors and
yi ∈ Y := {1, . . . , k} are the class labels. The lin-
ear classifier is specified by a separate weight vector
wy ∈ R for each class. For a given test example

x ∈ Rd, the target class is predicted according to
ŷ = Argmaxyw

⊤
y x. Class-wise weight vectors form

the weight matrix W = [w1, . . . ,wk] ∈ Rd×k. In reg-
ularized multinomial logistic regression, the classifier
is obtained by solving the optimization problem:

Minimize
W∈Rd×k

λΩ(W) +
1

n

n∑

i=1

L(W;xi, yi) (1)

where Ω(W) is the regularization and

L(W;x, y) = log
(
1 +

∑

ℓ∈Y\{y}
exp

{
w⊤
ℓ x−w⊤

y x
})

is the multinomial logistic loss.

2.2 Multi-task classification

Our second example is multi-task learning, where the
goal is to solve multiple classification problems simul-
taneously. Each individual problem is modeled by
multinomial logistic regression. For example, in Sec. 4,
we consider the problem of predicting user preferences
for different products within some category (such as
personal computers). Here, users correspond to tasks.
For each user we collect relative preferences over vari-
ous pairs of products within our category. Each prod-
uct is described by a vector of features. Examples
represent pairs of products, with the feature vector
being the difference of the feature vectors of the two
products, and the relative preference (for the first or
the second product) being the target class. Thus, each
individual task is a binary logistic regression problem.

Formally, we are given m data sets (tasks) indexed
by j = 1, . . . ,m, each consisting of nj examples
(xj,1, yj,1), . . . , (xj,nj

, yj,nj
) where xj,i ∈ Rd is the

feature vector and yj,i ∈ Yj := {1, . . . , kj} is a class
label. For each task, we fit a matrix of linear pre-
dictors Wj = [wj,1, . . . ,wj,kj]. We combine matri-
ces across all tasks to obtain the joint matrix W =
[W1, . . . ,Wm] ∈ Rd×k, where k = k1+· · ·+km, which
is fitted by regularized multi-task logistic regression as
follows:

Minimize
W∈Rd×k

λΩ(W) +
1

n

m∑

j=1

nj∑

i=1

Lj(W; xj,i, yj,i) (2)

where Ω(W) is the regularization, n = n1 + · · · + nm
is the total number of examples, and Lj is the multi-
nomial logistic loss over the submatrix Wj .

2.3 Matrix norms

Before we introduce trace-norm regularization and reg-
ularized optimization, some notation is in order. In a

328

Miroslav Dud́ık, Zaid Harchaoui, Jérôme Malick

vector space Rp, we use notation ‖·‖2, ‖·‖1, ‖·‖∞, re-
spectively, for ℓ2-norm (the Euclidean norm), ℓ1-norm
(the sum of absolute values), and ℓ∞-norm (the max-
imum of absolute values).

For a matrix W ∈ Rd×k, we write σ(W) for the spec-
trum of the matrix, viewed as a vector of its singular
values, and define the so-called Schatten p-norm as

‖W‖σ,p := ‖σ(W)‖p .

In this paper we only use p = 1 and p = ∞. For
p = ∞, we obtain the maximum-singular value norm.
For p = 1, we obtain the so-called trace norm of the
matrix (also called nuclear norm). Note that for a
positive-definite matrix W, ‖W‖σ,1 equals the trace
of W, hence the name trace norm.

2.4 Learning with trace-norm penalty

There are many choices of regularization functions
in the two problems introduced in the previous sec-
tions. We focus on regularization by trace norm, i.e.,
Ω(W) = ‖W‖σ,1. As we mention in the introduction,
trace norm encourages low rank solutions. Hence, it
corresponds to the assumption that the linear predic-
tors lie in the same linear subspace of Rd [1].

The topic of this paper is the optimization problem

Minimize
W∈Rd×k

φλ(W) := λ‖W‖σ,1 + φ(W) (3)

where φ : Rd×k → R is the empirical risk (i.e., average
loss across training examples). We assume it satisfies
the following conditions:

(A) convexity: φ is convex

(B) lower-boundedness: φ is bounded below; we
assume φ(W) ≥ 0 (otherwise φ can be shifted)

(C) smoothness: φ is differentiable and there exists
a norm ‖·‖, and a constant H > 0 such that
〈
W′ −W, ∇φ(W′)−∇φ(W)

〉
≤ H‖W′ −W‖2

for all W′, W ∈ Rd×k.

For example, the empirical risks in Eqs. (1) and (2)
satisfy these conditions. This result, based on prop-
erties of the multinomial logistic loss function L, is
proved in Appendix B.

2.5 Matrix optimization

The learning problem (3) is a convex non-smooth ma-
trix optimization problem. Let us briefly present some
of its basic properties.

First, it is easy to see that a solution to the problem
(3) always exists. This is because the minimization can

be restricted to the level-set {W : φλ(W) ≤ φλ(0)},
which is compact (since φ is bounded below). By con-
tinuity, φλ attains a minimum over this set.

The necessary and sufficient condition for optimality
of W is that 0 lies in the subdifferential of φλ

0 ∈ ∂φλ(W) .

By subdifferential calculus [20], this is equivalent to

−∇φ(W)/λ ∈ ∂‖W‖σ,1 .

Now, since ∂‖W‖σ,1 is exactly (see, e.g., [15])

{M ∈ Rd×k : ‖M‖σ,∞ ≤ 1, 〈M,W〉 = ‖W‖σ,1},

we obtain the following proposition:

Proposition 2.1. A matrix W ∈ Rd×k solves Eq. (3)
if and only if

(i) ‖∇φ(W)‖σ,∞ ≤ λ, and

(ii) 〈∇φ(W),W〉 = −λ‖W‖σ,1.

We say thatW is an ε-approximate solution, or simply
an ε-solution, if the optimality conditions are approx-
imately satisfied:

(i’) ‖∇φ(W)‖σ,∞ ≤ λ+ ε, and

(ii’)
∣∣∣〈∇φ(W),W〉+ λ‖W‖σ,1

∣∣∣ ≤ ε‖W‖σ,1.

3 Trace-norm optimization via lifted
coordinate descent

This section presents our approach for solving the
learning problem (3). The idea is to recast this non-
smooth optimization problem in Rd×k as a smooth op-
timization problem in an infinite dimensional space.
We then exploit the simplicity of the new formulation
to design a coordinate descent algorithm.

3.1 Lifting to an infinite dimensional space

We do not have a basis on which we could design a
coordinate descent algorithm. So we construct, as fol-
lows, an overcomplete and uncountable infinite “basis”
for the set of matrices living in Rd×k, by considering
all possible (normalized) rank-one matrices.

Let M denote the set of rank-one matrices

M = {uv⊤ : u ∈ Rd, v ∈ Rk, ‖u‖2 = ‖v‖2 = 1} .

Let I be an index set for the elements of M, i.e.,

M = {Mi ∈ Rd×k : i ∈ I} = {uiv⊤
i : i ∈ I} .

A function from I to R can be written θ = (θi)i∈I ∈
RI ; its support is the set of indices which are nonzero,

329

Lifted coordinate descent for learning with trace-norm regularization

i.e., supp(θ) = {i ∈ I : θi 6= 0}. We consider the
vector space of functions θ with finite support, denoted
as Θ,

Θ := {θ ∈ RI : supp(θ) is finite}
equipped with the natural ℓ1-norm defined by ‖θ‖1 =∑
i∈I |θi|. Basic properties of the space and its ele-

ments are recalled in Appendix E. The connection
between Θ and Rd×k is the following: each θ ∈ Θ
defines a unique matrix in Rd×k

Wθ =
∑

i∈I
θiMi . (4)

The properties of the map θ 7→ Wθ are simple, but
important in our developments; we summarize them
in the next proposition. It concerns the non-negative
orthant of Θ:

Θ+ = {θ ∈ Θ : θi ≥ 0 for all i ∈ I} .

Proposition 3.1. The map θ 7→ Wθ is a continuous
linear map from Θ to Rd×k. Moreover, for all θ ∈ Θ+,
we have

‖Wθ‖σ,1 ≤
∑

i∈I
θi = ‖θ‖1

and for any W ∈ Rd×k, the vector of its singular
values corresponds to θ ∈ Θ+ such that |supp(θ)| =
rank(W), Wθ = W and ‖θ‖1 = ‖W‖σ,1.

Thus the trace norm in Rd×k and the ℓ1-norm in Θ+

almost coincide [23]. It is tempting to replace the opti-
mization inW by optimization in θ over Θ+. Consider
ψ(θ) := φ(Wθ), the infinite dimensional version of φ,
and the optimization problem

Minimize
θ∈Θ+

ψλ(θ) := λ
∑

i∈I
θi + φ(Wθ) . (5)

By Prop. 3.1, for all θ ∈ Θ+, we have an upper bound

φλ(Wθ) ≤ ψλ(θ).

The next theorem shows that minimizing φλ and ψλ
is actually equivalent.

Theorem 3.2. The function ψλ : Θ → R is convex
and differentiable. The following optimization prob-
lems are equivalent, i.e., they have the same optimal
value and correspondence of optimal solutions as

θ̂ ∈ Argmin
θ∈Θ+

ψλ(θ) iff Wθ̂ ∈ Argmin
W∈Rd×k

φλ(W) .

Note that the first-order optimality conditions for
problem (5) are

(a) ∀i ∈ I : ∂ψ
∂θi

(θ) ≥ −λ
(b) ∀i ∈ supp(θ) : ∂ψ

∂θi
(θ) = −λ.

The ε-approximate optimality is defined by

(a’) ∀i ∈ I : ∂ψ
∂θi

(θ) ≥ −λ− ε

(b’) ∀i ∈ supp(θ) :
∣∣∣ ∂ψ∂θi (θ) + λ

∣∣∣ ≤ ε

The correspondence of Theorem 3.2 between the op-
timal solutions of the two problems is in fact even
stronger, as it extends to approximate solutions.

Theorem 3.3. Let ε be such that 0 ≤ ε ≤ λ. If θ is
an ε-solution of (5), then Wθ is an ε-solution of (3).

We now use this infinite dimensional embedding to
design our learning algorithm.

3.2 Coordinate descent algorithm

This section presents our coordinate descent algorithm
for optimizing the function ψλ over Θ+, and thus solv-
ing the original learning problem (3).

At the current iterate θ, we pick the coordinate along
which we can achieve the steepest descent while re-
maining in Θ+. For coordinates i 6∈ supp(θ), we can
only move in the positive direction. So it suffices to
pick i ∈ I with the smallest ∂ψλ

∂θi
(θ). This problem is

equivalent to calculating the top singular-vector pair
of the matrix −∇φ(W) (where W = Wθ), since

Argmini∈I
∂ψλ

∂θi
(θ) = Argmini∈I

(
λ+ 〈Mi,∇φ(W)〉

)

= Argmini∈I 〈uiv⊤
i ,∇φ(W)〉

= Argmaxi∈I u⊤
i

(
−∇φ(W)

)
vi .

For coordinates i ∈ supp(θ), it is also possible to move
in the negative direction. Here, we perform a tradi-
tional ℓ1-style coordinate descent. We can update co-
ordinates either cyclically [17] (which is what we do
here), or uniformly at random [27]. We optimize over
supp(θ) until the optimality conditions are satisfied.

The final algorithm (Algorithm 1) is called R1D,
which stands for rank-one descent. In our algorithm,
we do not compute the steepest direction ∂ψλ

∂θi
(θ), but

only use a steep-enough direction (steepest up to ε/2).
The following proposition shows that R1D is guaran-
teed to make fixed progress provided that the corre-
sponding partial derivative is large enough.

Proposition 3.4. There exist α, δ > 0 such that for
all ε > 0, θ ∈ Θ+ and i ∈ I such that ∂ψλ

∂θi
(θ) ≤ −ε,

we have

ψλ(θ + δ ei) ≤ ψλ(θ)− αε2. (6)

We deduce that the algorithm converges to an ε-
optimal solution in a finite number of iterations.

Theorem 3.5. R1D provides ε-optimal solutions θε
and Wε after at most 8ψλ(θ0)/αε

2 iterations.

330

Miroslav Dud́ık, Zaid Harchaoui, Jérôme Malick

Algorithm 1 R1D(φ, λ,θ0, ε)

Input: empirical risk φ, regularization λ
initial point Wθ0 , convergence threshold ε

Output: ε-optimal Wθ

Notation: Wt := Wθt , ut := uit , vt := vit , et := eit

Algorithm:

For t = 0, 1, 2, . . . :

1. Find an approximate top singular-vector pair of
(−∇φ(Wt)), i.e., it ∈ I such that

u⊤
t

(
−∇φ(Wt)

)
vt ≥ ‖∇φ(Wt)‖σ,∞ − ε/2

2. Let gt :=
∂ψλ
∂θit

(θt) = λ+ 〈∇φ(Wt),utv
⊤
t 〉

3. If gt ≤ −ε/2

Wt+1 = Wt + δ utv
⊤
t with δ given by Prop. 3.4

θt+1 = θt + δ et

4. Else (i.e., gt > −ε/2)
If θt satisfies (b’), terminate and return θt

Otherwise, compute θt+1 as an ε-solution of the
restricted problem min

θ∈Rsupp(θt)
+

ψλ(θ)

If the upper bound H is not known ahead of time,
it is possible to use a search strategy as in [26]. For
special loss functions, it is possible to derive a tighter
upper bound than implied by Prop. 3.4. For instance,
for multi-class loss, we use an upper bound along the
lines of [14]. When a specialized bound is not available
or too loose (as we found in the case of multi-task
loss), we observed that it helps to augment the rule
of Prop. 3.4 by line search. Details of these strategies
will be provided in the extended version of this paper.

If instead of terminating R1D after reaching ε-
optimality, we decrease ε according to a predefined
sequence (εℓ)ℓ converging to 0, we obtain an asymp-
totic convergence.

Theorem 3.6. Let εℓ → 0. Define Wθℓ
as the so-

lution generated by R1D with ε = εℓ. Then a subse-
quence of (Wθℓ

)ℓ converges to a solution of (3).

Running time We discuss the running time of our
algorithm focusing on the specific losses associated
with multi-class and multi-task learning. Recall that
the number of training examples is n, the number of
linear predictors (matrix columns) is k and the num-
ber of features is d. The final parameter is the size
of the current supp(θt) which we denote r. The key
operations are calculations of ∇φ(W), approximate
top singular-vector pair, and ∇supp(θ)ψλ(θ) in Step 4.
Their running times are as follows:

• ∇φ(W): bottleneck of this operation is the

Algorithm 2 ContR1D(φ, λ0, α,N)

Input: empirical risk φ, initial regularization λ0

multiplicative step α ∈ (0, 1)
number of steps N ≥ 1

Output: (Wθℓ)
N
ℓ=0 minimizing φλℓ with λℓ = λ0α

ℓ

Algorithm:

Let β =
1− α

1 + α
, λℓ = λ0α

ℓ , εℓ = βλℓ

θ0 = R1D(φ, λ0,0, ε0)

For ℓ = 1, 2, . . . , N :

θℓ = R1D(φ, λℓ,θℓ−1, εℓ)

matrix-vector productW⊤xi (in multi-class prob-
lem) or W⊤

j xi (in multi-task problem), respec-
tively, for i = 1, . . . , n and i = 1, . . . , nj . Naively,
the running time is O(ndk) and O(

∑
j njdkj),

but exploiting special properties (e.g., sparsity of
feature vectors), this step can be much faster.
The representation W = Wθ as a sum of rank-
one matrices presents an additional opportunity
which (even without special structure) immedi-
ately yields the running times O(n(d + k)r) and
O(
∑
j nj(d+kj)r). If n is very large, the summa-

tion across examples can be parallelized.

• approximate top singular-vector pair: this
can be calculated in time O(dk) by a few steps of
the power method or Lanczos iterations [9].

• ∇supp(θ)ψλ(θ): without additional structure this
can be done in time O(nrk) and O(

∑
j njrkj), as-

suming that u⊤
ℓ xi values are precomputed for all

ℓ ∈ supp(θ) and all i = 1, . . . , n (this is amortized
into the calculation of ∇φ(W)). Again, summa-
tion over n can be parallelized if needed.

Continuation It has been noted that solving ℓ1-
regularized problems is faster when λ is large [17]. In
fact, these instances give coordinate descent an edge
over other techniques since the solutions for larger λ
tend to be sparser. This can be extended to trace-norm
problems, with the sparsity replaced by low rank. We
can accelerate R1D by taking a sequence of problems
with decreasing values of the λ, and using the interme-
diate solution as a warm start for the next problem. In
addition to the benefit from the warm-starting, we ob-
tain a sequence of models optimizing the same empir-
ical risk with different values of regularization. Such
a sequence is called a regularization path [18] and is
in itself a useful output since in practice we typically
choose among several values of λ by cross-validation.

ContR1D (Algorithm 2) is the continuation version
of our R1D. It returns a regularization path for

331

Lifted coordinate descent for learning with trace-norm regularization

a geometrically spaced sequence of λ’s of the form
λℓ = λ0α

ℓ where α ∈ (0, 1). As a convergence crite-
rion we use εℓ = βλℓ. We select the largest β ∈ (0, 1)
that guarantees that sets of εℓ-approximate minimiz-
ers of φλℓ

do not intersect (with the exception of the
case ∇φ(0) = 0, for which the neighborhoods of 0 are
approximate minimizers for any εℓ > 0). By investi-
gating ε-optimality conditions for consecutive λ’s, we
obtain the setting β = (1− α)/(1 + α).

Say that our goal is to calculate an ε̄-solution for a
specific regularization coefficient λ̄. Then we can use
the algorithm ContR1D as follows. We set λ0 =
‖∇φ(0)‖σ,∞ to guarantee that 0 is a minimizer of φλ0

.
We set β̄ = ε̄/λ̄ and invert the formulas in ContR1D
to obtain α and N such that λN = λ̄ and εN ≤ ε̄.
We run ContR1D with the calculated α and N , and
obtain an ε̄-solution for λ̄ as our last iterate WθN

.

3.3 Previous algorithms

Existing approaches for trace-norm penalized learning
fall into three categories: (1) proximal gradient meth-
ods [24, 30]; (2) alternating direction methods, based
on variational characterizations of trace norm, such
as the iterative rescaling [1], or low-norm factoriza-
tion [36]; and (3) conditional gradient methods [22].
These methods are described in Appendix C. Here we
stress the main differences between them and R1D.

Proximal gradient An iteration of a basic proxi-
mal gradient method [5, 3] consists of a gradient step
on φ followed by a “correction” (proximal step) ac-
cording to the trace norm. An accelerated version
has good rate of convergence and has been shown to
be effective for trace-norm problems [30]. Roughly
speaking, O(1/

√
ε) iterations are required to achieve

ε-accuracy, while R1D converges in 1/ε2 iterations.
However, computing the proximal step for the trace
norm requires solving an SVD, i.e., the running time
O(kd rank(W)), while R1D needs only an approxi-
mate top singular-vector pair with the running time
O(kd). As shown in Sec. 4, faster iterations are the
key to scaling up to larger problems. Additionally,
since our algorithm is incrementally adding rank-one
matrices, it automatically maintains a matrix factor-
ization of the approximate solution and has an explicit
control over an upper bound on the rank.

Iterative rescaling The approach of [1] is based
on reformulating the trace norm as an infimum of
reweighted Frobenius norms, which bypasses the non-
smoothness of the problem. While the resulting
smooth convex optimization problems are easier to
solve (by stabilized gradient-like methods for exam-
ple), we lose (part of) the benefit of the trace-norm

regularization, which is that the trace-norm penalty is
enforcing low rank. The numerical experiments will
show that this method does not approximate well op-
timal solutions when they are of low rank.

Low-norm factorization The approach of [36] is
to use the decomposition W = UV⊤ to reformulate
the trace norm as the minimum of the sum of squared
Frobenius norms. A block-coordinate descent can then
be applied since the minimizations with respect to each
factor U and V are smooth optimization problems,
tackled by stabilized gradient-like methods. This ap-
proach however breaks the convexity of the original
problem (3), as the reformulated problem is not jointly
convex with respect to (U,V). As we will see in our
experiments, the algorithm is very sensitive to starting
points, and gets stuck in non-optimal critical points.

Conditional gradient Recently, conditional gradi-
ent algorithms were proposed for squared-loss prob-
lems with a trace-norm constraint [22], frequently used
in collaborative filtering. We carried out preliminary
experiments with the algorithm of [22], but we ob-
served slow convergence. We attribute it to the fact
that the algorithm was designed and evaluated on
squared loss. While the recommended theoretical step-
size works fine for squared loss, we believe it might be
too conservative for multinomial logistic losses. Fur-
thermore, it is difficult to conduct a fair experimental
comparison since [22] works on the constrained formu-
lation while our algorithm solves the penalized formu-
lation. We defer a detailed comparison to future work.

4 Experimental results

We conducted experiments covering a wide range of
problem scales, feature correlation amounts, and reg-
ularization amounts. We use the following acronyms
for the four compared methods: ContR1D for our
algorithm, Prox++ for accelerated proximal gradi-
ent, IR for iterative rescaling, and AM for alternating
minimization for the low-norm factorization objective.

4.1 Synthetic data

We first evaluate the methods on a synthetic multi-
nomial logistic regression problem, following a similar
protocol as in [35, Chapter 11].

We use d = 250 features and k = 500 classes. All our
training data sets have 10 examples per class, yield-
ing 5000 examples in total. Examples for each class
are sampled from a separate multivariate normal dis-
tribution in Rd with means determined by choosing
the first 0.2d coordinates independently uniformly at
random from {−1, 1}, and setting the remaining 0.8d

332

Miroslav Dud́ık, Zaid Harchaoui, Jérôme Malick

0 25 50 75 100
−7

−6

−5

−4

−3

−2

−1

Iter

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

C−R1D
Prox++

0 2 4 6 8 10 12 14
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

CPU time

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

C−R1D

Prox++

0 40 80 120
−6

−5

−4

−3

−2.5

Iter

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

C−R1D

Prox++

0 2 4 6
−4

−3.5

−3

−2.5

CPU time

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

C−R1D
Prox++

Figure 1: Optimization accuracy of ContR1D and Prox++ in high correlation settings. Left two plots: accu-
racy versus the number of iterations and CPU time for light regularization. Right two plots: heavy regularization.

coordinates to zero. The covariance matrix for each
class is (Σ)i,j = σ2ρ|i−j|, where we use σ to control
the separation of the classes and ρ to control correla-
tion among features. We consider ρ = 0.1 and ρ = 0.9
to obtain low correlation and high correlation settings.
We set σ so that the average distance among all pairs
of class means is 3σ. We compared performance for
λ = 0.5 (heavy regularization) and λ = 0.001 (light
regularization). We report performance results aver-
aged over 10 replications by plotting the relative ac-
curacy |(f − f⋆)/f⋆| against the computation time.
We used the smallest value of the objective function
attained by the best performing method after a large
number of iterations as a proxy for f⋆. As we ob-
served similar or worse behavior for the other algo-
rithms compared to Prox++, we only compare here
our algorithm to Prox++.

In Fig. 1, we highlight the main strengths and weak-
nesses of our approach in high-correlation situations.
We see that ContR1D outperforms Prox++ in
terms of CPU time in both high and low regulariza-
tion settings. As a function of iteration, Prox++
converges faster for low regularization since its con-
vergence rate is directly controlled by the Lipschitz
constant of the gradient (fast convergence for gradi-
ent with low Lipschitz constant). However, since its
iterations are more costly, ContR1D achieves more
accurate solutions faster. Note also the “staircase phe-
nomenon” in the curves for ContR1D, which can be
attributed to alternation between Steps 3 and 4. Our
approach achieved similar performance to Prox++ in
low correlation situations, so the results are omitted.

4.2 Real-world data

We considered two conjoint analysis datasets [1] and
[8], which we refer to as Conjoint (I) and Conjoint
(II), and a subset of the ImageNet dataset 2010 [4]. In
Fig. 2 (top), we compare our algorithm to the others
in terms of optimization accuracy. In Fig. 2 (bottom),
we plot the average test error as a function of training
time (averaged over 10 cross-validation splits, using

the best performing regularization coefficient λ).

Conjoint analysis The goal of conjoint analysis is
modeling people’s preferences among choices in some
set (e.g., products in a certain category). We view it as
a multi-task problem with individuals corresponding
to tasks and pairs of choices corresponding to exam-
ples. Each individual choice is modeled by a feature
vector, the pair is modeled as the difference of the two
vectors, with the target class being the preferred choice
between the two listed in the pair, i.e., each task is a
binary logistic regression. Dataset Conjoint (I) was
taken from a survey of 180 individuals, each providing
on average preferences for 8 pairs of PCs (among 20
different PCs), parameterized by 13 features. Dataset
Conjoint (II) is another survey regarding 1187 indi-
viduals, each providing on average preferences for 10
pairs of options (among the total of 5), parameterized
by 22 features.

On Conjoint (I), all algorithms show similar optimiza-
tion performance. Since the alternating minimiza-
tion algorithm AM is heavily dependent on the ini-
tialization because of the non-convexity of the objec-
tive, we only reported the best performance for this
algorithm. In terms of test error, three algorithms
ContR1D, Prox++, and IR achieve similar per-
formance, whereas the alternating minimization algo-
rithm AM shows higher variance and worse accuracy.
The algorithm gets easily trapped in local minima of
the objective function which might not correspond to
solutions yielding low test error.

On Conjoint (II), the algorithms show different opti-
mization performance. In particular, our algorithm
clearly outperforms the other methods. The accel-
erated proximal gradient Prox++ and the iterative
rescaling IR show similar optimization performance.
In terms of test error, our algorithm ContR1D per-
forms better than the other three and in fact manages
to reach the lowest test error in the early stages of
training. This phenomenon might be due to the fact
that early iterates of our algorithm tend to have lower
rank, which might yield better generalization than the

333

Lifted coordinate descent for learning with trace-norm regularization

0 100 200 300 400
−5

−3.5

−2

−1

CPU time

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

C−R1D

Prox++

IR

AM

0 50 100 150 180

−7

−5

−3

−1

1

3

CPU time

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

C−R1D

Prox++

IR

AM

0 1000 2000 3000

−11

−9

−7

−5

−3

−2

CPU time

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

C−R1D

Prox++

IR

AM

(a) Conjoint (I) (b) Conjoint (II) (c) ImageNet

0 500 1000 1500 2000 2500 3000
3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

Training time

T
es

t e
rr

or

R1D

Prox++

IR

AM

0 500 1000 1500 2000 2500 3000
15.6

15.7

15.8

15.9

16

16.1

16.2

16.3

Training time

T
es

t e
rr

or

R1D

Prox++

IR

AM

0 500 1000 1500 2000 2500 3000
52

54

56

58

60

62

64

66

Training time

T
es

t e
rr

or

R1D

Prox++

IR

AM

(a) Conjoint (I) (b) Conjoint (II) (c) ImageNet

Figure 2: Comparison of optimization performance and test error (in percentage) on real-world data.

final solution of the trace-norm regularized optimiza-
tion. This behavior is reminiscent of the behavior of
coordinate descent algorithms for ℓ1-regularized prob-
lems (see, e.g., [39]), which tend to achieve better test
error in early iterations as well.

ImageNet Here, we tackle a multi-class classifica-
tion problem with the multinomial logistic loss. We
chose a subset of 281 classes from the ImageNet
dataset, corresponding to various kinds of birds, carni-
vores, and flowers. Each example is described by 4096
features. We use 10 training and 10 test examples per
class.

Our algorithm shows superior optimization perfor-
mance. This could be explained by the strong corre-
lation of the visual features in this application. Such
correlation harms the performance of the other algo-
rithms whereas our algorithm remains robust.

As in the Conjoint (II) dataset, our coordinate de-
scent algorithm reaches the lowest test error quickly,
but the generalization performance then slightly dete-
riorates. It is worthwhile to note that, on this dataset,
the alternating minimization algorithm AM reaches
lower test error than the other algorithms after a long
training time for a particular run. We interpret this
by relating it to the low rank of the weight matrices at
the end of the training phase. Since the optimization
process of AM is not guaranteed to converge to the

global optimum and is strongly biased by the structure
of the initial weight matrix, AM displays good test-
error performance when this structure is particularly
tailored to the data at hand. Here, we observe that
for the best run of AM the initial matrix was of very
low rank.

5 Conclusion

We have introduced a new fast coordinate descent al-
gorithm for a wide range of trace-norm regularized
learning problems. We have shown that in problems
with large matrices, our approach is competitive or
outperforms existing optimization algorithms. Our
work paves the way for the design of efficient and scal-
able learning approaches for large-scale matrix prob-
lems such as the full ImageNet dataset.

Acknowledgements

This work was funded by a Math-STIC project from
Grenoble University and the PASCAL 2 Network of
Excellence.

References

[1] A. Argyriou, T. Evgeniou, and M. Pontil. Convex
multi-task feature learning. Machine Learning,
73(3):243–272, 2008.

334

Miroslav Dud́ık, Zaid Harchaoui, Jérôme Malick

[2] F. Bach. Consistency of trace norm minimization.
JMLR, 9:1019–1048, 2008.

[3] A. Beck and M. Teboulle. A fast iterative
shrinkage-thresholding algorithm for linear in-
verse problems. SIAM Journal on Imaging Sci-
ences, 2(1):183–202, 2009.

[4] A. Berg, J. Deng, and F.-F. Li. ImageNet
large scale visual recognition challenge, 2010.
http://www.image-net.org/.

[5] D. Bertsekas. Nonlinear Programming (2nd ed.).
Athena Scientific, 2004.

[6] S. Boyd and L. Vandenberghe. Convex Optimiza-
tion. Cambridge UP, 2004.

[7] V. Chandrasekaran. Convex Optimization Meth-
ods for Graphs and Statistical Modeling. PhD the-
sis, MIT, 2011.

[8] O. Chapelle and Z. Harchaoui. A machine learn-
ing approach to conjoint analysis. In Adv. NIPS.
2005.

[9] K. Chen. Matrix Preconditioning Techniques and
Applications. Cambridge UP, 2005.

[10] K. L. Clarkson. Coresets, sparse greedy approxi-
mation, and the Frank-wolfe algorithm. In Proc.
SODA, 2008.

[11] M. Collins, R. E. Schapire, and Y. Singer. Logis-
tic regression, AdaBoost and Bregman distances.
Machine Learning, 47, 2002.

[12] A. Demiriz, K. P. Bennett, and J. Shawe-Taylor.
Linear programming boosting via column gener-
ation. Machine Learning, 46, 2002.

[13] V. Demyanov and A. Rubinov. Approximate
Methods in Optimization Problems. American El-
sevier, 1970.

[14] M. Dud́ık, S. J. Phillips, and R. E. Schapire. Max-
imum entropy density estimation with generalized
regularization and an application to species dis-
tribution modeling. JMLR, 8:1217–1260, 2007.

[15] M. Fazel. Matrix rank minimization with applica-
tions. PhD thesis, Stanford, 2002.

[16] M. Frank and P. Wolfe. An algorithm for
quadratic programming. Naval Research Logistics
Quarterly, 3:95–110, 1956.

[17] J. Friedman, T. Hastie, and R. Tibshirani. Regu-
larization paths for generalized linear models via
coordinate descent. Journal of Statistical Soft-
ware, 33(1), 2010.

[18] T. Hastie, R. Tibshirani, and J. Friedman.
The Elements of Statistical Learning (2nd Ed.).
Springer Series in Statistics. Springer, 2008.

[19] E. Hazan. Sparse approximate solutions to
semidefinite programs. In Proc. 8th Latin Amer-
ican Conf. Theor. Informatics, pages 306–316,
2008.

[20] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex
Analysis and Minimization Algorithms. Springer
Verlag, Heidelberg, 1993. Two volumes.

[21] E. J. C. J-F Cai and Z. Shen. A singular
value thresholding algorithm for matrix comple-
tion. SIAM J. Optimization, 20(4):1956–1982,
2008.

[22] M. Jaggi and M. Sulovský. A simple algorithm
for nuclear norm regularized problems. In ICML,
2010.

[23] G. Jameson. Summing and nuclear norms in Ba-
nach space theory. London Mathematical Society
Student Texts, 8. Cambridge University Press. XI,
1987.

[24] S. Ji and J. Ye. An accelerated gradient method
for trace norm minimization. In ICML, 2009.

[25] L. Mason, P. Bartlett, J. Baxter, and M. Frean.
Functional gradient techniques for combining hy-
potheses. In B. Schölkopf, A. Smola, P. Bartlett,
and D. Schuurmans, editors, Adv. Large Margin
Classifiers. MIT Press, 2000.

[26] Y. Nesterov. Gradient methods for minimizing
composite objective function. Technical report,
CORE, 2007.

[27] Y. Nesterov. Efficiency of coordinate descent
methods on huge-scale optimization problems.
Technical report, CORE, 2010.

[28] G. Obozinski, B. Taskar, and M. I. Jordan. Joint
covariate selection and joint subspace selection for
multiple classification problems. Statistics and
Computing, 2010.

[29] R. Phelps. Convex functions, monotone opera-
tors, and differentiability. Lecture notes in math-
ematics. Springer-Verlag, 1993.

[30] T. K. Pong, S. J. Paul Tseng, and J. Ye. Trace
norm regularization: Reformulations, algorithms,
and multi-task learning. SIAM J. Optimization,
20(6):3465–3489, 2010.

[31] B. Recht, M. Fazel, and P. Parrilo. Guaranteed
minimum-rank solutions of linear matrix equa-
tions via nuclear norm minimization. SIAM Re-
view, 52(3):471–501, 2010.

[32] R. Rockafellar. Convex Analysis. Princeton Uni-
versity Press, 1970.

[33] S. Shalev-Shwartz, A. Gonen, and O. Shamir.
Large-scale convex minimization with a low-rank
constraint. In ICML, 2011.

335

Lifted coordinate descent for learning with trace-norm regularization

[34] W. Shi, G. Wahba, S. Wright, K. Lee, R. Klein,
and B. Klein. Lasso-patternsearch algorithm with
application to ophthalmology and genomic data.
ASA Proceedings of the Joint Statistical Meetings,
2006.

[35] S. Sra, S. Nowozin, and S. J. Wright. Optimiza-
tion for Machine Learning. The MIT Press, 2010.

[36] N. Srebro, J. D. M. Rennie, and T. S. Jaakola.
Maximum-margin matrix factorization. In Adv.
NIPS, 2005.

[37] A. Tewari, P. K. Ravikumar, and I. S. Dhillon.
Greedy algorithms for structurally constrained
high dimensional problems. In Adv. NIPS, 2011.

[38] S. Wright. Accelerated block-coordinate relax-
ation for regularized optimization. Technical re-
port, 2010.

[39] G.-X. Yuan, K.-W. Chang, C.-J. Hsieh, and C.-
J. Lin. A comparison of optimization methods
and software for large-scale l1-regularized linear
classification. JMLR, 11, December 2010.

[40] T. Zhang. Sequential greedy approximation for
certain convex optimization problems. IEEE
Transaction on Information Theory, 49:682–691,
2003.

336

