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1 Definitions and background

In this section we give some standard graph-specific terms, and the definitions of blocked and active
paths, and back-door paths, and we restate the back-door criterion (Pearl, 2009), which is a graphical
criterion for when adjustment is guaranteed to yield a consistent estimate of a causal effect from
observational data.

A directed graph G is a pair G = (V, E), with V a set of variables and E ⊆ V × V a set of edges. If
an ordered pair (vi, vj) ∈ E , we write vi → vj and say that vi is a parent of vj , and vj is a child of
vi. A path is a sequences of nodes (v1, . . . , vi, vi+1, . . . , vm) such that for each pair of consecutive
nodes either (vi, vi+1) ∈ E or (vi+1, vi) ∈ E , i = 1, . . . ,m− 1. A directed path from v1 to vm is a
path where all arrows point towards vm (v1 → . . . vi → vi+1 . . . → vm), i.e. (vi, vi+1) ∈ E for all
i = 1, . . . ,m − 1. If there is a directed path from vi to vj , then vi is called an ancestor of vj , and
vj a descendant of vi. A directed acyclic graph (DAG) is a directed graph that does not contain any
directed paths from a node to itself.

A path is blocked (d-separated) by a variable set Z if the path contains (i) a triple of the form
vi → vk → vj or vi ← vk → vj with vk ∈ Z or (ii) a triple vi → vl ← vj (called a collider) with
neither vl nor any descendant of vl in Z . A path which is not blocked is called an active path. A set
Z ⊆ V \ {vi, vj} d-separates two variables vi and vj if Z blocks all paths between vi and vj (Pearl,
2009, Ch. 1).

A back-door path from vi to vj is a path leaving vi via one of its parents, i.e. the first edge in the
path is vi ← vk for some k.

Given a DAG over a set of random variables (including x, y and Z), the back-door criterion (Pearl,
2009, Ch. 3) states that the total causal effect of x on y is identifiable from observational data if there
exists a set Z of observed variables such that no variable in Z is a descendant of x, and Z blocks
(d-separates) all back-door paths from x to y. A set Z satisfying the back-door criterion is called
admissible (Pearl, 2009, Ch. 3) (or ‘sufficient’, Greenland et al., 1999). In the linear case, the causal
effect of x on y can be consistently estimated by including an admissible set Z in the regression of
y on x, and the causal effect is obtained as the regression coefficient of x (Pearl, 2009, Ch. 5).

2 Detailed proof of Theorem 1

To recap, the model over the variable set V = {x, y}∪W ∪U defined in Equation (1) of Section 2.2
of the paper is given by

v := Bv + e (1)

where B can be permuted to lower triangularity (acyclicity assumption) and the disturbance terms
in e are mutually independent. We assume that the covariates inW precede the ‘treatment’ variable
x which in turn precedes the ‘outcome’ variable y.

We here provide a detailed proof of the main result (Theorem 1), which is used to judge the outcome
of the procedure of Algorithm 1. Both are restated for convenience.

Theorem 1. Given the model of Equation (1) and using the procedure described in Algorithm 1
with a fixed conditioning set Z , the following statements hold:

(a) Under the assumption that the disturbance term of x, denoted by ex, has a non-Gaussian distri-
bution, if the residuals rx and ry are asymptotically mutually independent, then a is a consistent
estimator of the true causal effect α.

(b) Under the assumption that the distribution over the variables in V is linearly faithful to the
generating DAG (Spirtes et al., 2000, p. 47), if the residual rx is non-Gaussian, and rx and
ry are asymptotically mutually independent, then a is a consistent estimator of the true causal
effect α.

(c) If the residuals rx and ry are asymptotically statistically dependent, then the set Z is not admis-
sible.
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Algorithm 1 (Statistical test for consistency)
Given a dataset over the observed variables {x, y} ∪W (from a model as in Equation (1)) and a set
Z ⊆ W of covariates to adjust for.

Estimate the following two regressions using ordinary least squares (OLS):

x = bTz + rx (2)

y = ax+ cTz + ry. (3)

Perform a statistical test for Gaussianity of the residual rx, proceed only if Gaussianity is rejected.

Perform a statistical test for independence of rx and ry , interpret the result as follows (Theorem 1):
If independence is not rejected at threshold pt:

The estimated effect a is inferred to be consistent
If independence is rejected at threshold pt:

The estimated effect a is inferred to be inconsistent

In the proofs we will use the ‘reduced form’ representation of the model in Equation (1), given by

v = Ae (4)

with A = (I − B)−1 containing the total effects of the disturbances e on the variables v. That is,
each variable v ∈ V can be written as a linear combination of the disturbance terms:

v = Ave (5)

with Av being the corresponding row of matrix A.

Furthermore, we use a property about dependence and independence of two sums of independent
random variables, known as the Darmois-Skitovitch Theorem:

Darmois-Skitovitch Theorem (Darmois, 1953; Skitovitch, 1953). Let e1, . . . , en be independent
random variables (n ≥ 2), s1 = β1e1 + . . . + βnen and s2 = γ1e1 + . . . + γnen with constants
βi, γi, i = 1, . . . , n. If s1 and s2 are independent, then those ej which influence both sums s1 and
s2 (i.e. βjγj 6= 0) are Gaussian.

Proof of Theorem 1(a). We show that if a is an inconsistent estimator of the true causal effect α
then the residuals rx and ry are dependent.

Let the variables in V be arranged in a causal order (i.e. no “later” variable has an effect on
any “earlier” variable in this order) such that v = (v1, . . . , vn−2, x, y)

T and the disturbances
e = (ev1 , . . . , evn−2 , ex, ey)

T which implies that the matrix A in Equation (4) is lower triangu-
lar with a unit diagonal (possible by the acyclicity and partial temporal ordering assumption).

Using Equation (5) we can express the variable x as a linear combination of the underlying distur-
bances, x = Axe, where Ax = (Ax,1, . . . , Ax,n−2, 1, 0), meaning that the coefficient of ex is equal
to 1, the coefficient of ey is equal to 0, and the coefficients Ax,i, i = 1, . . . , n − 2, from the other
disturbances can be either zero or non-zero, depending on the graph and the parameters of the model.
Similarly, y is represented by y = Aye with Ay = (Ay,1, . . . , Ay,n−2, α, 1) with a coefficient of
strength α for ex, unit coefficient for ey and zero or non-zero coefficients Ay,i, i = 1, . . . , n − 2,
for the other disturbances. The effect α of ex on y is the same as the true causal effect of x on y
because of the acyclicity assumption. Furthermore, for all other variables vi, i = 1, . . . , n− 2, the
representation vi = Avie is such that the coefficients of ex and ey are zero (because of the lower
triangularity of A).

Using the above we can express the residuals from Equations (2) and (3) in terms of the disturbances:

rx = x− bTz = (Ax −
∑
z∈Z

bzAz) e = (. . . , 1, 0) e

ry = y − ax− cTz = (Ay − aAx −
∑
z∈Z

czAz) e = (. . . , α− a, 1) e
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where the dots indicate the entries of the disturbances other than ex and ey . Given the premise

that the estimator a is inconsistent (i.e. (a − α)
P−→9 0) the disturbance ex has a non-vanishing

coefficient in the representation of both residuals rx and ry . By the assumed non-Gaussianity of ex
the Darmois-Skitovitch theorem ensures that rx and ry are statistically dependent.

For the proofs of Theorem 1(b) and (c) we make use of the following lemma, which gives a criterion
when a disturbance variable ew has a non-vanishing coefficient in the representation of a residual rv .

Lemma 1. We are given a set of variables V = v ∪ V ′, where v is a single variable and V ′ a
non-empty set of variables not including v, following the model in Equation (1), and we assume that
the distribution over these variables is linearly faithful to the generating DAG. Regressing v on a set
Z ′ ⊆ V ′ not containing any descendants of v yields

rv = v −
∑
z∈Z′

ĉzz = Ave−
∑
z∈Z′

ĉzAze = dve

= (dv,1, . . . , dv,w, . . . , dv,n)(e1, . . . , ew, . . . , en)
T

with Av and Az, z ∈ Z ′, as in Equation (5) and dv = Av −
∑
z∈Z′ ĉzAz . When estimating the

regression using OLS, for w ∈ V ′ holds that dv,w
P−→9 0 (with dv,w the coefficient of ew in dv) if and

only if

1. forw ∈ Z ′ there is an active back-door path (not blocked byZ ′\{w}) fromw to v pointing
into v (i.e. the last edge on the path is “→ v”),

2. for w ∈ V ′ \ Z ′ there is
(i) a directed active path from w to v (not blocked by Z ′) or

(ii) a directed active path from w to some z ∈ Z ′ (not blocked by Z ′ \ {z}) for which
there is an active back-door path to v (not blocked by Z ′ \ {z}) pointing into v.

Note that the linear faithfulness assumption is only necessary for the “if-direction”, the “only-if-
statement” is valid without this assumption as can be seen from the proof.

Proof of Lemma 1. We will use in both directions of the proof the fact that points 1 and 2, respec-
tively, are equivalent to ew being d-connected to v given Z ′, by a path pointing into v (for w ∈ Z ′
and w ∈ V ′ \ Z ′, respectively), which follows straight from the definition of d-separation. Further-
more, in points 1 and 2(ii) any potentially active back-door path is pointing into v, since any other
back-door path contains a collider at some descendant of v, which is not in the conditioning set (by
assumption) and hence such paths are blocked.

“⇐” We show that if either point 1 or 2 holds, then dv,w
P−→9 0.

First we note that for any w ∈ Z ′ which has no parents, i.e. w = ew, point 1 never holds.

For any other disturbance variable ew (independent of whether w is in the conditioning set Z ′), if
point 1 or 2 is fulfilled, we know that ew is not d-separated from v given Z ′ which implies using the
faithfulness assumption that the partial correlation of ew and v given Z ′ is non-zero. Hence, in the
regression v =

∑
z∈Z′ c̃zz + bew + r̃v (which has non-collinear regressors since ew 6= z, z ∈ Z ′)

the coefficient b P−→9 0. We now show that in the regression v =
∑
z∈Z′ ĉzz + rv the contribution

of the disturbance term ew to the residual rv is non-vanishing. We rewrite the regressions in matrix
form, with ĉ and c̃ collecting the coefficients ĉz and c̃z, z ∈ Z ′, respectively, Z the data matrix over
the variables in Z ′ and Ew the data vector of the disturbance term ew:

v = Zĉ+ rv

v = Zc̃+ Ewb+ r̃v
The coefficients c̃ of the second regression can be expressed in terms of the coefficients ĉ and b as
c̃ = ĉ− (ZTZ)−1ZTEwb (Seber and Lee, 2003, p. 54), which yields for the second regression

v = Z(ĉ− (ZTZ)−1ZTEwb) + Ewb+ r̃v

= Zĉ+ (I − Z(ZTZ)−1ZT )Ewb+ r̃v.
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It follows that the residual rv of the first regression is equal to

rv = (I − Z(ZTZ)−1ZT )Ewb+ r̃v.

The (1x1) matrixE′w(I−Z(ZTZ)−1ZT )Ew is positive definite (Seber and Lee, 2003, p. 54), which
for the scalar case means it is a positive number, and hence the vector (I − Z(ZTZ)−1ZT )Ew is
non-zero. Since b P−→9 0, the residual rv has a non-vanishing contribution from the disturbance term
ew, i.e. dv,w

P−→9 0.

“⇒” We show that if neither point 1 nor 2 holds, then dv,w
P−→ 0.

First, for any w ∈ Z ′ with w = ew point 1 never holds. In this case, since in the regression of v on
the variables in Z ′ the regressors are uncorrelated with the residual rv , we obtain 0 = cov(w, rv) =

cov(ew, rv) = E(ew dve) =
∑n
i=1 dv,iE(ew ei) and E(ew ei)

P−→ 0 for w 6= i (since all ei are

independent). Thus,
∑n
i=1 dv,iE(ew ei)

P−→ dv,wE(ew ew) = dv,wV (ew)
P−→ 0, implying that

dv,w
P−→ 0.

For any other disturbance variable ew (independent of whether w is in the conditioning set Z ′) we
know that the negation of points 1 and 2 imply that ew is d-separated from v given Z ′, which in the
linear model family implies that the partial correlation of ew and v given Z ′ is zero. Thus, in the
regression v =

∑
z∈Z′ c̃zz + bew + r̃v (which has non-collinear regressors since ew 6= z, z ∈ Z ′)

the regression coefficient b P−→ 0, and hence for the regression v =
∑
z∈Z′ ĉzz + rv we get that for

all z ∈ Z ′ the coefficients c̃z and ĉz converge in probability to the same value and hence also r̃v and
rv . Because 0 = cov(ew, r̃v) = cov(ew, rv) we can, as above, conclude that dv,w

P−→ 0.

Proof of Theorem 1(b). As in the proof of Theorem 1(a), we show that if the estimator is inconsis-
tent, then the residuals are dependent.

First, the inconsistent estimator for the effect of x on y implies that there is an active back-door path
from x to y (not blocked by the set Z) pointing into y.

Additionally, since the residual rx from Equation (2) is non-Gaussian, when expressing rx = x −
bTz = dxe as a linear combination of the disturbances e, the coefficient of at least one non-
Gaussian residual ew has to be non-vanishing. By Lemma 1 with v = x and Z ′ = Z follows that
there exists an active path from w to x of the type in point 1 or 2 of the lemma (which is pointing
into x).

We now show that connecting this active path from w to x with the active back-door path from x to
y yields an active path from w to y when conditioning on {x}∪Z , which has the form as one of the
paths in point 1 or 2 of Lemma 1 (with v = y and Z ′ = {x} ∪ Z). We consider the following three
cases, according to the lemma.

1. w ∈ Z , active path as in point 1 of Lemma 1: Since this active back-door path from w to
x is pointing into x, the concatenated path has a collider at x, which is in Z ′ and hence
the path is an active back-door path from w to y (not blocked by Z ′) as in point 1 of the
lemma. (Note that if the two paths have more than the node x in common, this is still valid
using (Spirtes et al., 2000, Lemma 3.3.1), which states conditions under which a series of
active paths from nodes v1 to v2, v2 to v3, . . . , vn−1 to vn yield an active path from v1 to
vn.)

2. w /∈ Z , active path as in point 2(i) of Lemma 1: We immediately obtain a path as in
point 2(ii): a directed active path from w to x (with x ∈ Z ′) for which there is an active
back-door path to y (not blocked by Z = Z ′ \ {x}).

3. w /∈ Z , active path as in point 2(ii) of Lemma 1: The active back-door path from some
z ∈ Z to x is again pointing into x, and by the same argument as in point 1 by concatenating
this active back-door path with the active back-door path from x to y yields an active back-
door path (not blocked by Z ′) from the given z to y, pointing into y. Hence, by using the
same directed path from w to z and the concatenated back-door path from z to y we obtain
a path as in point 2(ii) of the lemma.
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Thus, there exists an active path from w to y when conditioning on {x} ∪ Z as in point 1 or 2 of
Lemma 1 and applying the lemma with v = y and Z ′ = {x} ∪ Z now implies that the effect of
ew on y is also non-vanishing (as is the effect of ew on x). (Note that in this step we need the
faithfulness assumption to apply Lemma 1.) From the non-Gaussianity of ew and the Darmois-
Skitovitch theorem then follows that the residuals rx and ry are dependent.

Proof of Theorem 1(c). We show that if the residuals are dependent then there exists an active back-
door path from x to y.

We rewrite the regressions from Equations (2) and (3) to obtain rx = x − bTz = dxe and ry =
y−ax−cTz = dye. Since rx and ry are by assumption dependent there exists a w ∈ {x}∪W∪U
whose error term ew has a non-vanishing coefficient in the representation of both residuals rx and
ry . By Lemma 1 we thus know that there exist some kind of active paths (as in point 1 or 2 of the
lemma) from w to x and from w to y, and we will show that by concatenating these paths we can
always construct an active back-door path from x to y. (Note that here we only made use of the
“only-if-statement” of Lemma 1 which does not need the linear faithfulness assumption.) Consider
the following cases:

1. w = x: By point 1 of Lemma 1 (with v = y, ew = ex and Z ′ = {x}∪Z) there is an active
back-door path from x to y.

2. w ∈ Z: This means by point 1 of Lemma 1 that there exist active back-door paths p =
(w ← . . . → x) from w to x, and q = (w ← . . . → y) from w to y. Hence, the
concatenated path x← . . .→ w ← . . .→ y is an active back-door path from x to y since
w ∈ Z is an active collider. (Note that the two paths can have more than w in common,
but this does not change the fact that there is a d-connecting back-door path, using (Spirtes
et al., 2000, Lemma 3.3.1).)

3. w /∈ {x} ∪ Z: According to Lemma 1 there are four different possibilities:

2(i) + 2(i): There are directed active paths from w to x and to y, which immediately implies
an active back-door path from x to y.

2(i) + 2(ii): There is a directed active path from w to x and a directed active path from w
to some z ∈ Z for which there is an active back-door path to y: Since z cannot be along
the directed active path from w to x we can concatenate the two paths and get an active
back-door path from x to y: x ← . . . ← w → . . . → z ← . . . → y (using (Spirtes et al.,
2000, Lemma 3.3.1) if the paths have more nodes than w in common).

2(ii) + 2(i): Completely analogous to 2(i) + 2(ii)

2(ii) + 2(ii): There are directed active paths from w to some z1, z2 ∈ Z and active back-
door paths from z1 to x and from z2 to y, respectively. As before we can concatenate the
paths at w to get an active back-door path from x to y: x ← . . . → z1 ← . . . ← w →
. . . → z2 ← . . . → y, (using once more (Spirtes et al., 2000, Lemma 3.3.1) if the paths
have more nodes than w in common).

3 Pseudocode of the backward elimination search procedure

The pseudocode of the forward selection procedure was given in the paper in Algorithm 2. A similar
piece of code is shown in Algorithm 3 for the backward elimination procedure, omitted from the
main paper for reasons of space.

4 Details on the examples of Figure 1

In this section we present some details of the two example graphs in Figure 1 of the paper, redrawn
here for convenience also in Figure 1. Note that for Example 2 we relabeled the edge coefficients
with Latin letters, to be able to distinguish them from the coefficients of Example 1.
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Algorithm 3 (Backward Elimination)
Let Z|W | =W and m = |W|
If the residual rx from Algorithm 1 is Gaussian, set p|W| = NaN,
Else otain a p-value p|W| from the independence test of the residuals rx and ry from Algorithm 1
Repeat while m > 0
m = m− 1
For every set Z = Zm+1 \ {w}, w ∈ Zm+1, test whether rx is Gaussian
For every such Z with non-Gaussian rx get a p-value pZ from the independence test of rx and ry
Set pm = max{pZ} and let Zm be the corresponding set Z
If all rx were Gaussian, set pm = NaN and let Zm be the set Z yielding the least Gaussian rx

Return maxm=0,...,|W|{pm} and the corresponding set Zm

w

x yα

βγ

(a) Example 1

w

x ya

b

c

u u1 2d

f

(b) Example 2

Figure 1: Two example models with w, x, and y observed, and u1 and u2 hidden variables.

In Section 4.1 we first represent the models using Equations (1) and (4), and derive the covariance
matrices over the observed variablesw, x and y, which will be used throughout the whole section. In
Section 4.2 we show what the effect of adjusting and not adjusting for variablew is in both examples,
i.e. when the estimator of the causal effect of x on y is consistent and when it is inconsistent. We
then prove in Section 4.3 that the two graphs in Figure 1 can model the same covariance matrices
over the three observed variables w, x and y, which implies that they are indistinguishable from data
over these variables when all disturbance variables are Gaussian. Finally, we show in Section 4.4 that
if the disturbances deviate from Gaussianity, the two models can be told apart from observational
data over w, x and y, using Theorem 1.

4.1 Model equations and covariance matrices

Writing the equations for the two example graphs in Figure 1 as in Equation (1) we obtain for
Example 1 (

w
x
y

)
=

(
0 0 0
γ 0 0
β α 0

)(
w
x
y

)
+

(
ew
ex
ey

)
(6)

and for Example 2
u1
u2
w
x
y

 =


0 0 0 0 0
0 0 0 0 0
b d 0 0 0
c 0 0 0 0
0 f 0 a 0




u1
u2
w
x
y

+


eu1

eu2

ew
ex
ey

 . (7)

Rewriting both Equations (6) and (7) using the formula in Equation (4) yields for Example 1(
w
x
y

)
=

(
1 0 0
γ 1 0

αγ + β α 1

)(
ew
ex
ey

)
(8)
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and for Example 2 
u1
u2
w
x
y

 =


1 0 0 0 0
0 1 0 0 0
b d 1 0 0
c 0 0 1 0
ac f 0 a 1




eu1

eu2

ew
ex
ey

 . (9)

We can obtain the covariance matrices over all variables in Examples 1 and 2 by using the formula

C(v) = E(vvT ) = E(AeeTAT ) = AC(e)AT (10)

where C(v) and C(e) are the covariance matrices over the variables in v and e, respectively. By
the independence of the disturbance variables e the matrix C(e) is diagonal, with the variances
of the disturbances along the diagonal. Denoting these variances in Example 1 with σ2

w, σ
2
x and

σ2
y , respectively, and in Example 2 with τ2u1

, τ2u2
, τ2w, τ

2
x and τ2y , respectively, for Example 1 the

covariance matrix is given by (showing only the upper triangle because of symmetry)

C1 =

 σ2
w γσ2

w (αγ + β)σ2
w

. γ2σ2
w + σ2

x γ(αγ + β)σ2
w + ασ2

x

. . (αγ + β)2σ2
w + α2σ2

x + σ2
y

 (11)

and for Example 2 by

C2 =


τ2u1

0 bτ2u1
cτ2u1

acτ2u1

. τ2u2
dτ2u2

0 fτ2u2

. . b2τ2u1
+ d2τ2u2

+ τ2w bcτ2u1
abcτ2u1

+ dfτ2u2

. . . c2τ2u1
+ τ2x ac2τ2u1

+ aτ2x
. . . . a2c2τ2u1

+ f2τ2u2
+ a2τ2x + τ2y

 .

Thus, in Example 2 the covariance matrix over the observed variables w, x and y results in

C2,obs =

 b2τ2u1
+ d2τ2u2

+ τ2w bcτ2u1
abcτ2u1

+ dfτ2u2

. c2τ2u1
+ τ2x ac2τ2u1

+ aτ2x
. . a2c2τ2u1

+ f2τ2u2
+ a2τ2x + τ2y

 , (12)

the submatrix over these three variables (i.e. u1 and u2 are marginalized out).

We can use the covariance matrices to calculate the exact values of the estimates. To see this, for
the regression v =

∑
z∈Z′ czz+ rv the coefficient vector cz is obtained by the OLS estimate which

converges for growing sample size to an expression depending only on the covariance matrix. Let
iZ′ denote the indices of Z ′, and iv the index of v (among all observed variables) and let D be the
data matrix over the observed variables. Then we obtain for the coefficient vector

cTz = (DTiZ′DiZ′ )
−1DTiZ′Div = (

1

k
DTiZ′DiZ′ )

−1 1

k
DTiZ′Div (13)

P−→ (Cov[iZ′ , iZ′ ])
−1Cov[iZ′ , iv] for k →∞ (14)

with Dinds the data submatrix over the variables with indices inds, k the sample size, and
Cov([inds1, inds2]) the submatrix of the covariance matrix containing the rows with indices inds1
and columns with indices inds2.

4.2 The effect of controlling for w in Figure 1 (a) and 1 (b)

We now show that in case of Example 1 of Figure 1, not controlling for w in the regression of y on
x yields an inconsistent estimator, whereas controlling for w will render the estimator consistent. In
Example 2, the situation is exactly the opposite.

Lets start with Example 1. When not including w in the regression, i.e. estimating

y = α̂x+ ry

8



the regression coefficient α̂ is obtained as (using Equations (13) and (14))

α̂
P−→ cov(x, y)

V (x)
=
γ(αγ + β)σ2

w + ασ2
x

γ2σ2
w + σ2

x

= α+
βγσ2

w

γ2σ2
w + σ2

x

(15)

where the covariance of x and y and the variance of x can be read off the covariance matrix defined
in Equation (11). We can see that the estimator α̂ converges to the true effect α plus a non-zero term,
depending on β, γ and the variances of ew and ex (σ2

w and σ2
x, respectively) i.e. the estimator is not

consistent (for β 6= 0, γ 6= 0).

On the other hand, if w is included in the regression of y on x, that means we are estimating

y = α̂x+ β̂w + ry,

the estimates can be obtained using the covariance matrix of Equation (11) as shown in Equa-
tions (13) and (14):(
β̂
α̂

)
P−→ C1[1 : 2, 1 : 2]−1C1[1 : 2, 3] =

(
σ2
w γσ2

w

γσ2
w γ2σ2

w + σ2
x

)−1(
(αγ + β)σ2

w

γ(αγ + β)σ2
w + ασ2

x

)
=

1

σ2
xσ

2
w

(
γ2σ2

w + σ2
x −γσ2

w

−γσ2
w σ2

w

)(
(αγ + β)σ2

w

γ(αγ + β)σ2
w + ασ2

x

)

=

 γ2σ2
w(αγ+β)
σ2
x

+ (αγ + β)− γ2(αγ+β)σ2
w

σ2
x

− αγ
−γ(αγ+β)σ

2
w

σ2
x

+
γ(αγ+β)σ2

w

σ2
x

+ α

 =

(
β
α

)
(16)

where C1[1 : 2, 1 : 2] is the submatrix of C1 with rows 1 and 2, and columns 1 and 2, and similarly
C1[1 : 2, 3] with rows 1 and 2, and column 3. This calculation shows that the estimator α̂ of α is
consistent (as is the estimator β̂ of β).

Turning now to the graph of Example 2 in Figure 1, we prove that not conditioning on w yields a
consistent estimator, and conditioning on w an inconsistent estimator of the causal effect of x on y.

When not including w in the regression, i.e. estimating

y = âx+ ry

we obtain the estimate using the covariance matrix of Equation (12) as

â
P−→ cov(x, y)

V (x)
=
ac2τ2u1

+ aτ2x
c2τ2u1

+ τ2x
= a (17)

which is consistent.

Including w in the regression, as in
y = âx+ ĥw + ry

we obtain the regression coefficient by using a similar calculation as in Example 1 (using Equa-
tions (13) and (14)):(

ĥ
â

)
P−→ C2,obs[1 : 2, 1 : 2]−1C2,obs[1 : 2, 3]

=

(
b2τ2u1

+ d2τ2u2
+ τ2w bcτ2u1

bcτ2u1
c2τ2u1

+ τ2x

)−1(
abcτ2u1

+ dfτ2u2

ac2τ2u1
+ aτ2x

)
=

1

(d2τ2u2
+ τ2w)(c

2τ2u1
+ τ2x) + b2τ2u1

τ2x

(
c2τ2u1

+ τ2x −bcτ2u1

−bcτ2u1
b2τ2u1

+ d2τ2u2
+ τ2w

)
(
abcτ2u1

+ dfτ2u2

ac2τ2u1
+ aτ2x

)
=

(
0
a

)
+

1

(d2τ2u2
+ τ2w)(c

2τ2u1
+ τ2x) + b2τ2u1

τ2x

(
dfτ2u2

(c2τ2u1
+ τ2x)

−bcdfτ2u1
τ2u2

)
. (18)

In particular, this calculation shows that the estimator â of a is inconsistent since the second expres-
sion on the right hand side is always non-zero (for non-zero edge coefficients b, c, d, f ).
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4.3 Models of Figure 1 (a) and 1 (b) are covariance-equivalent

We show that the two example graphs of Figure 1 can model the same covariance matrices over the
three observed variables w, x and y. It follows that for Gaussian disturbance variables e we cannot
distinguish the two models from data over the observed variables, and hence are not able to decide
whether to control for the variable w to obtain a consistent estimate of the causal effect of x on y.

In particular, we claim that any covariance matrix that can be modeled with the graph of Example 1
can also be obtained from the model of Example 2 and vice versa. Therefore, we solve two sets of
equations.

In the first set we solve the six equations from C1 = C2,obs with regard to the parameters in the first
model (i.e. α, β, γ, σ2

w, σ
2
x, σ

2
y) which shows that any covariance matrix created from the second

model could have equally well been obtained from the first model.1 We obtain

α = a−
bcdfτ2u1

τ2u2

c2d2τ2u1
τ2u2

+ c2τ2u1
τ2w + b2τ2u1

τ2x + d2τ2u2
τ2x + τ2wτ

2
x

(19)

β =
dfτ2u2

(c2τ2u1
+ τ2x)

c2d2τ2u1
τ2u2

+ c2τ2u1
τ2w + b2τ2u1

τ2x + d2τ2u2
τ2x + τ2wτ

2
x

(20)

γ =
bcτ2u1

b2τ2u1
+ d2τ2u2

+ τ2w
(21)

σ2
w = τ2w + b2τ2u1

+ d2τ2u2
(22)

σ2
x = τ2x +

c2d2τ2u1
τ2u2

+ c2τ2u1
τ2w

b2τ2u1
+ d2τ2u2

+ τ2w
(23)

σ2
y = τ2y +

b2f2τ2u1
τ2u2

τ2x + c2f2τ2u1
τ2u2

τ2w + f2τ2u2
τ2wτ

2
x

c2d2τ2u1
τ2u2

+ c2τ2u1
τ2w + b2τ2u1

τ2x + d2τ2u2
τ2x + τ2wτ

2
x

(24)

where we can see from Formulas (22), (23) and (24) that the variances are always positive.

Conversely, to show that any covariance matrix created by the model in Example 1 could have been
produced by the graph of Example 2 as well, we solve the six equations from C1 = C2,obs with
regard to the parameters of the second model (i.e. a, b, c, d, f, τ2u1

, τ2u2
, τ2w, τ

2
x , τ

2
y ) and obtain:

a = α+
βγσ2

w

γ2σ2
w + σ2

x

(25)

τ2u1
=
γσ2

w

bc
(26)

τ2u2
=

βσ2
wσ

2
x

df(γ2σ2
w + σ2

x)
(27)

τ2w =
σ2
w

γ2σ2
w + σ2

x

(γ2σ2
w + σ2

x −
b

c
γ3σ2

w −
b

c
γσ2

x −
d

f
βσ2

x) (28)

τ2x = γ2σ2
w + σ2

x −
c

b
γσ2

w (29)

τ2y =
1

γ2σ2
w + σ2

x

(γ2σ2
wσ

2
y −

f

d
βσ2

wσ
2
x + β2σ2

wσ
2
x + σ2

xσ
2
y) (30)

and b, c, d and f are set such that the variances in Equations (26) - (30) are positive. Since the
coefficient α does not appear in the formulas for the variances it is enough to analyze the following
four cases.

1It is well known that the graph of Example 1 can model any covariance matrix over three observed variables
so it must also be able to produce the one from Example 2. We will show this here anyway.
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• For α arbitrary, β > 0, γ > 0 it is required that

Eq. (26): sign(b) = sign(c)

Eq. (27): sign(d) = sign(f)

Eq. (29):
c

b
<
γ2σ2

w + σ2
x

γσ2
w

Eq. (30):
f

d
<
γ2σ2

wσ
2
y + β2σ2

wσ
2
x + σ2

xσ
2
y

βσ2
wσ

2
x

Eq. (28): b, c, d, f also such that γ2σ2
w + σ2

x >
b

c
(γ3σ2

w + γσ2
x) +

d

f
βσ2x. (31)

Note that such b, c, d and f always exist since setting b
c =

γσ2
w+ε

γ2σ2
w+σ2

x
and d

f =

βσ2
wσ

2
x+δ

γ2σ2
wσ

2
y+β

2σ2
wσ

2
x+σ

2
xσ

2
y

for some ε > 0, δ > 0 yields for Equation (31)

γ2σ2
w + σ2

x >
γσ2

w + ε

γ2σ2
w + σ2

x

γ

γ
(γ3σ2

w + γσ2
x) +

βσ2
wσ

2
x + δ

γ2σ2
wσ

2
y + β2σ2

wσ
2
x + σ2

xσ
2
y

βσ2
x

= γ2σ2
w + γε+

β2σ2
wσ

2
x + βδ

γ2σ2
wσ

2
y + β2σ2

wσ
2
x + σ2

xσ
2
y

σ2
x

from which follows that

1 > ε
γ

σ2
x

+ δ
β

γ2σ2
wσ

2
y + β2σ2

wσ
2
x + σ2

xσ
2
y

+
β2σ2

wσ
2
x

γ2σ2
wσ

2
y + β

2σ2
wσ

2
x + σ2

xσ
2
y

and since the last term of the right hand side is always smaller than 1 (because of the bold
parts), there always exist ε > 0 and δ > 0 such that Equation (31) is fulfilled.

• For α arbitrary, β < 0, γ > 0 it is required that

Eq. (26): sign(b) = sign(c)

Eq. (27): sign(d) = −sign(f)

Eq. (29):
c

b
<
γ2σ2

w + σ2
x

γσ2
w

Eq. (30):
f

d
>
γ2σ2

wσ
2
y + β2σ2

wσ
2
x + σ2

xσ
2
y

βσ2
wσ

2
x

Eq. (28): b, c, d, f also such that γ2σ2
w + σ2

x >
b

c
(γ3σ2

w + γσ2
x) +

d

f
βσ2x

Similarly as for Equation (31) one can show that appropriate b, c, d and f always exist.

• For α arbitrary, β > 0, γ < 0 it is required that

Eq. (26): sign(b) = −sign(c)
Eq. (27): sign(d) = sign(f)

Eq. (29):
c

b
>
γ2σ2

w + σ2
x

γσ2
w

Eq. (30):
f

d
<
γ2σ2

wσ
2
y + β2σ2

wσ
2
x + σ2

xσ
2
y

βσ2
wσ

2
x

Eq. (28): b, c, d, f also such that γ2σ2
w + σ2

x >
b

c
(γ3σ2

w + γσ2
x) +

d

f
βσ2x

Again, such b, c, d and f always exist using a similar argument as above.
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• For α arbitrary, β < 0, γ < 0 it is required that

Eq. (26): sign(b) = −sign(c)
Eq. (27): sign(d) = −sign(f)

Eq. (29):
c

b
>
γ2σ2

w + σ2
x

γσ2
w

Eq. (30):
f

d
>
γ2σ2

wσ
2
y + β2σ2

wσ
2
x + σ2

xσ
2
y

βσ2
wσ

2
x

Eq. (28): b, c, d, f also such that γ2σ2
w + σ2

x >
b

c
(γ3σ2

w + γσ2
x) +

d

f
βσ2x

An analog argument as in Equation (31) shows that appropriate b, c, d and f always exist.

This concludes the proof that the two graphs of Figure 1 can model the same covariance matrices.

4.4 Models of Figure 1 (a) and 1 (b) are distinguished for non-Gaussian disturbances

As shown in the previous section, the two graphs of Examples 1 and 2 in Figure 1 can generate
the same covariance matrices. Hence, in the case of Gaussian disturbances these two models are
indistinguishable and it is impossible to know whether to include w in the regression to obtain a
consistent estimate of the causal effect of x on y. We show now, that if the disturbance terms e
contain any kind of non-Gaussianity we can distinguish the two models from data over the observed
variables w, x and y (asymptotically), and thus are able to obtain a consistent estimator of the causal
effect of x on y by adjusting accordingly (using Theorem 1).

For the graph of Example 1, if we do not include w in the conditioning set Z which means that we
apply Algorithm 1 with Z = ∅, we estimate the two regressions

x = rx

y = α̂x+ ry.

It is well known that we obtain an inconsistent estimator, i.e. (α̂ − α) P−→9 0 (as shown in Equa-
tion (15) in Section 4.2). The important point is that now the estimated error terms rx and ry are
by necessity statistically dependent (and we can thus use Theorem 1(c) to detect the inconsistent
estimator of α). This can be seen by expressing the two estimated residuals in terms of the original
disturbances e = (ew, ex, ey) using Equation (8):

rx = x = (γ , 1 , 0) e

ry = y − α̂x = (αγ + β , α , 1) e− (α̂γ , α̂ , 0) e

= ((α− α̂)γ + β , α− α̂ , 1) e.

Because α̂ is an inconsistent estimator of α (i.e. (α̂−α) P−→9 0) the contribution of ex (and in general
also of ew) to both rx and ry is non-vanishing. By the Darmois-Skitovitch Theorem (Darmois, 1953;
Skitovitch, 1953) we have that the non-Gaussianity of the elements in e is sufficient to ensure that rx
and ry are statistically dependent. This is in accordance with Theorem 1, since, on the one hand an
inconsistent estimate yields dependent residuals (parts (a) and (b) of the theorem), and on the other
hand, part (c) of the theorem states that the dependent residuals imply the existence of an active
back-door path from x to y (x ← w → y), and hence we should not trust the estimate. Obviously,
in practice only the latter part of the theorem is applicable.

If we include w in the regressions, i.e. apply Algorithm 1 with Z = {w}, we obtain a consistent
estimator α̂ of α (compare Equation (16), Section 4.2), the only back-door path from x to y (x ←
w → y) is blocked, and for the residuals we obtain

rx = x− γ̂w = (γ , 1 , 0) e− (γ̂ , 0 , 0) e = (γ − γ̂ , 1 , 0) e P−→ (0 , 1 , 0) e

ry = y − α̂x− β̂w = (αγ + β , α , 1) e− (α̂γ , α̂ , 0) e− (β̂ , 0 , 0) e

= ((α− α̂)γ + (β − β̂) , α− α̂ , 1) e P−→ (0 , 0 , 1) e,

12



since γ̂ is a consistent estimator of γ (using Equations (13) and (14), and the covariance matrix of
Equation (11) we obtain γ̂ P−→ cov(x,w)

V (w) =
γσ2

w

σ2
w

= γ) and, as shown in Equation (16), α̂ and β̂
are consistent estimators of α and β, respectively. Thus, the residuals rx and ry are asymptotically
the same as the disturbances ex and ey , respectively, which are by assumption independent. This
is also in line with the claims of Theorem 1, since by parts (a) and (b) the independent residuals
imply a consistent estimate, and from part (c) follows that if all back-door paths are blocked then the
residuals are independent. In practice, we can of course only use the former statement to identify
consistent estimators.

Considering now the graph of Example 2, if w is included in the conditioning set Z (i.e. Z = {w}
in Algorithm 1) we obtain the regressions

x = ĝw + rx

y = âx+ ĥw + ry

where the estimated regression coefficients are in general inconsistent, i.e. ĝ P−→9 0 (using the co-

variance matrix in Equation (12) yields ĝ P−→ cov(x,w)
V (w) =

bcτ2
u1

b2τ2
u1

+d2τ2
u2

+τ2
w
6= 0), and ĥ P−→9 0, and

â
P−→9 a (see Equation (18) in Section 4.2). The residuals can again be expressed in terms of the

original disturbance variables e = (eu1 , eu2 , ew, ex, ey) using Equation (9):

rx = x− ĝw = (c , 0 , 0 , 1 , 0) e− (ĝb , ĝd , ĝ , 0 , 0) e

= (c− ĝb , −ĝd , −ĝ , 1 , 0) e
ry = y − âx− ĥw = (ac , f , 0 , a , 1) e− (âc , 0 , 0 , â , 0) e− (ĥb , ĥd , ĥ , 0 , 0) e

= ((a− â)c− ĥb , f − ĥd , −ĥ , a− â , 1) e.

As above, since â is an inconsistent estimator of a, by the Darmois-Skitovitch theorem and the non-
Gaussianity of the variables in e follows that the two estimated residuals are dependent, because
they both have non-vanishing contributions, for example, from ex. Furthermore, there exists an
active back-door path from x to y (x← u1 → w ← u2 → y).

However, when excluding w from the analysis, we obtain a consistent estimator of the causal effect
of x on y (i.e. â

P−→ a, see Equation (17), Section 4.2), the only back-door path from x to y
(x← u1 → w ← u2 → y) is blocked, and the estimated residuals are given by

rx = x = (c , 0 , 0 , 1 , 0) e

ry = y − âx = ((â− a)c , f , 0 , â− a , 1) e P−→ (0 , f , 0 , 0 , 1) e

which are independent by the assumption of mutually independent components of e since they do
not share any components. All these facts are of course again in line with Theorem 1.

5 An example where rx and ry are independent, but x and ry dependent

In our procedure (Algorithm 1) we test for independence between the residuals rx and ry to infer
whether an estimator is consistent. We now show that it is necessary to use the two residuals in the
independence test, and we cannot instead use the variable x and the residual ry , since these may be
dependent even though the estimator is consistent.

Consider the graph in Figure 2. Expressing the model in the form of Equation (4) yields u
w
x
y

 =

 1 0 0 0
γ 1 0 0
βγ β 1 0

αβγ + δ αβ α 1


 eu

ew
ex
ey

 . (32)
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u

x y
αβ

γ

w

δ

Figure 2: Example model with w, x and y observed variables, and u a hidden variable.

Using Equation (10), the covariance matrix over u,w, x and y is obtained as

C =

 σ2
u γσ2

u βγσ2
u (αβγ + δ)σ2

u

. γ2σ2
u + σ2

w βγ2σ2
u + βσ2

w (αβγ + δ)γσ2
u + αβσ2

w

. . β2γ2σ2
u + β2σ2

w + σ2
x (αβγ + δ)βγσ2

u + αβ2σ2
w + ασ2

x

. . . (αβγ + δ)2σ2
u + α2β2σ2

w + α2σ2
x + σ2

y

 (33)

with σ2
u, σ

2
w, σ

2
x and σ2

y the variances of eu, ew, ex and ey , respectively.

For Z = {w} we estimate the two regressions of Algorithm 1 as:

x = bw + rx (34)
y = ax+ cw + ry. (35)

Since the set Z blocks all back-door paths from x to y it is admissible and thus, in the regression for
y, the coefficient a of x is a consistent estimator of α (i.e. a P−→ α, Back-door criterion, Pearl, 2009).
The coefficient c of w is non vanishing because of the latent variable u. (This can also be shown
formally using Equations (13) and (14) as in the previous section.) Furthermore, in the regression
of x on w the coefficient b is a consistent estimator of β since b P−→ cov(x,w)

V (w) =
βγ2σ2

u+βσ
2
w

βγ2σ2
u

= β.
Using Equation (32) to express rx, ry and x in terms of the disturbance variables eu, ew, ex and ey
we obtain

rx = x− bw = (βγ, β, 1, 0) e− (bγ, b, 0, 0) e
P−→ (0, 0, 1, 0) e

ry = y − ax− cw
= (αβγ + δ, αβ, α, 1) e− (aβγ, aβ, a, 0) e− (cγ, c, 0, 0) e

P−→ (δ − cγ, −c, 0, 1) e

x = (βγ, β, 1, 0) e.

We can see that rx and ry are independent since they do not share any disturbance variables (asymp-
totically), and that x and ry are dependent by the non-Gaussianity of the disturbances and the
Darmois-Skitovitch Theorem. Hence, we cannot use a dependence between x and ry to detect
inconsistent estimators a of α (since in this example we obtained a consistent estimator a of α
although x and ry are dependent).

6 An example of a linearly unfaithful model for which the procedure fails

In this section we introduce an example that illustrates why the linear faithfulness assumption is
needed in Theorem 1(b). Consider the graph in Figure 3 with two latent variables u1 and u2. We
show that by choosing an unfaithful parametrization we can obtain an inconsistent estimator a of α
even though the residual rx is non-Gaussian and the residuals rx and ry are independent.

Writing the model in the form of Equation (4) yields u1
u2
x
y

 =

 1 0 0 0
0 1 0 0
γ δ 1 0

β + αγ ζ + αδ α 1


 eu1

eu2

ex
ey

 . (36)
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x yα

β

γ

u u1 2δ

ζ

Figure 3: Example model with x and y observed, and u1 and u2 hidden variables.

Denoting the variances of the disturbance variables e as σ2
u1
, σ2
u2
, σ2
x and σ2

y , respectively, we obtain
the covariance matrix over all four variables using Equation (10) as

C =


σ2
u1

0 γσ2
u1

(β + αγ)σ2
u1

. σ2
u2

δσ2
u2

(ζ + αδ)σ2
u2

. . γ2σ2
u1

+ δ2σ2
u2

+ σ2
x γ(β + αγ)σ2

u1
+ δ(ζ + αδ)σ2

u2
+ ασ2

x

. . . (β + αγ)2σ2
u1

+ (ζ + αδ)2σ2
u2

+ α2σ2
x + σ2

y

 .

(37)

When regressing y on x (i.e. y = ax + ry , Z = ∅), the estimator a of α can be read off from the
covariance matrix C and is given by

a
P−→ cov(x, y)

V (x)
=
γ(β + αγ)σ2

u1
+ δ(ζ + αδ)σ2

u2
+ ασ2

x

γ2σ2
u1

+ δ2σ2
u2

+ σ2
x

= α+
γβσ2

u1
+ δζσ2

u2

γ2σ2
u1

+ δ2σ2
u2

+ σ2
x

. (38)

To create an unfaithful parametrization we set the effect of one disturbance variable on ry to zero.
Therefore, we express the residual ry in terms of the disturbances e using Equation (36):

ry = y − ax
= (β + αγ, ζ + αδ, α, 1) e− (aγ, aδ, a, 0) e

= (β + αγ − aγ, ζ + αδ − aδ, α− a, 1) e

and set for example the first entry β+αγ−aγ (the effect of eu1
on ry) to zero. Solving this equation

with respect to the parameters yields

σ2
x =

δσ2
u2
(ζγ − βδ)
β

. (39)

For σ2
x to be a valid variance it must be positive, which holds for example when ζγ > βδ and

δ
β > 0. The other parameters (α, σ2

u1
, σ2
u2
, σ2
y) are free ones. Keeping this in mind, we obtain

β + αγ − aγ = 0 and hence we have

ry = (0, ζ + αδ − aδ, α− a, 1) e

rx = x = (γ, δ, 1, 0) e.

Furthermore, the estimator a of α (given in Equation (38)) remains inconsistent when using σ2
x from

Equation (39) and is given by

a
P−→ α+

β

γ
. (40)

If now eu2
and ex were Gaussian residuals, and eu1

was a non-Gaussian residual (the distribution
of ey does not matter), then rx is non-Gaussian, but the residuals rx and ry are independent: To
see this, assume for a moment that rx and ry are both only influenced by eu2 and ex (i.e. the only
non-vanishing coefficients are in the spots for these two residuals). Thus, rx and ry were sums of
Gaussian residuals, and since rx and ry are uncorrelated they are in this case independent. Adding a
(non-Gaussian) variable to only one of the two (for example eu1 to rx, or ey to ry) does not destroy
the independence of rx and ry .

This is a case of a linearly unfaithful parametrization since from the graph we see that u1 = eu1
is

not d-separated from y given x, but the effect of u1 on y given x is zero, and thus also the partial

15



correlation of u1 and y given x is zero. This can be calculated using the covariance matrix C in
Equation (37) and the formula for partial correlation

ρv1,v2.v3 =
ρv1,v2 − ρv1,v3ρv2,v3√
1− ρv1,v3

√
1− ρv2,v3

where ρvi,vj denotes the correlation of vi and vj . Ignoring the denominator we get for the partial
correlation of u1 and y given x

ρu1,y.x ∝
σu1

(δ2σ2
u2
β + σ2

xβ − γδσ2
u2
ζ)

(γ2σ2
u1

+ δ2σ2
u2

+ σ2
x)
√
(β + αγ)2σ2

u1
+ (ζ + αδ)2σ2

u2
+ α2σ2

x + σ2
y

∝ δ2σ2
u2
β + σ2

xβ − γδσ2
u2
ζ

which is zero when using σ2
x from Equation (39).

To sum up, this example shows that even if the estimator a of α is inconsistent and the estimated
residual of x, rx, is non-Gaussian, there may still exist a parametrization which yields independent
residuals rx and ry . Once we rule out these unfaithful cases, we can always conclude that if rx is
non-Gaussian and the residuals rx and ry are independent then the estimator is consistent, as stated
in Theorem 1(b).
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