
High-Rank Matrix Completion

Brian Eriksson Laura Balzano Robert Nowak
Boston University University of Wisconsin-Madison University of Wisconsin-Madison

Abstract

This paper considers the problem of completing
a matrix with many missing entries under the as-
sumption that the columns of the matrix belong
to a union of multiple low-rank subspaces. This
generalizes the standard low-rank matrix comple-
tion problem to situations in which the matrix
rank can be quite high or even full rank. Since
the columns belong to a union of subspaces, this
problem may also be viewed as a missing-data
version of the subspace clustering problem. Let
X be an n×N matrix whose (complete) columns
lie in a union of at most k subspaces, each of rank
≤ r < n, and assume N ≫ kn. The main re-
sult of the paper shows that under mild assump-
tions each column of X can be perfectly recov-
ered with high probability from an incomplete
version so long as at least CrN log2(n) entries of
X are observed uniformly at random, with C > 1
a constant depending on the usual incoherence
conditions, the geometrical arrangement of sub-
spaces, and the distribution of columns over the
subspaces. The result is illustrated with numer-
ical experiments and an application to Internet
distance matrix completion and topology identi-
fication.

1 Introduction

Consider a real-valued n × N dimensional matrix X. As-
sume that the columns of X lie in the union of at most k
subspaces of Rn, each having dimension at most r < n
and assume that N > kn. We are especially interested
in “high-rank” situations in which the total rank (the rank
of the union of the subspaces) may be n. Our goal is to
complete X based on an observation of a small random
subset of its entries. We propose a novel method for this
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matrix completion problem. In the applications we have in
mind N may be arbitrarily large, and so we will focus on
quantifying the probability that a given column is perfectly
completed, rather than the probability that whole matrix is
perfectly completed (i.e., every column is perfectly com-
pleted). Of course it is possible to translate between these
two quantifications using a union bound, but that bound be-
comes meaningless if N is extremely large.

Suppose the entries of X are observed uniformly at ran-
dom with probability p0. Let Ω denote the set of indices
of observed entries and let XΩ denote the observations of
X. Our main result shows that under a mild set of assump-
tions each column of X can be perfectly recovered from
XΩ with high probability using a computationally efficient
procedure if

p0 ≥ C
r

n
log2(n) (1)

where C > 1 is a constant depending on the usual incoher-
ence conditions as well as the geometrical arrangement of
subspaces and the distribution of the columns in the sub-
spaces.

1.1 Connections to Low-Rank Completion

Low-rank matrix completion theory [1] shows that an
n × N matrix of rank r can be recovered from incom-
plete observations, as long as the number of entries ob-
served (with locations sampled uniformly at random) ex-
ceeds rN log2 N (within a constant factor and assuming
n ≤ N ). It is also known that, in the same setting, comple-
tion is impossible if the number of observed entries is less
than a constant times rN log N [2]. These results imply
that if the rank of X is close to n, then all of the entries are
needed in order to determine the matrix.

Here we consider a matrix whose columns lie in the union
of at most k subspaces of Rn. Restricting the rank of each
subspace to at most r, then the rank of the full matrix in
our situation could be as large as kr, yielding the require-
ment krN log2 N using current matrix completion theory.
In contrast, the bound in (1) implies that the completion of
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each column is possible from a constant times rN log2 n
entries sampled uniformly at random. Exact completion of
every column can be guaranteed by replacing log2 n with
log2 N is this bound, but since we allow N to be very large
we prefer to state our result in terms of per-column comple-
tion. Our method, therefore, improves significantly upon
conventional low-rank matrix completion, especially when
k is large. This does not contradict the lower bound in [2],
because the matrices we consider are not arbitrary high-
rank matrices, rather the columns must belong to a union
of rank ≤ r subspaces.

1.2 Connections to Subspace Clustering

Let x1, . . . , xN ∈ Rn and assume each xi lies in one of at
most k subspaces of Rn. Subspace clustering is the prob-
lem of learning the subspaces from {xi}N

i=1 and assigning
each vector to its proper subspace; cf. [3] for a overview.
This is a challenging problem, both in terms of computation
and inference, but provably probably correct subspace clus-
tering algorithms now exist [4, 5, 6]. Here we consider the
problem of high rank matrix completion, which is essen-
tially equivalent to subspace clustering with missing data.
This problem has been looked at in previous works [7, 8],
but to the best of our knowledge our method and theoret-
ical bounds are novel. Note that our sampling probability
bound (1) requires that only slightly more than r out of n
entries are observed in each column, so the matrix may be
highly incomplete.

1.3 A Motivating Application

There are many applications of subspace clustering, and it
is reasonable to suppose that data may often be missing in
high-dimensional problems. One such application is the
Internet distance matrix completion and topology identifi-
cation problem. Infrastructures exist that record the num-
ber of routers (i.e., distances) from N end host comput-
ers to a set of n monitoring points throughout the Inter-
net. The complete set of distances determines the network
topology between the computers and the monitoring points
[9]. Some infrastructures are based entirely on passively
monitoring of normal traffic, which allows for the ability
to monitor a very large portion of the Internet, but with the
disadvantage that a subset of the distances may not be ob-
served. This poses a matrix completion problem, with the
incomplete distance matrix being potentially full-rank in
this application. However, computers tend to be clustered
within subnets having a small number of access points to
the Internet at large, limiting the rank of the submatrix of
distances from subnet computers. Therefore the columns
of the n × N distance matrix lie in the union of k low-rank
subspaces, where k is the number of subnets [10].

1.4 Related Work

The proof of the main result draws on ideas from matrix
completion theory, subspace learning and detection with
missing data, and subspace clustering. One key ingredi-
ent in our approach is the celebrated results on low-rank
Matrix Completion [1, 2, 11]. Unfortunately, in many real-
world problems where data are missing, particularly when
the data are generated from a union of subspaces, these ma-
trices can have high rank (e.g., networking data in [10]).
Thus, these prior results will require effectively all the ele-
ments be observed to accurately reconstruct the matrix.

Our work builds upon the results of [12], which quantifies
the deviation of an incomplete vector norm with respect to
the incoherence of the sampling pattern. While this work
also examines subspace detection using incomplete data, it
assumes complete knowledge of the subspaces.

While research that examines subspace learning has been
presented in [13], the work in this paper differs by the con-
centration on learning from incomplete observations (i.e.,
when there are missing elements in the matrix), and by the
methodological focus (i.e., nearest neighbor clustering ver-
sus a multiscale Singular Value Decomposition approach).

1.5 Sketch of Methodology

The algorithm proposed in this paper involves several rela-
tively intuitive steps, outlined below. We go into detail for
each of these steps in following sections.

Local Neighborhoods. A subset of columns of XΩ are
selected uniformly at random. These are called seeds. A
set of nearest neighbors is identified for each seed from the
remainder of XΩ. In Section 3, we show that nearest neigh-
bors can be reliably identified, even though a large portion
of the data are missing, under the usual incoherence as-
sumptions.

Local Subspaces. The subspace spanned by each seed and
its neighborhood is identified using matrix completion. If
matrix completion fails (i.e., if the resulting matrix does
not agree with the observed entries and/or the rank of the
result is greater than r), then the seed and its neighborhood
are discarded. In Section 4 we show that when the number
of seeds and the neighborhood sizes are large enough, then
with high probability all k subspaces are identified. We
may also identify additional subspaces which are unions of
the true subspaces, which leads us to the next step. An ex-
ample of these neighborhoods is shown in Figure 1.

Subspace Refinement. The set of subspaces obtained from
the matrix completions is pruned to remove all but k sub-
spaces. The pruning is accomplished by simply discarding
all subspaces that are spanned by the union of two or more
other subspaces. This can be done efficiently, as is shown
in Section 5.
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Full Matrix Completion. Each column in XΩ is assigned
to its proper subspace and completed by projection onto
that subspace, as described in Section 6. Even when many
observations are missing, it is possible to find the correct
subspace and the projection using results from subspace
detection with missing data [12]. The result of this step
is a completed matrix X̂ such that each column is correctly
completed with high probability.

The mathematical analysis will be presented organized ac-
cording to these steps. After the supporting lemmas, whose
complete proofs can be found in [14], experimental results
are presented in the final section.

Figure 1: Example of nearest-neighborhood selecting points on
from a single subspace.

2 Key Assumptions and Main Result

The notion of incoherence plays a key role in matrix com-
pletion and subspace recovery from incomplete observa-
tions.

Definition 1. The coherence of an r-dimensional subspace
S ⊆ Rn is

µ(S) :=
n

r
max

j
∥PSej∥2

2

where PS is the projection operator onto S and {ej} are
the canonical unit vectors for Rn.

Note that 1 ≤ µ(S) ≤ n/r. The coherence of single vector
x ∈ Rn is µ(x) =

n∥x∥2
∞

∥x∥2
2

, which is precisely the coher-
ence of the one-dimensional subspace spanned by x. With
this definition, we can state the main assumptions we make
about the matrix X.

A1. The columns of X lie in the union of at most k sub-
spaces, with k = o(nd) for some d > 0. The sub-
spaces are denoted by S1, . . . ,Sk and each has rank at
most r < n. The ℓ2-norm of each column is ≤ 1.

A2. The coherence of each subspace is bounded above by
µ0. The coherence of each column is bounded above
by µ1 and for any pair of columns, x1 and x2, the
coherence of x1 − x2 is also bounded above by µ1.

A3. The columns of X do not lie in the intersection(s) of
the subspaces with probability 1, and if rank(Si) = ri,
then any subset of ri columns from Si spans Si with
probability 1. Let 0 < ϵ0 < 1 and Si,ϵ0 denote the
subset of points in Si at least ϵ0 distance away from
any other subspace. There exists a constant 0 < ν0 ≤
1, depending on ϵ0, such that

(i) The probability that a column selected uniformly
at random belongs to Si,ϵ0 is at least ν0/k.

(ii) If x ∈ Si,ϵ0 , then the probability that a column
selected uniformly at random belongs to the ball
of radius ϵ0 centered at x is at least ν0ϵ

r
0/k.

The conditions of A3 are met if, for example, the columns
are drawn from a mixture of continuous distributions on
each of the subspaces. The value of ν0 depends on the
geometrical arrangement of the subspaces and the distri-
bution of the columns within the subspaces. If the sub-
spaces are not too close to each other, and the distributions
within the subspaces are fairly uniform, then typically ν0

will be not too close to 0. We define three key quantities,
the confidence parameter δ0, the required number of “seed”
columns s0, and a quantity ℓ0 related to the neighborhood
formation process (see Algorithm 1 in Section 3):

δ0 := n2−2β1/2

log n , for some β > 1 , (2)

s0 :=

⌈
k(log k + log 1/δ0)

(1 − e−4)ν0

⌉
,

ℓ0 :=

⌈
max

{
2k

ν0(
ϵ0√
3
)r

,
8k log(s0/δ0)

nν0(
ϵ0√
3
)r

}⌉
.

We can now state the main result of the paper.

Theorem 2.1. Let X be an n×N matrix satisfying A1-A3.
Suppose that each entry of X is observed independently
with probability p0. If

p0 ≥ 128β max{µ2
1, µ0}

ν0

r log2(n)

n

and

N ≥ ℓ0n(2δ−1
0 s0ℓ0n)µ2

0 log p−1
0

then each column of X can be perfectly recovered with
probability at least 1 − (6 + 15s0) δ0, using the method-
ology sketched above (and detailed later in the paper).

The requirements on sampling are essentially the same as
those for standard low-rank matrix completion, apart from
requirement that the total number of columns N is suffi-
ciently large. This is needed to ensure that each of the
subspaces is sufficiently represented in the matrix. The re-
quirement on N is polynomial in n for fixed p0, which is
easy to see based on the definitions of δ0, s0, and ℓ0 (see
further discussion at the end of Section 3).
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Perfect recovery of each column is guaranteed with proba-
bility that decreases linearly in s0, which itself is linear in k
(ignoring log factors). This is expected since this problem
is more difficult than k individual low-rank matrix com-
pletions. We state our results in terms of a per-column
(rather than full matrix) recovery guarantee. A full matrix
recovery guarantee can be given by replacing log2 n with
log2 N . This is evident from the final completion step dis-
cussed in Lemma 8, below. However, since N may be quite
large (perhaps arbitrarily) in the applications we envision,
we state our results in terms of a per-column guarantee.

The details of the methodology and lemmas leading to
the theorem above are developed in the subsequent sec-
tions. Proof sketches are shown and complete proofs can be
found in [14]. In certain cases it will be convenient to con-
sider sampling the locations of observed entries uniformly
at random with replacement rather than without replace-
ment, as assumed above. The following lemma will be
useful for translating bounds derived assuming sampling
with replacement to our situation (the same sort of rela-
tion is noted in Proposition 3.1 in [1]). Sampling with re-
placement could give duplicates in a set; sampling without
replacement gives more information and therefore better
probability performance. For the proof see [1, 14].

Lemma 1. Draw m samples independently and uniformly
from {1, . . . , n} and let Ω′ denote the resulting subset of
unique values. Let Ωm be a subset of size m selected uni-
formly at random from {1, . . . , n}. Let E denote an event
(e.g., a failure or error event) depending on a random sub-
set of {1, . . . , n}. If P(E(Ωm)) is a non-increasing func-
tion of m, then P(E(Ω′)) ≥ P(E(Ωm)).

3 Local Neighborhoods

In this first step, s columns of XΩ, called “seeds,” are se-
lected uniformly at random and a set of “nearby” columns
are identified for each, constituting a local neighborhood of
size n. All bounds that hold are designed with probability
at least 1 − δ0, where δ0 is defined in (2) above. The re-
quired size of s is determined with the following lemma,
which is a slight generalization of the classic coupon col-
lector problem.

Lemma 2. Assume A3 holds. If the number of chosen
seeds,

s ≥ k(log k + log 1/δ0)

(1 − e−4)ν0
,

then with probability greater than 1 − δ0 for each i =
1, . . . , k, at least one seed is in Si,ϵ0 and each seed column
has at least

η0 :=
64β max{µ2

1, µ0}
ν0

r log2(n) (3)

observed entries.

Proof Sketch: From Theorem 2.1, the expected number of
observed entries per column is at least

η =
128β max{µ2

1, µ0}
ν0

r log2(n)

Combining this with A3, the probability that the set does
not contain at least one column from Si,ϵ0 with η/2 or more
observed entries, for i = 1, . . . , k is less than δ0 = k(1 −
ν′
0/k)s . Solving for s in terms of δ0 yields the result.

Next, for each seed we must find a set of n columns from
the same subspace as the seed. This will be accomplished
by identifying columns that are ϵ0-close to the seed, so that
if the seed belongs to Si,ϵ0 , the columns must belong to
the same subspace. Clearly the total number of columns N
must be sufficiently large so that n or more such columns
can be found. We will return to the requirement on N a bit
later, after first dealing with the following challenge.

Since the columns are only partially observed, it may not be
possible to determine how close each is to the seed. We ad-
dress this by showing that if a column and the seed are both
observed on enough common indices, then the incoherence
assumption A2 allows us reliably estimate the distance.
Lemma 3. Assume A2 and let y = x1 − x2, where x1 and
x2 are two columns of X. Assume there is a common set of
indices of size q ≤ n where both x1 and x2 are observed.
Let ω denote this common set of indices and let yω denote
the corresponding subset of y. Then for any δ0 > 0, if the
number of commonly observed elements

q ≥ 8µ2
1 log(2/δ0) ,

then with probability at least 1 − δ0

1

2
∥y∥2

2 ≤ n

q
∥yω∥2

2 ≤ 3

2
∥y∥2

2 .

Proof Sketch: Assumption A2 implies that n2∥y∥4
∞ ≤

µ2
1∥y∥4

2. Using McDiramid’s Inequality we then have

P
(∣∣∣∣

n

q
∥yω∥2

2 − ∥y∥2
2

∣∣∣∣ ≥ t

)
≤ 2 exp

( −qt2

2µ2
1∥y∥4

2

)
.

Taking t = 1
2∥y∥2

2 yields the result.

Suppose that x1 ∈ Si,ϵ0 (for some i) and that x2 ̸∈ Si,
and that both x1, x2 observe q ≥ 2µ2

0 log(2/δ0) common
indices. Let yω denote the difference between x1 and x2 on
the common support set. If the partial distance n

q ∥yω∥2
2 ≤

ϵ20/2, then the result above implies that with probability at
least 1 − δ0

∥x1 − x2∥2
2 ≤ 2

n

q
∥yω∥2

2 ≤ ϵ20.

On the other hand if x2 ∈ Si and ∥x1 − x2∥2
2 ≤ ϵ20/3, then

with probability at least 1 − δ0

n

q
∥yω∥2

2 ≤ 3

2
∥x1 − x2∥2

2 ≤ ϵ20/2 .

376



Brian Eriksson, Laura Balzano, Robert Nowak

Using these results we will proceed as follows. For
each seed we find all columns that have at least
t0 > 2µ2

0 log(2/δ0) observations at indices in common
with the seed (the precise value of t0 will be specified in
a moment). Assuming that this set is sufficiently large, we
will select ℓn these columns uniformly at random, for some
integer ℓ ≥ 1. In particular, ℓ will be chosen so that with
high probability at least n of the columns will be within
ϵ0/

√
3 of the seed, ensuring that with probability at least

δ0 the corresponding partial distance of each will be within
ϵ0/

√
2. That is enough to guarantee with the same proba-

bility that the columns are within ϵ0 of the seed. Of course,
a union bound will be needed so that the distance bounds
above hold uniformly over the sℓn columns under consid-
eration, which means that we will need each to have at least
t0 := 2µ2

0 log(2sℓn/δ0) observations at indices in common
with the corresponding seed. All this is predicated on N
being large enough so that such columns exist in XΩ. We
will return to this issue later, after determining the require-
ment for ℓ. For now we will simply assume that N ≥ ℓn.

Lemma 4. Assume A3 and for each seed x let Tx,ϵ0 denote
the number of columns of X in the ball of radius ϵ0/

√
3

about x. If the number of columns selected for each seed,
ℓn, such that,

ℓ ≥ max

{
2k

ν0(
ϵ0√
3
)r

,
8k log(s/δ0)

nν0(
ϵ0√
3
)r

}
,

then P (Tx,ϵ0 ≤ n) ≤ δ0 for all s seeds.

Proof Sketch: The probability that a column chosen uni-
formly at random from X belongs to this ball is at least
ν0(ϵ0/

√
3)r/k, by Assumption A3. Therefore the expected

number of points is

E[Tx,ϵ0 ] ≥
ℓnν0(

ϵ0√
3
)r

k
.

By Chernoff’s bound for any 0 < γ < 1

P

(
Tx,ϵ0 ≤ (1 − γ)

ℓnν0(
ϵ0√
3
)r

k

)
≤ exp

(
−γ2

2

ℓnν0(
ϵ0√
3
)r

k

)
.

Take γ = 1/2. Requiring ℓ such that
ℓnν0(

ϵ0√
3
)r

2k ≥ n and

exp

(
− ℓnν0(

ϵ0√
3
)r

8k

)
≤ δ0/s yields the results.

We can now formally state the procedure for finding local
neighborhoods in Algorithm 1. Recall that the number of
observed entries in each seed is at least η0, per Lemma 2.

Lemma 5. If N is sufficiently large and η0 > t0, then the
Local Neighborhood Procedure in Algorithm 1 produces at
least n columns within ϵ0 of each seed, and at least one
seed will belong to each of Si,ϵ0 , for i = 1, . . . , k, with
probability at least 1 − 3δ0.

Algorithm 1 - Local Neighborhood Procedure
Input: n, k, µ0, ϵ0, ν0, η0, δ0 > 0.

s0 :=

⌈
k(log k + log 1/δ0)

(1 − e−4)ν0

⌉

ℓ0 :=

⌈
max

{
2k

ν0(
ϵ0√
3
)r

,
8k log(s0/δ0)

nν0(
ϵ0√
3
)r

}⌉

t0 := ⌈2µ2
0 log(2s0ℓ0n/δ0)⌉

Steps:

1. Select s0 “seed” columns uniformly at random and
discard all with less than η0 observations

2. For each seed, find all columns with t0 observations at
locations observed in the seed

3. Randomly select ℓ0n columns from each such set

4. Form local neighborhood for each seed by randomly
selecting n columns with partial distance less than
ϵ0/

√
2 from the seed

Proof. Lemma 2 states that if we select s0 seeds, then with
probability at least 1 − δ0 there is a seed in each Si,ϵ0 ,
i = 1, . . . , k, with at least η0 observed entries, where η0

is defined in (3). Lemma 4 implies that if ℓ0n columns
are selected uniformly at random for each seed, then with
probability at least 1 − δ0 for each seed at least n of the
columns will be within a distance ϵ0/

√
3 of the seed. Each

seed has at least η0 observed entries and we need to find
ℓ0n other columns with at least t0 observations at indices
where the seed was observed. Provided that η0 ≥ t0, this
is certainly possible if N is large enough. It follows from
Lemma 3 that ℓ0n columns have at least t0 observations at
indices where the seed was also observed, then with prob-
ability at least 1 − δ0 the partial distances will be within
ϵ0/

√
2, which implies the true distances are within ϵ0. The

result follows by the union bound.

Finally, we quantify just how large N needs to be.
Lemma 4 also shows that we require at least

N ≥ ℓn ≥ max

{
2kn

ν0(
ϵ0√
3
)r

,
8k log(s/δ0)

ν0(
ϵ0√
3
)r

}
.

However, we must also determine a lower bound on the
probability that a column selected uniformly at random has
at least t0 observed indices in common with a seed. Let
γ0 denote this probability, and let p0 denote the probability
of observing each entry in X. Note that our main result,
Theorem 2.1, assumes that

p0 ≥ 128β max{µ2
1, µ0}

ν0

r log2(n)

n
.
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Since each seed has at least η0 entries observed, γ0

is greater than or equal to the probability that a
Binomial(η0, p0) random variable is at least t0. Thus,

γ0 ≥
η0∑

j=t0

(
η0

j

)
pj
0(1 − p0)

η0−j .

This implies that the expected number of columns with t0
or more observed indices in common with a seed is at least
γ0N . If ñ is the actual number with this property, then
by Chernoff’s bound, P(ñ ≤ γ0N/2) ≤ exp(−γ0N/8).
So N ≥ 2ℓ0γ

−1
0 n will suffice to guarantee that enough

columns can be found for each seed with probability at least
1 − s0 exp(−ℓ0n/4) ≥ 1 − δ0 since this will be far larger
than 1 − δ0, since δ0 is polynomial in n.

To take this a step further, a simple lower bound on γ0

is obtained as follows. Suppose we consider only a t0-
sized subset of the indices where the seed is observed.
The probability that another column selected at random
is observed at all t0 indices in this subset is pt0

0 . Clearly
γ0 ≥ pt0

0 = exp(t0 log p0) ≥ (2s0ℓ0n)2µ2
0 log p0 . This

yields the following sufficient condition on the size of N :

N ≥ ℓ0n(2s0ℓ0n/δ0)
2µ2

0 log p−1
0 .

From the definitions of s0 and ℓ0, this implies that if
2µ2

0 log p0 is a fixed constant, then a sufficient number of
columns will exist if N = O(poly(kn/δ0)). For example,
if µ2

0 = 1 and p0 = 1/2, then N = O((kn)/δ0)
2.4) will

suffice; i.e., N need only grow polynomially in n. On the
other hand, in the extremely undersampled case p0 scales
like log2(n)/n (as n grows and r and k stay constant)
and N will need to grow almost exponentially in n, like
nlog n−2 log log n.

4 Local Subspace Completion
For each of our local neighbor sets, we will have an incom-
pletely observed n × n matrix; if all the neighbors belong
to a single subspace, the matrix will have rank ≤ r. First,
we recall the following result from low-rank matrix com-
pletion theory [1].

Lemma 6. Consider an n × n matrix of rank ≤ r and
row and column spaces with coherences bounded above by
some constant µ0. Then the matrix can be exactly com-
pleted if

m′ ≥ 64 max
(
µ2

1, µ0

)
βrn log2 (2n) (4)

entries are observed uniformly at random, for constants
β > 0 and with probability ≥ 1 − 6 (2n)

2−2β
log n −

n2−2β1/2

.

We wish to apply these results to our local neighbor sets,
but we have three issues we must address: First, the sam-
pling of the matrices formed by local neighborhood sets is

not uniform since the set is selected based on the observed
indices of the seed. Second, given Lemma 2 we must com-
plete not one, but s0 (see Algorithm 1) incomplete matrices
simultaneously with high probability. Third, some of the
local neighbor sets may have columns from more than one
subspace. Let us consider each issue separately.

Firstly, the fact that our incomplete submatrices are not
sampled uniformly is due to the fact that the columns in
each submatrix are selected to have at least some amount
of overlap in observations as the seed column. Therefore,
the indices on which the seed is observed are highly sam-
pled on the other columns as well. This can be corrected
with a simple thinning procedure which is detailed in the
full length version of this paper [14]. The dependence on
the seed column cannot be eliminated, and so the seed col-
umn must be removed from the submatrix.

Once each neighborhood matrix has been thinned, we have
the following matrix completion guarantee for each neigh-
borhood matrix.

Lemma 7. Assume all s0 seed neighborhood matrices are
thinned according to the discussion above, have rank ≤ r,
and the matrix entries are observed uniformly at random
with probability,

p0 ≥ 128β max{µ2
1, µ0}

ν0

r log2(n)

n
(5)

Then with probability ≥ 1−12s0n
2−2β1/2

log n, all s0 ma-
trices can be perfectly completed.

Proof Sketch: From Lemma 6 and the union bound, if each
matrix has

m′ ≥ 64 max
(
µ2

1, µ0

)
βrn log2 (2n)

entries observed uniformly at random (with replacement),
then with probability ≥ 1− 12s0n

2−2β1/2

log n, all s0 ma-
trices are perfectly completed.

Under our sampling assumptions, enough entries are ob-
served in each of the s0 seed matrices with proba-
bility at least 1 − exp(−n2p0/8 + log s0) if p0 ≥
128 β max{µ2

1,µ0}
ν0

r log2(n)
n . Since n2p0 > rn log2 n and

s0 = O(k(log k + log n)), this probability tends to zero
exponentially in n as long as k = o(en), which holds ac-
cording to Assumption A1. Therefore this holds with prob-
ability at least 1 − 12s0n

2−2β1/2

log n.

Finally, let us consider the third issue, the possibility that
one or more of the points in the neighborhood of a seed
lies in a subspace different than the seed subspace. When
this occurs, the rank of the submatrix formed by the seed’s
neighbor columns will be larger than the dimension of the
seed subspace. Without loss of generality assume that we
have only two subspaces represented in the neighbor set,
and assume their dimensions are r′ and r′′. First, in the case
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that r′ + r′′ > r, when a rank ≥ r matrix is completed to a
rank r matrix, with overwhelming probability there will be
errors with respect to the observations as long as the num-
ber of samples in each column is O(r log r), which is as-
sumed in our case; see [12]. Thus we can detect and discard
these candidates. Secondly, in the case that r′ +r′′ ≤ r, we
still have enough samples to complete this matrix success-
fully with high probability. However, since we have drawn
enough seeds to guarantee that every subspace has a seed
with a neighborhood entirely in that subspace, we will find
that this problem seed is redundant. This is determined in
the Subspace Refinement step.

5 Subspace Refinement
Each of the matrix completion steps above yields a low-
rank matrix with a corresponding column subspace, which
we will call the candidate subspaces. While the true num-
ber of subspaces will not be known in advance, since
s0 = O(k(log k + log(1/δ0)), the candidate subspaces
will contain the true subspaces with high probability (see
Lemma 4). We must now deal with the algorithmic issue of
determining the true set of subspaces.

We first note that, from Assumption A3, with probability 1
a set of points of size ≥ r all drawn from a single subspace
S of dimension ≤ r will span S. In fact, any b < r points
will span a b-dimensional subspace of the r-dimensional
subspace S.

Assume that r < n, since otherwise it is clearly neces-
sary to observe all entries. Therefore, if a seed’s nearest
neighborhood set is confined to a single subspace, then the
columns in span their subspace. And if the seed’s near-
est neighborhood contains columns from two or more sub-
spaces, then the matrix will have rank larger than that of
any of the constituent subspaces. Thus, if a certain can-
didate subspace is spanned by the union of two or more
smaller candidate subspaces, then it follows that that sub-
space is not a true subspace (since we assume that none of
the true subspaces are contained within another).

This observation suggests the following subspace refine-
ment procedure. The s0 matrix completions yield s ≤ s0

candidate column subspaces; s may be less than s0 since
completions that fail are discarded as described above.
First sort the estimated subspaces in order of rank from
smallest to largest (with arbitrary ordering of subspaces of
the same rank), which we write as S(1), . . . ,S(s). We will
denote the final set of estimated subspaces as Ŝ1, . . . , Ŝk.
The first subspace Ŝ1 := S(1), a lowest-rank subspace in
the candidate set. Next, Ŝ2 = S(2) if and only if S(2) is not
contained in Ŝ1. Following this simple sequential strategy,
suppose that when we reach the candidate S(j) we have so
far determined Ŝ1, . . . , Ŝi, i < j. If S(j) is not in the span
of ∪i

ℓ=1Ŝℓ, then we set Ŝi+1 = S(j), otherwise we move
on to the next candidate. In this way, we can proceed se-

quentially through the rank-ordered list of candidates, and
we will identify all true subspaces.

6 The Full Monty
Now all will be revealed. At this point, we have identified
the true subspaces, and all N columns lie in the span of
one of those subspaces. For ease of presentation, we as-
sume that the number of subspaces is exactly k. However
if columns lie in the span of fewer than k, then the proce-
dure above will produce the correct number. To complete
the full matrix, we proceed one column at a time. For each
column of XΩ, we determine the correct subspace to which
this column belongs, and we then complete the column us-
ing that subspace. We can do this with high probability due
to results from [12, 15].

The first step is that of subspace assignment, determining
the correct subspace to which this column belongs. In [15],
it is shown that given k subspaces, an incomplete vector
can be assigned to its closest subspace with high probabil-
ity given enough observations. In the situation at hand, we
have a special case of the results of [15] because we are
considering the more specific situation where our incom-
plete vector lies exactly in one of the candidate subspaces,
and we have an upper bound for both the dimension and
coherence of those subspaces.

Lemma 8. Let {S1, . . . ,Sk} be a collection of k sub-
spaces of dimension ≤ r and coherence parameter
bounded above by µ0. Consider column vector x
with index set Ω ∈ {1, . . . , n}, and define PΩ,Sj =

U j
Ω

((
U j

Ω

)T

U j
Ω

)−1 (
U j

Ω

)T

, where U j is the orthonor-

mal column span of Sj and U j
Ω is the column span of Sj

restricted to the observed rows, Ω. Without loss of general-
ity, suppose the column of interest x ∈ S1. If A3 holds, and
the probability of observing each entry of x is independent
and Bernoulli with parameter

p0 ≥ 128 β max{µ2
1, µ0}

ν0

r log2(n)

n
.

Then with probability at least 1 − (3(k − 1) + 2)δ0,

∥xΩ − PΩ,S1
xΩ∥2

2 = 0 (6)

and for j = 2, . . . , k

∥xΩ − PΩ,Sj
xΩ∥2

2 > 0 . (7)

Proof. The full proof of this lemma can be found in [14];
it is a straightforward extension of ideas from [12, 15].
Finally, denote the column to be completed by xΩ. To
complete xΩ we first determine which subspace it belongs
to using the results above. For a given column we can
use the incomplete data projection residual of (6). With
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probability at least 1 − (3(k − 1) + 2)δ0, the residual
will be zero for the correct subspace and strictly positive
for all other subspaces. Using the span of the chosen
subspace, U , we can then complete the column by using
x̂ = U

(
UT

Ω UΩ

)−1
UT

Ω xΩ.

We reiterate that Lemma 8 allows us to complete a single
column x with probability 1 − (3(k − 1) + 2)δ0. If we
wish to complete the entire matrix, we will need another
union bound over all N columns, leading to a log N factor
in our requirement on p0. Since N may be quite large in
applications, we prefer to state our result in terms of per-
column completion bound.

The confidence level stated in Theorem 2.1 is the result of
applying the union bound to all the steps required in the
Sections 3, 4, and 6. All hold simultaneously with proba-
bility at least 1−(6+3(k−1)+12s0)δ0 < 1−(6+15s0)δ0,
which proves the theorem.

7 Experiments
The following experiments evaluate the performance of
the proposed high-rank matrix completion procedure and
compare results with standard low-rank matrix completion
based on nuclear norm minimization.

7.1 Numerical Simulations

We begin by examining a highly synthesized experiment
where the data exactly matches the assumptions of our
high-rank matrix completion procedure. The key parame-
ters were chosen as follows: n = 100, N = 5000, k = 10,
and r = 5. The k subspaces were r-dimensional, and each
was generated by r vectors drawn from the N (0, In) dis-
tribution and taking their span. The resulting subspaces
are highly incoherent with the canonical basis for Rn.
For each subspace, we generate 500 points drawn from a
N (0, UUT ) distribution, where U is a n × r matrix whose
orthonormal columns span the subspace. Our procedure
was implemented using ⌈3k log k⌉ seeds. The matrix com-
pletion software called GROUSE (available here [16]) was
used in our procedure and to implement the standard low-
rank matrix completions. We ran 50 independent trials of
our procedure and compared it to standard low-rank matrix
completion. The results are summarized in the Figure 2.

7.2 Network Topology Inference Experiments

As a complement to the heavy network load of standard
active probing methods (e.g., [17]), which scale poorly for
Internet-scale networks, recent research has focused on the
ability to recover Internet connectivity from passively ob-
served measurements [9]. An example of this measurement
infrastructure can be seen in Figure 3-(Left). As detailed in
the introduction, this passive measurements infrastructure
results in a massively incomplete n × N matrix, where n
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Figure 2: The number of correctly completed columns (with tol-
erances shown above, 10e-5 or 0.01), versus the average num-
ber of observations per column. The high rank MC method pro-
vides accurate completion with only about 50 samples per col-
umn, meanwhile the standard low rank MC method requires al-
most all samples in each column.

is the number of passive monitors, N is the total unique IP
addresses observed, and the matrix lies in the union of k
low-rank subspaces, where k is the number of subnets.
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Figure 3: Passive Internet measurements. (Left) - Internet
topology example of subnets sending traffic to passive monitors
through the Internet core and common border routers, (Right) -
Hop count imputation results: Cumulative distribution of estima-
tion error is shown with respect to observing 40% of the total
elements.

Using a Heuristically Optimal Topology from [18], we sim-
ulated a network topology and measurement infrastructure
consisting of N = 2700 total IP addresses uniformly dis-
tributed over k = 12 different subnets. The hop counts
are generated on the topology using shortest-path routing
from n = 75 passive monitors. Observing only 40% of the
total hop counts, in Figure 3-(Right) we compare the per-
formance of the high-rank procedure with standard low-
rank matrix completion. The experiment shows dramatic
improvements, as over 70% of the missing hop counts can
be imputed exactly using the high-rank matrix completion
methodology, while approximately no missing elements
are imputed exactly using low-rank matrix completion.

8 Acknowledgements

This work was supported in part by AFOSR grant number
FA9550-09-1-0140 and FA9550-09-1-0643. Any opinions,
findings, conclusions or other recommendations expressed
in this material are those of the authors and do not neces-
sarily reflect the AFOSR.

380



Brian Eriksson, Laura Balzano, Robert Nowak

References

[1] B. Recht, “A Simpler Approach to Matrix Comple-
tion,” in To appear in Journal of Machine Learning
Research, arXiv:0910.0651v2.

[2] E. J. Candès and T. Tao, “The Power of Convex Re-
laxation: Near-Optimal Matrix Completion.” in IEEE
Transactions on Information Theory, vol. 56, May
2010, pp. 2053–2080.

[3] R. Vidal, “A Tutorial on Subspace Clustering,” in
Johns Hopkins Technical Report, 2010.

[4] K. Kanatani, “Motion Segmentation by Subspace
Separation and Model Selection,” in Computer Vi-
sion, 2001. ICCV 2001. Proceedings. Eighth IEEE In-
ternational Conference on, vol. 2, 2001, pp. 586–591.

[5] R. Vidal, Y. Ma, and S. Sastry, “Generalized Prin-
cipal Component Analysis (GPCA),” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
vol. 27, December 2005.

[6] G. Lerman and T. Zhang, “Robust Recovery of Mul-
tiple Subspaces by Lp Minimization,” 2011, Preprint
at http://arxiv.org/abs/1104.3770.

[7] A. Gruber and Y. Weiss, “Multibody Factorization
with Uncertainty and Missing Data using the EM Al-
gorithm,” in Proceedings of the 2004 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition (CVPR), vol. 1, June 2004.

[8] R. Vidal, R. Tron, and R. Hartley, “Multiframe Mo-
tion Segmentation with Missing Data Using Power
Factorization and GPCA,” International Journal of
Computer Vision, vol. 79, pp. 85–105, 2008.

[9] B. Eriksson, P. Barford, R. Nowak, and M. Crovella,
“Learning Network Structure from Passive Measure-
ments,” in Proceedings of ACM Internet Measure-
ment Conference, October 2007.

[10] B. Eriksson, P. Barford, and R. Nowak, “Network
Discovery from Passive Measurements,” in Proceed-
ings of ACM SIGCOMM Conference, August 2008.

[11] E. Candès and B. Recht, “Exact Matrix Completion
Via Convex Optimization.” in Foundations of Com-
putational Mathematics, vol. 9, 2009, pp. 717–772.

[12] L. Balzano, B. Recht, and R. Nowak, “High-
Dimensional Matched Subspace Detection When
Data are Missing,” in Proceedings of the International
Conference on Information Theory, June 2010, avail-
able at http://arxiv.org/abs/1002.0852.

[13] G. Chen and M. Maggioni, “Multiscale Geometric
and Spectral Analysis of Plane Arrangements,” in
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2011.

[14] B. Eriksson, L. Balzano, and R. Nowak, “High-Rank
Matrix Completion and Subspace Clustering with
Missing Data,” in Technical Report, December 2011.
[Online]. Available: http://arxiv.org/abs/1112.5629

[15] L. Balzano, R. Nowak, A. Szlam, and B. Recht, “k-
Subspaces with missing data,” University of Wiscon-
sin, Madison, Tech. Rep. ECE-11-02, February 2011.

[16] L. Balzano and B. Recht, 2010, http://sunbeam.ece.
wisc.edu/grouse/.

[17] N. Spring, R. Mahajan, and D. Wetherall, “Measuring
ISP Topologies with Rocketfuel,” in Proceedings of
ACM SIGCOMM, August 2002.

[18] L. Li, D. Alderson, W. Willinger, and J. Doyle, “A
First-Principles Approach to Understanding the Inter-
net’s Router-Level Topology,” in Proceedings of ACM
SIGCOMM Conference, August 2004.

381


