No Internal Regret via Neighborhood Watch

Appendix

Proof of Lemma 4.1. Throughout the proof, we
drop the subscript 7 on 7; to ease the notation. Note
that qT(sH) -T(s)+1 since the distribution is not up-
dated when algorithm A; is not invoked. Hence, con-
ditioned on F, (s, the variable ( Z(SH) €y) can be
taken out of the expectation. We therefore need to
show that
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The last step follows because the event {t < 7(s +
1)} is Fi—1-measurable (that is, variables ki, ..., ki1
determine the value of the indicator). By Eq. (2), we
conclude
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Observe that coordinates of f”l T(SH), and e, are
zero outside of N;. We then have that the jth coor-

dinate (for j € [N]) of the vector IE{ fort ‘ -7'-7(5)} is

equal to
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where
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is a scalar. When multiplying the above expression by
qZ(SH) — ey, the term ¢ - 1y, vanishes. Thus, mini-
mizing regret with relative costs (with respect to the

1th action) is the same as minimizing regret with the
absolute costs. We conclude that
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