
UPAL: Unbiased Pool Based Active Learning

Ravi Ganti Alexander Gray
College of Computing, Georgia Institute of Technology, Atlanta, GA, USA

Abstract

In this paper we address the problem of pool
based active learning, and provide an al-
gorithm, called UPAL, that works by min-
imizing the unbiased estimator of the risk
of a hypothesis in a given hypothesis space.
For the space of linear classifiers and the
squared loss we show that UPAL is equiv-
alent to an exponentially weighted average
forecaster. Exploiting some recent results re-
garding the spectra of random matrices al-
lows us to analyze UPAL with squared losses
for the noiseless setting. Empirical compar-
ison with an active learner implementation
in Vowpal Wabbit, and a previously pro-
posed pool based active learner implemen-
tation show good empirical performance and
better scalability.

1 Introduction

In the problem of binary classification one has a distri-
bution D on the domain X ×Y ⊆ Rd×{−1,+1}, and
access to a sampling oracle, which provides us i.i.d.
labeled samples S = {(x1, y1), . . . , (xn, yn)}. The task
is to learn a classifier h, which predicts well on unseen
points. For certain problems the cost of obtaining la-
beled samples can be quite expensive. For instance
consider the task of speech recognition. Labeling of
speech utterances needs trained linguists, and can be
a fairly tedious task. Similarly in information extrac-
tion, and in natural language processing one needs ex-
pert annotators to obtain labeled data, and gathering
huge amounts of labeled data is not only tedious for
the experts but also expensive. In such cases it is of
interest to design learning algorithms, which need only
a few labeled examples for training, and also guarantee
good performance on unseen data.

Appearing in Proceedings of the 15th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume XX of JMLR:
W&CP XX. Copyright 2012 by the authors.

Suppose we are given a labeling oracle O, which when
queried with an unlabeled point x returns the label
y of x. Active learning algorithms query this oracle
as few times as possible and learn a provably good hy-
pothesis from these labeled samples. Broadly speaking
active learning (AL) algorithms can be classified into
three kinds, namely membership query (MQ) based al-
gorithms, stream based algorithms and pool based al-
gorithms. All these three kinds of AL algorithms query
the oracle O for the label of the point, but differ from
each other in the nature of the queries. In MQ based
algorithms the active learner can query for the label of
a point in the input space X , but it might not neces-
sarily be from the support of the marginal distribution
DX . With human annotators MQ algorithms might
work poorly as was demonstrated by Lang and Baum
in the case of handwritten digit recognition (1992),
where the annotators were faced with the awkward
situation of labeling semantically meaningless images.
Stream based AL algorithms (Cohn et al., 1994; Chu
et al., 2011) sample a point x from the marginal dis-
tribution DX , and decide on-the-fly whether to query
O for the label of x? Stream based AL algorithms
tend to be computationally efficient, and most appro-
priate when the underlying distribution changes with
time. Pool based AL algorithms assume that one has
access to a large pool P = {x1, . . . , xn} of unlabeled
i.i.d. examples sampled from DX , and given budget
constraints B, the maximum number of points they
are allowed to query, query the most informative set
of points. Both pool based AL algorithms, and stream
based AL algorithms overcome the problem of awk-
ward queries, which MQ based algorithms face. How-
ever in our experiments we discovered that stream
based AL algorithms tend to query more points than
necessary, and have poorer learning rates when com-
pared to pool based AL algorithms.

Contributions. In this paper we propose a pool
based active learning algorithm called UPAL, which
given a hypothesis space H, and a margin based loss
function φ(·) minimizes a provably unbiased estimator
of the risk E[φ(yh(x))]. While unbiased estimators of
risk have been used in stream based AL algorithms, no

422

UPAL: Unbiased Pool Based Active Learning

such estimators have been introduced for pool based
AL algorithms. We do this by using the idea of im-
portance weights introduced for AL in Beygelzimer et
al. (Beygelzimer et al., 2009). Roughly speaking UPAL
proceeds in rounds and in each round puts a probabil-
ity distribution over the entire pool, and samples a
point from the pool. It then queries for the label of
the point. The probability distribution in each round
is determined by the current active learner obtained
by minimizing the importance weighted risk over H.
Specifically in this paper we shall be concerned with
linear hypothesis spaces.

In theorem 2 (Section 2.1) we show that for the
squared loss UPAL is equivalent to an exponentially
weighted average (EWA) forecaster commonly used
in the problem of learning with expert advice (Cesa-
Bianchi and Lugosi, 2006). Precisely we show that if
each hypothesis h in H is considered to be an expert
and the importance weighted loss on the currently la-
beled part of the pool is used as an estimator of the risk
of h ∈ H, then the hypothesis learned by UPAL is the
same as an EWA forecaster. Hence UPAL can be seen
as pruning the hypothesis space, in a soft manner, by
placing a probability distribution that is determined
by the importance weighted loss of each classifier on
the currently labeled part of the pool.

In section 3 we prove consistency of UPAL with the
squared loss for the noiseless setting, when the true
underlying model is a linear model. Our proof em-
ploys some elegant results from random matrix the-
ory regarding eigenvalues of sums of random matri-
ces (Hsu et al., 2011a,b; Tropp, 2010). While it should
be possible to improve the constants and exponents
in theorem 3, our results qualitatively provide us the
insight that in the noiseless setting the label complex-
ity with the squared loss will depend on the condition
number, and the minimum eigenvalue of the covari-
ance matrix Σ. This kind of insight to our knowledge
has not been provided before in the literature of active
learning. In section 5 we provide a thorough empirical
analysis of UPAL comparing it to the active learner
implementation in Vowpal Wabbit (VW) (Langford
et al., 2011), and a batch mode active learning algo-
rithm, which we shall call as BMAL (Hoi et al., 2006).
These experiments demonstrate the positive impact of
importance weighting, and the better performance of
UPAL over the VW implementation. We also empiri-
cally demonstrate the scalability of UPAL over BMAL
on the MNIST dataset. When provided with a large
budget UPAL is upto 7 times faster than BMAL.

2 Algorithm Design

A good active learning algorithm needs to take into
account the fact that the points it has queried might
not reflect the true underlying marginal distribution.
This problem is similar to the problem of dataset
shift (Quinonero et al., 2008) where the train and test
distributions are potentially different, and the learner
needs to take into account this bias during the learning
process. One approach to this problem is to use im-
portance weights, where during the training process
instead of weighing all the points equally the algo-
rithm weighs the points differently. UPAL proceeds
in rounds, where in each round t, we put a proba-
bility distribution {pti}ni=1 on the entire pool P, and
sample one point from this distribution. If the sam-
pled point was queried in one of the previous rounds
1, . . . , t − 1 then its queried label from the previous
round is reused, else the oracle O is queried for the la-
bel of the point. Denote by Qti ∈ {0, 1} a random
variable that takes the value 1 if the point xi was
queried for it’s label in round t and 0 otherwise. In
order to guarantee that our estimate of the error rate
of a hypothesis h ∈ H is unbiased we use importance
weighting, where a point xi ∈ P in round t gets an im-

portance weight of
Qti
pti

. By the definition of the random

variable Qti, we get E[Qti|pti] = 1. We formally prove
that importance weighted risk is an unbiased estimator
of the true risk. Let Dn denote a product distribution
on (x1, y1), . . . , (xn, yn). Also denote by Q1:t

1:n the col-
lection of random variables Q1

1, . . . , Q
1
n, . . . , Q

t
n. Let

〈·, ·〉 denote the inner product. We have the following
result.

Theorem 1. Let L̂t(h)
def
= 1

nt

∑n
i=1

∑t
τ=1

Qτi
pτi
φ(yi〈h, xi〉),

where pτi > 0 for all i = 1, . . . , n, τ = 1, . . . , t. Then

EQ1
1,...,Q

t
n,DnL̂t(h) = L(h).

Proof.

EQ1:t
1:n,DnL̂t(h) = EQ1:t

1:n,Dn
1

nt

n∑

i=1

t∑

τ=1

Qτi
pτi
φ(yi〈h, xi〉)

= EQ1:t
1:n,Dn

1

nt

n∑

i=1

t∑

τ=1

EQτi |Q1:τ−1
1:n ,Dn

Qτi
pτi
φ(yi〈h, xi〉)

= EDn
1

nt

n∑

i=1

t∑

τ=1

φ(yi〈h, xi〉) = L(w).

The theorem guarantees that as long as the probabil-
ity of querying any point in the pool in any round
is non-zero, L̂t(h), will be an unbiased estimator of

423

Ravi Ganti, Alexander Gray

L(h). How does one come up with a probability dis-
tribution on P in each round? To solve this prob-
lem we resort to probabilistic uncertainty sampling,
where the point whose label is most uncertain as per
the current hypothesis, hA,t−1, gets a higher prob-
ability mass. The current hypothesis is simply the
minimizer of the importance weighted risk in H, i.e.
hA,t−1 = arg minh∈H L̂t−1(h). For any point xi ∈ P,
to calculate the uncertainty of the label yi of xi, we

first estimate η(xi)
def
= P[yi = 1|xi] using hA,t−1, and

then use the entropy of the label distribution of xi
to calculate the probability of querying xi. The esti-
mate of η(·) in round t depends both on the current
active learner hA,t−1, and the loss function. In gen-
eral it is not possible to estimate η(·) with arbitrary
convex loss functions. However it has been shown by
Zhang (2004) that the squared, logistic and exponen-
tial losses tend to estimate the underlying conditional
distribution η(·). Steps 4 of the algorithm 1 depends
on the loss function, φ(·), and calculates the condi-
tional probability of the point being labeled +1. If
we use the logistic loss i.e φ(yz) = ln(1 + exp(−yz))
then η̂t(x) = 1

1+exp(−yhTA,t−1x)
. In case of squared loss

η̂t(x) = min{max{0, wTA,t−1x}, 1}. Step 5 calculates
the sampling probability of point xi in round t, via

the entropy, H(p)
def
= − p ln(p) − (1 − p) ln(1 − p), of

the conditional probability calculated in step 4 to gen-
erate the sampling distribution over the pool P. No-
tice that the minimum probability of sampling a point
in round t is ptmin, which is calculated in step 3 as

1
ntκ . The role of κ is to trade-off exploration and ex-
ploitation. If κ = 0 then in each round we uniformly
sample over the entire pool, and this is nothing but
pure exploration. For larger κ, the minimum proba-
bility at every point is small, yet non-zero, and this
can be seen as exploiting more often than exploring.
Theorem 3 suggests κ = 1/2, but experimentally we
noticed that one can take κ as large as 1. By design
UPAL might re-query points. An alternate strategy is
to not allow re-querying of points. However the impor-
tance weighted risk may not be an unbiased estimator
of the true risk in such a case. Hence in order to re-
tain the unbiasedness property we allow re-querying in
UPAL.

2.1 The case of squared loss

It is interesting to look at the behaviour of UPAL in
the case of squared loss where φ(yhTx) = (1−yhTx)2.
For the rest of the paper we shall denote by hA the
hypothesis returned by UPAL at the end of T rounds.
We now show that the prediction of hA on any x is sim-
ply the exponentially weighted average of predictions
of all h in H.

Algorithm 1 UPAL (Input: P = {x1, . . . , xn, }, Loss
function φ(·), Budget B, Labeling Oracle O,κ ≥ 0)

1. Set num unique queries=0, hA,0 = 0, t = 1.
while num unique queries ≤ B do

2. Set Qti = 0 for all i = 1, . . . , n.
for x1, . . . , xn ∈ P do

3. Set ptmin = 1
ntκ .

4. Calculate η̂t(xi) = P[y = +1|xi, hA,t−1].

5. pti
def
= ptmin + (1− nptmin) H(η̂t(xi))∑n

j=1H(η̂t(xj))
.

end for
6. Sample a point (say xj) from pt(·).
if xj was queried previously then

7. Reuse its previously queried label yj .
else

8. Query oracle O for its label yj .
9.
num unique queries ← num unique queries+1.

end if
10. Set Qtj = 1.
11. Solve the optimization problem: hA,t =

arg minh∈H
∑n
i=1

∑t
τ=1

Qτi
pτi
φ(yih

Txi).

12. t← t+ 1.
end while
13. Return hA

def
= hA,t

Theorem 2. Let

zi
def
=

T∑

t=1

Qti
pti

Σ̂z
def
=

n∑

i=1

zixix
T
i

vz
def
=

n∑

i=1

ziyixi c
def
=

n∑

i=1

zi.

Define w ∈ Rd as

w =

∫
Rd exp(−L̂T (h))h dh
∫
Rd exp(−L̂T (h)) dh

(1)

Assuming M is invertible we have for any x0 ∈ Rd,
wTx0 = hTAx0.

Proof. By elementary linear algebra one can establish
that

hA = Σ̂−1
z vz (2)

L̂T (h) = (h− Σ̂−1
z vz)Σ̂z(h− Σ̂−1

z vz) (3)

Using standard integrals we get

Z
def
=

∫

Rd
exp(−L̂T (h)) dh =

exp(−c− vTz Σ̂−1
z vz)

√
πd
√

det(Σ̂−1
z).

(4)

424

UPAL: Unbiased Pool Based Active Learning

In order to calculate wTx0, it is now enough to calcu-
late the integral

I
def
=

∫

Rd
exp(−L̂T (h)) hTx0 dw.

To solve this integral we proceed as follows. Define
I1 =

∫
Rd exp(−L̂T (h)) hTx0 dh. By simple algebra we

get

I =

∫

Rd
exp(−wT Σ̂zw + 2wT vz − c) wTx0 dw (5)

= exp(−c− vTz Σ̂−1
z vz)I1 (6)

Let a = h− Σ̂−1
z vz. We then get

I1 =

∫

Rd
hTx0 exp

(
−(h− Σ̂−1

z vz)Σ̂z(h− Σ̂−1
z vz)

)
dh

=

∫

Rd
(aTx0 + vTz Σ̂−1

z x0) exp(−aT Σ̂za) da

=

∫

Rd
(aTx0) exp(−aT Σ̂za) da

︸ ︷︷ ︸
I2

+

∫

Rd
vTz Σ̂−1

z x0 exp(−aT Σ̂za) da

︸ ︷︷ ︸
I3

(7)

Clearly I2 being the integrand of an odd function over
the entire space is equal to 0. To calculate I3 we shall
substitute Σ̂z = SST , where S � 0. Such a decompo-
sition is possible since Σ̂z � 0. Now define z = STa.
We get

I3 = vTz Σ̂−1
z x0

∫
exp(−zT z) det(S−1) dz (8)

= vTz Σ̂−1
z x0 det(S−1)

√
πd (9)

Using equations (6, 7, 9) we get

I = (
√
π)dvTz Σ̂−1

z x0 det(S−1) exp(−c− vTz Σ̂−1
z vz).

(10)

Hence we get

wTx0 = vTz Σ̂−1
z x0

det(S−1)√
det(Σ̂−1

z)
= vTz Σ̂−1

z x0 = hTAx0,

where the penultimate equality follows from the fact
that det(Σ̂−1

z) = 1/ det(Σ̂z) = 1/(det(SST)) =
1/(det(S))2, and the last equality follows from equa-
tion 2.

Theorem 2 is instructive. It tells us that assuming
that the matrix Σ̂z is invertible, hA is the same as an
exponentially weighted average of all the hypothesis

in H. Hence one can view UPAL as learning with ex-
pert advice, where each individual hypothesis h ∈ H
is an expert, and the exponential of L̂T is used to
weigh the hypothesis in H. Such forecasters have been
commonly used in learning with expert advice. This
also lends a different interpretation for UPAL. UPAL
prunes the hypothesis space in a soft way via the ex-
ponential weighting scheme. The hypothesis that has
suffered more cumulative loss get lesser weight, while
the ones that has suffered lesser cumulative loss get
more weight.

3 Consistency of UPAL

It is natural to ask if UPAL is consistent. That is
will UPAL do as well as the optimal hypothesis in
H as n → ∞, T → ∞? We asnwer this question in
affirmative for a restricted setting using the squared
loss. Let us denote by hA the hypothesis obtained
after we have run UPAL for T rounds. Also let us
suppose that y ∈ [−1,+1]. This can be seen as the
oracle returning the conditional expectation E[y|x]
instead of just the sign of E[y|x]. We shall make

the following assumptions 1) [A0] Σ
def
= E[xxT] is

invertible. 2) [A1] ||xi|| ≤ B a.s. 3) [A2] y = βTx
a.s. A0 is required to guarantee that there is a unique
minimizer of the expected squared loss. A1 is just a
boundedness assumption of the input domain. The
strongest assumption is A2. While the assumption
of linear model may be valid in kernel spaces, the
assumption that the observations are non-noisy is
indeed somewhat restrictive. Our current proof is only
for the squared loss. The motivation for using squared
loss is that it leads to closed form solution for hA,
which can then be elegantly analyzed using results
from random matrix theory (Hsu et al., 2011a,b;
Tropp, 2010). It may be possible to extend these
results to other loss functions such as the logistic
loss, or exponential loss using results from empirical
process theory (van de Geer, 2000), and the idea of
self-concordant functions (Bach, 2010)

Our main result is that under assumptions A0-
A3, given enough data, and if UPAL with the squared
loss, and κ = 1/2 is run for enough rounds, then with
high probability over the sample and the randomness
in sampling hA = β.

Theorem 3. Suppose assumptions A0-A2 hold. Then
for T ≥ T0,δ, n ≥ max{n0,δ, n1,δ}, κ = 1/2 with prob-
ability at least 1− 5δ, UPAL recovers the vector β.

The rough proof sketch is as follows. We first establish
in lemma 1 that conditioned on the invertibility of ma-
trices Σ̂z, Σ̂ (Σ̂ is the empirical covariance matrix) the
hypothesis hA returned by UPAL is β. Once we have

425

Ravi Ganti, Alexander Gray

established this simple result, we establish conditions
for the invertibility of matrices Σ̂z, Σ̂ in lemmas 2, 3.
We will require the following notation in addition to
what has been used in theorem 2

n1,δ
def
=

7200d2B4

λ2
min(Σ)

(d ln(5) + ln(2/δ)) n0,δ
def
=

8B2 ln(d/δ)

λmin(Σ)

T0,δ
def
=

324B8

(λmin(Σ))4
+

18λmax(Σ)

λmin(Σ)
ln(d/δ) Σ̂

def
=

1

n

n∑

i=1

xix
T
i

Et[·] def
= EQt1:n|Q1:t−1

1:n ,Dn [·].
Lemma 1. Suppose assumptions A0-A2 hold. Then
conditioned on the invertibility of matriecs Σ̂z, Σ̂, for
T ≥ T0,δ, n ≥ max{n0,δ, n1,δ} we have hA = β.

Proof.

hA = Σ̂−1
z vz = Σ̂−1

z

n∑

i=1

ziyixi = Σ̂−1
z Σ̂zβ = β,

where in the first step we used the fact that hA is
the active learner outputted by the algorithm after T
rounds, and in the third equality we used assumption
A2.

Lemma 1 makes use of the assumption that both
Σ̂−1
z , Σ̂−1 are well defined. The next lemma estab-

lishes conditions on the invertibility of these matrices.
The key tool is to use results regarding spectra of ran-
dom matrices. In particular we shall be using the ma-
trix Bernstein bound and the matrix Chernoff bound.
These results have been stated in the appendix.

Lemma 2. With probability at least 1 − δ each the
following two inequalities hold

1. λmin(Σ̂) ≥ 1
2λmin(Σ) > 0 for n ≥ n0,δ.

2. λmax(Σ̂) ≤ 3
2λmax(Σ) for n ≥ n1,δ.

Proof. Let J
def
=
∑n
i=1 Σ−1/2xix

T
i Σ−1/2. From the def-

inition of matrix norms we get

||Σ−1/2xi|| ≤ ||Σ−1/2|| ||xi|| ≤
B√

λmin(Σ)
.

To prove the first part we shall now use the matrix

Chernoff inequality (Theorem 5) where b
def
= B√

λmin(Σ)
.

We then get with probability at least 1− δ

λmin(J/n) ≥ 1−
√

2B2 ln(d/δ)

nλmin(Σ)
≥ 1/2 (11)

for n ≥ n0,δ. Now by definition J = nΣ−1/2Σ̂Σ−1/2.

λmin(Σ̂) =
1

λmax(Σ̂−1)
=

1

nλmax(Σ−1/2J−1Σ−1/2)
=

1

n||Σ−1/2J−1Σ−1/2|| ≥
1

n||Σ−1/2|| ||J−1|| ||Σ−1/2|| =

1

n
λmin(Σ)λmin(J) ≥ λmin(Σ)

2
, (12)

where in the last line we used equation 11. Proof of
the second part is similar but we now instead use the
matrix Bernstein inequality (Theorem 4).

We are now ready to establish conditions for the in-
vertibility of Σ̂z.

Lemma 3. For T ≥ T0,δ, and κ = 1/2, with probabil-

ity at least 1−4δ we have λmin(Σ̂z) ≥ nTλmin(Σ)/12 >
0, and hence Σ̂z is invertible.

Proof. The idea is to use the matrix Bernstein bound
(theorem 4) to get a lower bound on λmin(Σ̂z). Let

M ′t
def
=
∑n
i=1

Qti
pti
xix

T
i , so that Σ̂z =

∑T
t=1M

′
t . Now

EtM ′t = nΣ̂. Define R′t
def
= nΣ̂−M ′t , so that EtR′t = 0.

We shall apply the matrix Bernstein inequality to the
random matrix

∑
R′t. To do so we need upper bounds

on λmax(R′t) and λmax(1
T

∑T
t=1 EtR′2t). Let n ≥ n1,δ.

Using lemma 2 we get with probability at least 1− δ

λmax(R′t) = λmax(nΣ̂−M ′t) ≤ λmax(nΣ̂)

≤ 3nλmax(Σ)

2

def
= b2. (13)

λmax

[
1

T

T∑

t=1

EtR′2t

]
=

1

T
λmax[

T∑

t=1

Et(nΣ̂−M ′t)2]

(14)

=
1

T
λmax(−n2T Σ̂2 +

T∑

t=1

Et
n∑

i=1

Qti
(pti)

2
(xix

T
i)2) (15)

=
1

T
λmax(−n2T Σ̂2 +

T∑

t=1

n∑

i=1

1

pti
(xix

T
i)2) (16)

≤ 1

T
λmax(

n∑

i=1

T∑

t=1

1

pti
(xix

T
i)2) (17)

≤ n
√
Tλmax(

n∑

i=1

(xix
T
i)2) (18)

≤ n
√
T

n∑

i=1

λ2
max(xix

T
i) (19)

≤ n2
√
TB4 def

= σ2
2 . (20)

Equation 15 follows from equation 14 by the definition
of M ′t and the fact that in any given round only one

426

UPAL: Unbiased Pool Based Active Learning

point is queried, i.e for a given t and i 6= j we get
QtiQ

t
j = 0. Equation 16 follows from 15 by using the

fact that EtQ
t
i = pti. Equation 17 follows from 16

by Weyl’s inequality and the fact that Σ̂ � 0. To

obtain 18 from 17 we substituted ptmin
def
= 1

n
√
t

in place

of pti. Finally the remaining set of inequalities follow
because of A1, and the fact that if p is a vector then
λmax(ppT) = ||p||2.

Using theorem 4 we get with probability at least 1−δ,

λmax(
1

T

T∑

t=1

R′t) ≤
√

2σ2
2 ln(d/δ)

T
+
b2 ln(d/δ)

T

=⇒ λmax(nΣ̂− 1

T

T∑

t=1

M ′t) ≤
√

2σ2
2 ln(d/δ)

T
+
b2 ln(d/δ)

T

=⇒ λmin(nΣ̂)− 1

T
λmin

(
T∑

t=1

M ′t

)
≤
√

2σ2
2 ln(d/δ)

T
+

b2 ln(d/δ)

T
(21)

Rearranging the inequality and substituting for σ2, b2
as calculated in equations 13, 20

λmin(

T∑

t=1

M ′t) ≥ nTλmin(Σ̂)−
√

2T 3/2n2B4 ln(d/δ)−

3nλmax(Σ) ln(d/δ)

2
. (22)

By union bound the above stochastic inequality holds
with probability at least 1−3δ. Finally using lemma 2
to stochastically lower bound the quantity λmin(Σ̂) by
λmin(Σ)/2, and applying union bound once again we
get the desired result.

Proof of theorem 3. For n ≥ n0,δ from lemma 2, with

probability 1−δ, Σ̂ is invertible. For T ≥ T0,δ, n ≥ n1,δ

the matrix Σ̂z becomes invertible with probability at-
least 1− 4δ. Conditioned on the invertibility of Σ̂, Σ̂z
from lemma 1 we can recover β exactly. Summing up
all the failure probabilities using union bound we get
the desired result.

4 Related Work

A variety of pool based AL algorithms have been pro-
posed in the literature employing various query strate-
gies. However, none of them use unbiased estimates of
the risk. One of the simplest strategy for AL is uncer-
tainty sampling, where the active learner queries the
point whose label it is most uncertain about. This
strategy has been popular in text classification (Lewis
and Gale, 1994), and information extraction (Settles

and Craven, 2008). Usually the uncertainty in the
label is calculated using certain information-theoretic
criteria such as entropy, or variance of the label dis-
tribution. While uncertainty sampling has mostly
been used in a probabilistic setting, AL algorithms
which learn non-probabilistic classifiers using uncer-
tainty sampling have also been proposed. Tong et
al. (2001) proposed an algorithm in this framework
where they query the point closest to the current
svm hyperplane. Seung et al. (1992) introduced the
query-by-committee (QBC) framework where a com-
mittee of potential models, which all agree on the
currently labeled data is maintained and, the point
where most committee members disagree is consid-
ered for querying. In order to design a committee
in the QBC framework, algorithms such as query-by-
boosting, and query-by-bagging in the discriminative
setting (Abe and Mamitsuka, 1998), sampling from
a Dirichlet distribution over model parameters in the
generative setting (McCallum and Nigam, 1998) have
been proposed. Other frameworks include querying
the point, which causes the maximum expected re-
duction in error (Zhu et al., 2003; Guo and Greiner,
2007), variance reducing query strategies such as the
ones based on optimal design (Flaherty et al., 2005;
Zhang and Oles, 2000). A very thorough literature
survey of different active learning algorithms has been
done by Settles (2009). AL algorithms that are consis-
tent and have provable label complexity have been pro-
posed for the agnostic setting for the 0-1 loss in recent
years (Dasgupta et al., 2007; Beygelzimer et al., 2009).
The IWAL framework introduced in Beygelzimer et
al. (2009) was the first AL algorithm with guarantees
for general loss functions. However the authors were
unable to provide non-trivial label complexity guaran-
tees for the hinge loss, and the squared loss.

UPAL at least for squared losses can be seen as using
a QBC based querying strategy where the committee
is the entire hypothesis space, and the disagreement
among the committee members is calculated using an
exponential weighting scheme. However unlike previ-
ously proposed committees our committee is an infi-
nite set, and the choice of the point to be queried is
randomized.

5 Experimental results

We implemented UPAL, along with the standard pas-
sive learning (PL) algorithm, and a variant of UPAL
called RAL (in short for random active learning), all
using logistic loss, in MATLAB. The choice of logis-
tic loss was motivated by the fact that BMAL was
designed for logistic loss. Our MATLAB codes were
vectorized to the maximum possible extent so as to be
as efficient as possible. RAL is similar to UPAL, but

427

Ravi Ganti, Alexander Gray

in each round samples a point uniformly at random
from the currently unqueried pool. However it does
not use importance weights to calculate an estimate of
the risk of the classifier. The purpose of implementing
RAL was to demonstrate the potential effect of using
unbiased estimators, and to check if the strategy of
randomly querying points helps in active learning.

We also implemented a batch mode active learning
algorithm introduced by Hoi et al. (2006) which, we
shall call as BMAL. Hoi et al. in their paper showed
superior empirical performance of BMAL over other
competing pool based active learning algorithms, and
this is the primary motivation for choosing BMAL as
a competitor pool AL algorithm in this paper. BMAL
like UPAL also proceeds in rounds and in each itera-
tion selects k examples by minimizing the Fisher in-
formation ratio between the current unqueried pool
and the queried pool. However a point once queried
by BMAL is never requeried. In order to tackle the
high computational complexity of optimally choosing
a set of k points in each round, the authors suggested
a monotonic submodular approximation to the orig-
inal Fisher ratio objective, which is then optimized
by a greedy algorithm. At the start of round t + 1
when, BMAL has already queried t points in the pre-
vious rounds, in order to decide which point to query
next, BMAL has to calculate for each potential new
query a dot product with all the remaining unqueried
points. Such a calculation done for all possible po-
tential new queries takes O(n2t) time. Hence if our
budget is B, then the total computational complexity
of BMAL is O(n2B2). Note that this calculation does
not take into account the complexity of solving an op-
timization problem in each round after having queried
a point. In order to further reduce the computational
complexity of BMAL in each round we further restrict
our search, for the next query, to a small subsample
of the current set of unqueried points. In our exper-
iments the size of the subsample is taken to be 300.
In order to avoid numerical problems we implemented
a regularized version of UPAL where the term λ||w||2
was added to the optimization problem shown in step
11 of Algorithm 1. The value of λ is allowed to change
as per the current importance weight of the pool. The
optimal value of C in VW 1 was chosen via a 5 fold
cross-validation, and by eyeballing for the value of C
that gave the best cost-accuracy trade-off. Figure 1
shows the performance of all the algorithms on the
first 300 queried points.

1The parameters initial t, l were set to a default value
of 10 for all of our experiments.

0 50 100 150 200 250 300

25

30

35

40

45

50

UPAL
BMAL
VW
RAL
PL

(d) Whitewine

Figure 1: Empirical performance of passive and active
learning algorithms.The x-axis represents the number
of points queried, and the y-axis represents the test
error of the classifier. The value of κ was set to 1.

Sample size UPAL BMAL
Time Error Time Error

1200 65 7.27 60 5.67
2400 100 6.25 152 6.05
4800 159 6.83 295 6.25
10000 478 5.85 643.17 5.85

Table 1: Comparison of UPAL and BMAL on MNIST
data-set of varying training sizes, and with the budget be-
ing fixed at 300. The error rate is in percentage, and the
time is in seconds.

Budget UPAL BMAL Speedup
Time Error Time Error

500 859 5.79 1973 5.33 2.3
1000 1919 6.43 7505 5.70 3.9
2000 4676 5.82 32186 5.59 6.9

Table 2: Comparison of UPAL on the MNIST (3 Vs 5)
dataset, of size 10000 for varying budget size. All the times
are in seconds unless stated, and error rates in percentage.

428

UPAL: Unbiased Pool Based Active Learning

0 50 100 150 200 250 300

5

10

15

20

25

30

UPAL
BMAL
VW
RAL
PL

(a) MNIST (3 vs 5)

0 50 100 150 200 250 300

5

10

15

20

25

30

UPAL
BMAL
VW
RAL
PL

(b) Statlog

0 50 100 150 200 250 300

25

30

35

40

45

50

UPAL
BMAL
VW
RAL
PL

(c) Abalone

On the MNIST dataset, on an average, the perfor-
mance of BMAL is very similar to UPAL, and there is a
noticeable gap in the performance of BMAL and UPAL
over PL, VW and RAL. Similar results were also seen
in the case of Statlog dataset, though towards the end
the performance of UPAL slightly worsens when com-
pared to BMAL. However UPAL is still better than
PL, VW, and RAL.

Active learning is not always helpful and the suc-
cess story of AL depends on the match between the
marginal distribution and the hypothesis class. This
is clearly reflected in Abalone where the performance
of PL is better than UPAL at least in the initial stages
and is never significantly worse. UPAL is uniformly
better than BMAL, though the difference in error rates
is not significant. However the performance of RAL,
VW are significantly worse. Similar results were also
seen in the case of Whitewine dataset, where PL out-
performs all AL algorithms. UPAL is better than
BMAL most of the times. Even here one can witness
a huge gap in the performance of VW and RAL over
others.

One can conclude that VW though is computation-
ally efficient has higher error rate for the same num-
ber of queries. The uniformly poor performance of
RAL signifies that querying uniformly at random does
not help. On the whole UPAL and BMAL perform
equally well, and we show via our next set of exper-
iments that UPAL has significantly better scalability,
especially when one has a relatively large budget B.

5.1 Scalability results

Each round of UPAL takes O(n) plus the time to solve
the optimization problem shown in step 11 in Algo-
rithm 1. A similar optimization problem is also solved
in the BMAL problem. If the cost of solving this op-
timization problem in step t is copt,t, then the com-

plexity of UPAL is O(nT +
∑T
t=1 copt,t). While BMAL

takes O(n2B2 +
∑T
t=1 c

′
t,opt) where c′t,opt is the com-

plexity of solving the optimization problem in BMAL
in round t. For the approximate implementation of
BMAL that we described if the subsample size is |S|,
then the complexity is O(|S|2B2 +

∑T
t=1 c

′
t,opt).

In our first set of experiments we fixed the budget B =
300, and calculated the error rate and the combined
training and testing time of both BMAL and UPAL for
varying sizes of the training set. All the experiments
were performed on the MNIST dataset. Table 1 shows
that with increasing sample size UPAL tends to be
more efficient than BMAL, though the gain in speed
that we observed was at most a factor of 1.8.

In the second set of scalability experiments (Table
2), we studied the effect of increasing budget. We
found out that with increasing budget size the speedup
of UPAL over BMAL increases. In particular when
the budget was 2000, UPAL is arpproximately 7 times
faster than BMAL. All our experiments were run on a
dual core machine with 3 GB memory.

6 Conclusions and Discussion

In this paper we proposed the first unbiased pool based
active learning algorithm, and showed its good empir-
ical performance and its ability to scale with higher
budget constraints. Since the submission of this pa-
per we have been able to extend our consistency re-
sult to the noisy setting, details of which can be found
in Ganti and Gray (2011). We believe our consistency
results can be improved. An important question to
solve is to give explicit upper bounds on the number
of unique queries made by UPAL in T rounds of the
algorithm. This will allow us to compare pool based
AL algorithms and stream based AL algorithms theo-
retically.

429

Ravi Ganti, Alexander Gray

References

N. Abe and H. Mamitsuka. Query learning strategies
using boosting and bagging. In ICML, 1998.

F. Bach. Self-concordant analysis for logistic regres-
sion. Electronic Journal of Statistics, 4:384–414,
2010.

E.B. Baum and K. Lang. Query learning can work
poorly when a human oracle is used. In IJCNN,
1992.

A. Beygelzimer, S. Dasgupta, and J. Langford. Impor-
tance weighted active learning. In ICML, 2009.

N. Cesa-Bianchi and G. Lugosi. Prediction, learning,
and games. Cambridge Univ Press, 2006.

W. Chu, M. Zinkevich, L. Li, A. Thomas, and
B. Tseng. Unbiased online active learning in data
streams. In SIGKDD, 2011.

D. Cohn, L. Atlas, and R. Ladner. Improving general-
ization with active learning. Machine Learning, 15
(2), 1994.

S. Dasgupta, D. Hsu, and C. Monteleoni. A general
agnostic active learning algorithm. NIPS, 2007.

Patrick Flaherty, Michael I. Jordan, and Adam P.
Arkin. Robust design of biological experiments. In
Neural Information Processing Systems, 2005.

R. Ganti and A. Gray. Upal: Unbiased pool based ac-
tive learning. Arxiv preprint arXiv:1111.1784, 2011.

Y. Guo and R. Greiner. Optimistic active learning
using mutual information. In IJCAI, 2007.

S.C.H. Hoi, R. Jin, J. Zhu, and M.R. Lyu. Batch mode
active learning and its application to medical image
classification. In ICML, 2006.

R.A. Horn and C.R. Johnson. Matrix analysis. Cam-
bridge Univ Press, 1990.

D. Hsu, S.M. Kakade, and T. Zhang. An analysis
of random design linear regression. Arxiv preprint
arXiv:1106.2363, 2011a.

D. Hsu, S.M. Kakade, and T. Zhang. Dimension-free
tail inequalities for sums of random matrices. Arxiv
preprint arXiv:1104.1672, 2011b.

J. Langford, L. Li, A. Strehl, D. Hsu, N. Karampatzi-
akis, and M. Hoffman. Vowpal wabbit, 2011.

D.D. Lewis and W.A. Gale. A sequential algorithm for
training text classifiers. In SIGIR, 1994.

A.K. McCallum and K. Nigam. Employing EM and
pool-based active learning for text classification. In
ICML, 1998.

J. Quinonero, M. Sugiama, A. Schwaighofer, and N.D.
Lawrence. Dataset shift in machine learning, 2008.

B. Settles and M. Craven. An analysis of active
learning strategies for sequence labeling tasks. In
EMNLP, 2008.

Burr Settles. Active learning literature survey. Com-
puter Sciences Technical Report 1648, University of
Wisconsin–Madison, 2009.

H.S. Seung, M. Opper, and H. Sompolinsky. Query by
committee. In COLT, pages 287–294. ACM, 1992.

S. Tong and E. Chang. Support vector machine active
learning for image retrieval. In Proceedings of the
ninth ACM international conference on Multimedia,
2001.

J.A. Tropp. User-friendly tail bounds for sums of
random matrices. Arxiv preprint arXiv:1004.4389,
2010.

Sara van de Geer. Empirical processes in m-estimation.
2000.

T. Zhang. Statistical behavior and consistency of clas-
sification methods based on convex risk minimiza-
tion. Annals of Statistics, 32(1), 2004.

T. Zhang and F. Oles. The value of unlabeled data for
classification problems. In ICML, 2000.

Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani.
Combining active learning and semi-supervised
learning using gaussian fields and harmonic func-
tions. In ICML, 2003.

A Some results from random matrix
theory

Theorem 4. (Matrix Bernstein bound Hsu et al.
(2011a)) Let M1 . . . ,Mn be symmetric valued random
matrices. Suppose there exist b̄, σ̄ such that for all
i = 1, . . . , n

Ei[Mi] = 0

λmax(Mi) ≤ b̄

λmax

(
1

n

n∑

i=1

Ei[M2
i]

)
≤ σ̄2,

almost surely, then

P

[
λmax

(
1

n

n∑

i=1

Mi

)
>

√
2σ̄2 ln(d/δ)

n
+
b̄ ln(d/δ)

3n

]
≤ δ.

A dimension free version of the above inequality was
proved in Hsu et al. (2011b). Such dimension free in-
equalities are especially useful in infinite dimensional
spaces. However since we are working in a finite di-
mensional space we shall stick to the non-dimension
free version.

430

UPAL: Unbiased Pool Based Active Learning

Theorem 5. (Matrix chernoff bound; Tropp (2010);
Hsu et al. (2011a)) Let v1, . . . vn be random vectors
such that, for some b ≥ 0

E[||vi||2|v1, . . . , vi−1] ≥ 1, and ||vi|| ≤ b,

for all i = 1, . . . , n, almost surely. For all δ ∈ (0, 1),

P

[
λmin

(
1

n

n∑

i=1

viv
T
i

)
< 1−

√
2b2

n
ln(d/δ)

]
≤ δ.

(23)

Theorem 6. Let A,B be positive semidefinite matri-
ces. Then

λmax(A)+λmin(B) ≤ λmax(A+B) ≤ λmax(A)+λmax(B)

The above inequalities are known as Weyl’s inequali-
ties (see Horn and Johnson, 1990, chap. 3)

431

