
SpeedBoost: Anytime Prediction with Uniform Near-Optimality

Alexander Grubb J. Andrew Bagnell
Carnegie Mellon University Carnegie Mellon University

Abstract

We present SpeedBoost, a natural exten-
sion of functional gradient descent, for learn-
ing anytime predictors, which automatically
trade computation time for predictive accu-
racy by selecting from a set of simpler can-
didate predictors. These anytime predictors
not only generate approximate predictions
rapidly, but are capable of using extra re-
sources at prediction time, when available,
to improve performance. We also demon-
strate how our framework can be used to
select weak predictors which target certain
subsets of the data, allowing for efficient use
of computational resources on difficult ex-
amples. We also show that variants of the
SpeedBoost algorithm produce predictors
which are provably competitive with any pos-
sible sequence of weak predictors with the
same total complexity.

1 Introduction

The number of machine learning applications which
involve real time and latency sensitive predictions is
growing rapidly. In areas such as robotics, decisions
must be made on the fly and in time to allow for
adaptive behaviors which respond to real-time events.
In computer vision, prediction algorithms must often
keep up with high resolution streams of live video from
multiple sources without sacrificing accuracy. Finally,
prediction tasks in web applications must be carried
out with response to incoming data or user input with-
out significantly increasing latency. For such appli-
cations, the decision to use a larger, more complex
predictor with higher accuracy or a less accurate, but
significantly faster predictor can be difficult.

Appearing in Proceedings of the 15th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume XX of JMLR:
W&CP XX. Copyright 2012 by the authors.

In many of these situations however, it may often be
useful to work with prediction algorithms capable of
initially giving crude but rapid estimates and then re-
fining the results as time allows. For example, in a
robotics application such as autonomous navigation, it
may sometimes be the case that the robot must rapidly
respond to nearby obstacles, but can spend more time
reasoning about distant ones. Anytime algorithms [18]
exhibit this desirable trait of providing increasingly
better results given more computation time.

We present here an approach to learning anytime
predictors. These anytime predictors are hypotheses
which can be evaluated for varying amounts of time,
giving better prediction results with increased predic-
tion time. Our approach naturally extends previous
work on boosted ensemble learning [11] and functional
gradient descent [6, 4] by building predictors which
sequentially compute features or weak learners on the
input examples and uses these weaker signals to make
increasingly accurate predictions as time allows.

One common way of improving the prediction time
performance of these additive functional models is to
use a cascade [17]. A cascade uses a sequence of in-
creasingly complex classifiers to sequentially select and
eliminate examples for which the predictor has high
confidence in the current prediction, and then contin-
ues improving predictions on the low confidence exam-
ples. The original formulation focuses on eliminating
negative examples, for settings where positive exam-
ples are very rare such as face detection, but extensions
that eliminate both classes [12] exist.

Many variations on building and optimizing cascades
exist [10, 1], but all these methods typically target
final performance of the learned predictor. Further-
more, due to the decision making structure of these
cascades and the permanent nature of prediction deci-
sions, these models must be very conservative in mak-
ing early decisions and are unable to recover from early
errors. All of these factors combine to make cascades
poor anytime predictors.

Previous approaches to the anytime prediction prob-
lem have focused on instance-based learning algo-

458

SpeedBoost: Anytime Prediction with Uniform Near-Optimality

rithms, such as nearest neighbor classification [16]
and novelty detection [13]. These approaches use in-
telligent instance selection and ordering to acheive
rapid performance improvements on common cases,
and then typically use the extra time for searching
through the ‘long tail’ of the data distribution and im-
proving result for rare examples. In the case of the
latter, the training instances are even dynamically re-
ordered based on the distribution of the inputs to the
prediction algorithm, further improving performance.

Also related is the large body of work on variable se-
lection and sparse approximation. These approaches
attempt to select a set of variables that will maximize
predictive performance given a budget on total com-
putation time. Most relevant to this work are greedy
selection algorithms [15, 14, 2] and Rezyin’s stochas-
tic approach for budgeted prediction in boosted en-
sembles [9]. While these feature selection and bud-
geted approaches target fixed computation budgets,
they could potentially be adapted into anytime algo-
rithms by generating selection results for a number of
budgets in sequence. Greedy algorithms are particu-
larly suited to this approach as the sequence of selected
features is independent of the final budget, so results
can be re-used from previous elements in the sequence.

We will first discuss the target anytime predictors we
seek to learn, and then present a simple complexity
dependent method for learning these predictors. Then
we will demonstrate two applications of our anytime
prediction algorithms, including one example illustrat-
ing how this framework can be used in a cascade-like
manner to selectively target computational resources
at certain difficult examples. Finally, we will discuss
a variant of our algorithm and show that it is prov-
ably a uniformly anytime approximation, that is, that
it produces a sequence of predictions which are near
optimal when compared with any other way to utilize
the same amount of computation.

2 Anytime Prediction Framework

We consider predictors f : X → V which compute
some prediction f(x) ∈ V for inputs x ∈ X , and some
associated objective which measures the penalty for a
given predictor, usually evaluated elementwise over a
set of training examples:

R[f] =
N∑

n=1

ln(f(xn)).

For binary classification problems for example, V =
R and l is a margin-based loss function such as the
exponential loss ln(f(xn)) = exp(−ynf(xn)), where
yn is the class label.

We want to learn a predictor f which is a weighted
combination of weaker predictors h ∈ H

f(x) =
∑

i

αihi(x), (1)

where αi ∈ R and hi : X → V.

In the anytime setting we assume that each weak pre-
dictor h has an associated measure of complexity τ(h)
where τ : H → R. This measure of complexity allows
for weak predictors which trade accuracy for compu-
tational efficiency and vice versa.

For the case where each predictor h can have variable
computational cost per example, such as a decision
tree, we use the expected computation time. Let τx(h)
be the cost of evaluating h on example x. Then:

τ(h) = EX [τx(h)].

We further assume that calculating the weighted com-
bination over values of αt takes negligible computa-
tion. Using this complexity measure we can describe
the predictions generated at a given time T as

f〈T 〉 =
i∗∑

i=1

αihi(x), i∗ = max

i
′

∣∣∣∣∣∣

i′∑

i=1

τ(hi) < T

and the associated performance at time T , R[f〈T 〉].

3 SpeedBoost

We now consider learning algorithms for generating
anytime predictors. Formally, given a set of weak pre-
dictors H we want to find a sequence of weights and
predictors {αi, hi}∞i=1 such that the predictor f con-
structed in (1) achieves good performance R[f〈T 〉] at
all possible stopping times T .

In his work on anytime algorithms, Zilbertstein [18]
has identified a number of desirable properties for
these algorithms to possess. These include: inter-
ruptability: a prediction can be generated at any
time; monotonicity: the quality of a prediction is
non-decreasing over time; and diminishing returns:
prediction quality improves fastest at early stages.

An ensemble predictor as formulated in Section 2 nat-
urally satisfies the interruptability property, by eval-
uating the weak predictors in sequence and stopping
when necessary to output the final prediction.

To learn predictors which satisfy the last two proper-
ties, we present SpeedBoost (Algorithm 1), a natu-
ral greedy selection approach for selecting weak pre-
dictors. Much like AdaBoost greedily selects weak
learners using improvement in loss function, this algo-
rithm greedily selects weak predictors based on their

459

Alexander Grubb, J. Andrew Bagnell

Algorithm 1 SpeedBoost

Given: starting point f0, objective R, number of
stages I
for i = 1, . . . , I do

Let hi, αi = arg maxh∈H,α∈R
[R[fi−1]−R[fi−1+αh]]

τ(h)

Let fi = fi−1 + αihi.
end for
return Predictor

(
{(hi, αi)}Ii=1

)

improvement per unit-time. This type of greedy se-
lection approach is common in feature selection [15, 2]
and submodular optimization [14, 2].

SpeedBoost will select a sequence of feature func-
tions h that greedily maximize the improvement in the
algorithm’s prediction per unit time. By using a large
set H of different types of weak predictors with vary-
ing time complexity, this algorithm provides a simple
way to trade computation time with improvement in
prediction accuracy. Unfortunately, for many classes
of functions where H is very large, Algorithm 1 can be
impractical.

To address this issue, we use the weak learner selec-
tion methods of functional gradient descent and other
boosting methods. As shown by Mason et al. [6] and
Friedman [4], one can view boosting algorithms as a
modified version of gradient descent in the space of
functions. At each step the gradient is projected onto
a set of allowable functions and the resulting direction
is used for descent. For boosting, the set of allow-
able functions contains all the weak predictors being
boosted. In this approach, the functional gradient is
calculated as

∇R[f](xn) = ∇ln(f(xn)),

where ∇ln(f(xn)) is the gradient of the loss ln with
respect to the current prediction f(xn).

Given a function ∇ representing the functional gradi-
ent, the projection of ∇ on to a set of weak predictors
H is defined using the functional inner product:

Proj (∇,H) = arg max
h∈H

∑N
n=1 h(xn)∇(xn)
∑N
n=1 h(xn)2

. (2)

For classifiers with outputs in h(x) ∈ {−1,+1} (2)
is simply a weighted classification problem. Equiva-
lently, when H is closed under scalar multiplication,
the projection rule can minimize the norm in function
space:

Proj (∇,H) = arg max
h∈H

N∑

n=1

(h(xn)−∇(xn))2, (3)

which corresponds directly to solving the least squares
regression problem.

Algorithm 2 SpeedBoost.MP

Given: starting point f0, objective R, number of
stages I
for i = 1, . . . , I do

Compute gradient ∇i = ∇R[f].
Let H∗ =

{
h∗j
∣∣ h∗j = Proj (∇i,Hj)

}
.

Let hi, αi = arg maxh∈H∗,α∈R
[R[fi−1]−R[fi−1+αh]]

τ(h)

Let fi = fi−1 + αihi.
end for
return Predictor

(
{(hi, αi)}Ii=1

)

Algorithm 2 gives a more tractable version of Speed-
Boost for learning anytime predictors based on the
projection strategy of functional gradient descent.
Here we assume that there exist a relatively small
number of weak prediction algorithms, {H1,H2, . . .}
representing classes of functions with similar complex-
ity. For example, the classes may represent decision
trees of varying depths or kernel-based learners of vary-
ing complexity. The algorithm first projects the func-
tional gradient onto each individual class as in gradient
boosting, and then uses the best result from each class
to perform the greedy selection process described pre-
viously. This modification to the greedy algorithm can
be viewed as a complexity-weighted version of match-
ing pursuit [8] adapted to function spaces.

4 Case Studies

4.1 Classification

Our first application is a set of classification problems
from the UCI Machine Learning Repository [3]. We
use the multiclass extension [7] to the exponential loss

ln(f(xn)) =
∑

l 6=yn
exp(f(xn)l − f(xn)yn).

For weak predictors we use decision trees of varying
depth up to 20 nodes deep. We use Algorithm 2 and
the weighted classification form of gradient projection
to select the sequence of trees for our anytime predic-
tion algorithm.

As a point of comparison we use the AdaBoost.MM [7]
implementation of multiclass boosting on the same set
of trees. AdaBoost, when used in this manner to gen-
erate an anytime predictor, is effectively a variant on
the greedy selection algorithm which does not consider
the computation time τ(h) of the individual hypothe-
ses.

Figure 1 shows the performance of our algorithm and
AdaBoost as a function of the average number of fea-
tures accessed per example. On these problems, the

460

SpeedBoost: Anytime Prediction with Uniform Near-Optimality

Figure 1: Test set error as a function of prediction time
for the UCI ‘pendigits’ (top) and ‘covertype’ (bottom)
dataset. The algorithms shown are SpeedBoost.MP
(black dashed line), and AdaBoost.MM [7] (red solid
line).

SpeedBoost generated predictor finds a reasonable
prediction using fewer features than the AdaBoost al-
ternative and remains competitive with AdaBoost as
time progresses.

4.2 Object Detection

Our second application is a vehicle detection problem
using images from onboard cameras on a vehicle on
public roads and highways under a variety of weather
and time-of-day conditions. The positive class includes
all vehicle types, e.g., cars, trucks, and vans. Negative
examples are drawn from non-vehicle regions of images
taken from the onboard cameras.

4.2.1 Stuctured Prediction on Batch Data

In the previous application we consider weak predic-
tors which will run for roughly the same amount of
time on each example x and care about the perfor-
mance of the learned predictor over time on a single
example. In many settings, however, we often care
about the computational requirements of a predictor
on a batch of examples as a whole. For example, in
ranking we care about the computation time required
to get an accurate ranking on a set of items, and in
computer vision applications many examples from a
video or image are often processed simultaneously. An-
other way to view this problem is as a structured pre-
diction problem where the goal is to make predictions
on all pixels in an image simultaneously.

In these settings, it is often beneficial to allocate more
computational resources to the difficult examples than
the easy examples in a batch, so extra resources are
not wasted improving predictions on examples that
the algorithm already has high confidence in. In com-
puter vision, in particular, cascades [17] are a popular
approach to improving batch prediction performance.
These prediction algorithms decrease the overall com-
plexity of a predictor by periodically filtering out and
making final predictions on examples, removing them
from later prediction stages in the algorithm.

We can use our anytime framework and algorithms
to consider running each weak predictor on subsets of
the data instead of every example. Given a set of weak
predictors H to optimize over, we can create a new set
of predictors H′ by introducing a set of filter functions
φ ∈ Φ:

φ : X → {0, 1},
and considering the pairing of every filter function and
weak predictor

H′ = Φ×H
h′(x) = φ(x)h(x).

These filters φ represent the decision to either run
the weak predictor h on example x or not. Unlike
cascades, these decision are not permanent and apply
only to the current stage. This property very nicely
allows the anytime predictor to quickly focus on dif-
ficult examples and gradually revisit the lower mar-
gin examples, whereas the cascade predictor must be
highly-confident that an example is correct before halt-
ing prediction on that example.

Assuming that the filter function is relatively inexpen-
sive to compute compared to the computation time of
the predictor, the new complexity measure for predic-
tors h′ is

τ(h′) = EX [φ(x)τx(h)] .

461

Alexander Grubb, J. Andrew Bagnell

Figure 2: Test set error for the vehicle detection prob-
lem as a function of the average number of features
evaluated on each image patch.

4.2.2 Implementation

Similar to previous work in object detection, we use
Haar-like features computed over image patches for
weak predictors. We search over margin-based filter
functions φ, such that the filters at stage i are

φi(x) = 1(|fi−1(x)| < θ),

leveraging the property that examples far away from
the margin are (with high probability) already correcly
classified.

Computing these filters can be made relatively efficient
in two ways. First, by storing examples in a priority
queue sorted by current margin the updates and filter-
ing at each stage can be made relatively cheap. Sec-
ond, after learning the anytime predictor using Algo-
rithm 2, all future filters are known at each stage, and
so the predictor can quickly determine the next stage
an example will require computation in and handle the
example accordingly.

We compare against both a standard AdaBoost im-
plementation and a cascade implementation for this
detection dataset. Figure 2 gives the error on a test
dataset of 10000 positive and 50000 negative examples
as a function of computation time. In this setting the
cascade is at a significant disadvantage because it must
solidly rule out any negative examples before classify-
ing them as such, while the AdaBoost and anytime
predictors can initially declare all examples negative
and proceed to adjust prediction on positive examples.

To further illustrate the large benefit to being able to
ignore examples early on and revisit them later, Figure
3 gives a per iteration plot of the fraction of test data

Figure 3: Fraction of data updated by each iteration
for the cascade (dashed blue line) and anytime predic-
tor (solid red line).

updated by each corresponding feature. This demon-
strates the large culling early on of examples that al-
lows the anytime predictor to improve performance
much more rapidly. Finally, Figure 4 displays the ROC
curve for the anytime predictor at various complexity
thresholds against the ROC curve generated by the fi-
nal cascade predictions and Figure 5 shows the visual
evolution of the cascade and anytime predictions on a
single test image.

5 Theoretical Analysis

We will now analyze a variant of the SpeedBoost al-
gorithm and prove that the predictor produced by this
algorithm is near optimal with respect to any sequence
of weak predictors that could be computed in the same
amount of time, for a common set of loss functions and
certain classes of weak predictors.

For analysis, one can interpret Algorithm 2 as a time-
based version of matching pursuit [5]. Unfortunately,
the sequence of weak predictors selected by matching
pursuit can perform poorly with respect to the opti-
mal sequence for some fixed time budget T when faced
with highly correlated weak predictors [8]. A modifica-
tion of the matching pursuit algorithm called orthog-
onal matching pursuit [8] addresses this flaw, and can
be shown to be a competitive approximation to any
sequence that could be selected [2].

To that end, Algorithm 3 gives a modification of Al-
gorithm 2 which is analogous to orthogonal matching
pursuit, SpeedBoost.OMP. The key difference be-
tween these algorithms is the re-fitting of the weights
on every weak predictor selected so far at every iter-

462

SpeedBoost: Anytime Prediction with Uniform Near-Optimality

Figure 5: Images displaying the detection activations on a test image for the anytime predictor produced by
SpeedBoost (top) and the cascade (bottom). Displayed in the middle is a heat map of the number of features
evaluated by the SpeedBoost predictor for each pixel. Images are arranged left to right through time, at
intervals of 7 average feature evaluations per pixel.

Figure 4: ROC curves for the final cascade predictions
and anytime algorithm predictions at various compu-
tation thresholds. Computation is measured using the
average number of features computed on each patch.

ation of the algorithm. The key disadvantage of us-
ing this algorithm in practice is that the output of all
previous weak predictors must be maintained and the
linear combination re-computed whenever a final pre-
diction is desired. In practice, we found that Speed-
Boost and SpeedBoost.MP performed nearly as
well as Algorithm 3 in terms of improvement in the
objective function, while being significantly cheaper to
implement. Figure 6 shows a comparison of the test
error on the UCI ‘covertype’ dataset for SpeedBoost
and SpeedBoost.OMP. In this case, while the train-
ing objective performances were nearly indistinguish-

Algorithm 3 SpeedBoost.OMP

Given: starting point f0, objective R, number of
stages I
for i = 1, . . . , I do

Compute gradient ∇i = ∇R[f].
Let H =

{
h∗j
∣∣ h∗j = Proj (∇i,Hj)

}
.

Let hi, αi = arg max
h′∈H,α′∈Ri

[R[fi−1]−R[
∑i−1

j=1 α
′
jhj+α′ih

′]]
τ(h)

Let fi =
∑i
j=1 αijhj .

end for
return Predictor

(
{(hi, αi)}Ii=1

)

able (not shown), Algorithm 3 overfit to the training
data much more rapidly.

We will now proceed by first adapting current re-
sults in submodular maximization to handle the com-
putation time-dependent case, followed by an anal-
ysis showing that loss functions that are strongly-
smooth and strongly-convex are submodular. Combin-
ing these two results, we will then show that Speed-
Boost.OMP, which approximately greedily maxi-
mizes the improvement in loss R, is competitive with
any other sequence of weak predictors one could select.

5.1 Greedy Submodular Maximization

We can build a set function zR : 2H → R from our
loss R, turning our loss minimization problem into a
maximization problem over sets:

zR(S) = max
f
R[f]−R[fS], (4)

463

Alexander Grubb, J. Andrew Bagnell

Figure 6: Test set error as a function of com-
plexity for the UCI ‘pendigits’ dataset, comparing
SpeedBoost.MP (Algorithm 2) (black dashed line)
to SpeedBoost.OMP (Algorithm 3) (solid red line).

where
fS = arg min

α∈R|S|,f=
∑

h∈S αhh

R[f]. (5)

This set function models the best improvement in loss
we can obtain from any linear combination of a set S
of selected weak predictors.

Definition 5.1 (Submodularity Ratio [2]). A function
z has submodularity ratio γU,k if for some set U and
some k ≥ 1:
∑

h∈S
[z({h} ∪ L)− z(L)] ≥ γU,k [z(L ∪ S)− z(L)] ,

for all L ⊂ U , and S such that |S| ≤ k and S ∩L = ∅.

To simplify the following derivations, we will only refer
to γ such that γ ≤ γU,k for all U and k.

Now we would like to analyze the time based
greedy approximation algorithm, extending Streeter
and Golovin’s analysis of the offline greedy maximiza-
tion algorithm [14] to include the submodularity ratio
of Das and Kempe [2].

Given elements h ∈ H and some time τ(h) associated
with each element, the greedy algorithm iteratively se-
lects elements gj using:

gj = arg max
h∈H

[
z(Gj ∪ h)− z(Gj)

τ(h)

]
, (6)

where Gj = (g1, g2, . . . , gj−1). Following the same
structure as the analysis in [14], we can now prove
that the set selected by the greedy algorithm approx-
imates the optimal sequence of elements for functions
which satisfy Definition 5.1.

Lemma 5.2. If a function z has submodularity ratio
γ then for any L, S ⊂ H:

γ
z(L ∪ S)− z(L)

τ(S)
≤ max

h∈H

[
z(L ∪ {h})− z(L)

τ(h)

]
.

Proof. By submodularity ratio:

γ
z(L ∪ S)− z(L)

τ(S)
≤
∑
h∈S [z(L ∪ S)− z(L)]∑

h∈S τ(h)
.

Taking the max of the right hand side proves the
Lemma.

Proposition 5.3. Let sj be the value of the maximum
in (6) evaluated by the greedy algorithm at timestep j.
Then for all ordered sets S:

z(S〈t〉) ≤ z(Gj) +
tsj
γ
.

Theorem 5.4. For any list of elements S, the greedy
algorithm selects a list G such that:

z(G〈T 〉) >
(
1− e−γ

)
z(S〈T 〉),

where T =
∑L
j=1 τ(gj) and S〈T 〉 = (s1, . . . , sk) such

that
∑k
i=1 τ(si) ≤ T .

Proof. Define ∆j = S〈T 〉 − z(Gj). By the previous

proposition S〈T 〉 ≤ z(Gj) +
T sj
γ . Then:

∆j ≤
T sj
γ

=
T
γ

(
∆j −∆j+1

τ(gj)
).

Rearranging we get ∆j+1 ≤ ∆j(1− τjγ
T). Unroll to get

∆L+1 ≤ ∆1

L∏

j=1

1− τjγ

T

 .

As per [14], this is maximized by τj = T
L , giving:

z(S〈T 〉)− z(GL+1) = ∆L+1 ≤ ∆1

(
1− γ

L

)L

< z(S〈T 〉)e
−γ ,

or z(G〈T 〉) > z(S〈T 〉)(1− e−γ).

5.2 Submodularity Ratio of Smooth Losses

We can now show that the set function zR in (4) has
a submodularity ratio as in Definition 5.1. The sub-
modularity ratio of zR will rely on the convexity and
smoothness of the loss function R.

A functional R is λ-strongly convex if ∀f, f ′:

R[f ′] ≥ R[f] + 〈∇R[f], f ′ − f〉 +
λ

2
‖f ′ − f‖2,

464

SpeedBoost: Anytime Prediction with Uniform Near-Optimality

for some λ > 0, and Λ-strongly smooth if

R[f ′] ≤ R[f] + 〈∇R[f], f ′ − f〉 +
Λ

2
‖f ′ − f‖2,

for some Λ > 0.

Theorem 5.5. Let C be the covariance matrix for
the weak predictors h ∈ H transformed to have zero
mean and unit variance. Let λmin(C) be the minimum
eigenvalue of C. Let loss R be a λ-strongly convex and
Λ-strongly smooth functional. Then for all L, S ⊂ H
with L ∩ S = ∅ there exists γ ≥ λ

Λλmin(C) such that

γ ≤
∑
h∈S [zR({h} ∪ L)− zR(L)]

[zR(L ∪ S)− zR(L)]
.

Proof. Starting with the definition of the submodular-
ity ratio γ from Definition 5.1:

γ = min
L,S

∑
h∈S [zR({h} ∪ L)− zR(L)]

[zR(L ∪ S)− zR(L)]

= min
L,S

∑
h∈S

[
R[fL]−R[f{h}∪L

]

[R[fL]−R[fL∪S]]
.

Let z′(S) = ‖fL +∇R[f]‖2 − ‖fL +∇R[f]− fS‖2
be another submodular set function representing a
quadratic loss centered at fL + ∇R[f]. Using the
strong-convexity and strong-smoothness of R, we can
then express the submodularity ratio of zR in terms of
the submodularity ratio of fL:

γ ≥ min
L,S

λ

Λ

∑
h∈S [z′({h} ∪ L)− z′(L)]

[z′(L ∪ S)− z′(L)]
.

Using the result from Lemma 2.4 of [2], on the right
hand side of this equation (the submodularity ratio of
z′) gives γ ≥ λ

Λλmin(C).

5.3 Uniformly Anytime Near-Optimality

We can now combine the results from Sections 5.1 and
5.2 to obtain an approximation guarantee for the per-
formance of Algorithm 3.

Theorem 5.6. Uniformly Anytime Approximation
Let C be the covariance matrix for the weak predic-
tors h ∈ H transformed to have zero mean and unit
variance. Let λmin(C) be the minimum eigenvalue of
C. Let loss R be a λ-strongly convex and Λ-strongly
smooth functional. Let S be any sequence of elements

in H. Let γ =
(
λ
Λλmin(C)

)2
. Algorithm 3 selects a se-

quence of weak predictors G = {hi | hi ∈ H}Ii=1 such

that for any time T =
∑i′

i=1 τ(hj),

zR(G〈T 〉) >
(
1− e−γ

)
zR(S〈T 〉),

where S〈T 〉 = (s1, . . . , sk) such that
∑k
i=1 τ(si) ≤ T .

Proof. Starting with the result from Theorem 5.5 we
know that the submodularity ratio of zR is γ ≥
λ
Λλmin(C).

By Theorem 5.4, the strictly greedy maximization al-
gorithm selects a list G′ such that:

z(G′〈T 〉) >
(
1− e−γ

)
z(S〈T 〉),

where T =
∑L
j=1 τ(gj) and S〈T 〉 = (s1, . . . , sk) such

that
∑k
i=1 τ(si) ≤ T .

The key difference between the orthogonal matching
pursuit algorithm and the greedy algorithm is the se-
lection of elements in the weak predictor subset Hj is
done using gradient projection instead of greedy selec-
tion. Let hj and be the element selected by the OMP
algorithm and h′j be the element selected by the greedy
algorithm.

Let z′(S) = ‖fL +∇R[f]‖2 − ‖fL +∇R[f]− fS‖2
be another submodular set function representing a
quadratic loss centered at fL +∇R[f]. Using the re-
sult from Theorem 3.7 in [2], we have z′(L ∪ hj) ≥
λminz

′(L ∪ h′j). By strong-convexity and strong-
smoothness:

zR(L ∪ hj) ≥
1

Λ
z′(L ∪ hj)

≥ 1

Λ
λminz

′(L ∪ h′j)

≥ λ

Λ
λminzR(L ∪ h′j).

Because this holds for every element in the sequence
selected by Algorithm 3, we have the result of the the-
orem.

Theorem 5.6 states that, for all times T that corre-
spond to the computation times that weak learners
selected by Algorithm 3 finish, the resulting improve-
ment in loss R is approximately as large as any other
sequence of weak learners that could have been com-
puted up to that point. This means that the anytime
predictor generated by Algorithm 3 is competitive even
with sequences specifically targeting fixed time bud-
gets, uniformly across all times at which the anytime
predictor computes new predictions.

Acknowledgements

We would like to thank the AISTATS reviewers for
their helpful feedback. This work was conducted
through collaborative participation in the Robotics
Consortium sponsored by the U.S Army Research Lab-
oratory under the Collaborative Technology Alliance
Program, Cooperative Agreement W911NF-10-2-0016.

465

Alexander Grubb, J. Andrew Bagnell

References

[1] S. Brubaker, Jianxin Wu, Jie Sun, Matthew
Mullin, and James Rehg. On the design of cas-
cades of boosted ensembles for face detection. In-
ternational Journal of Computer Vision, pages
65–86, 2008.

[2] Abhimanyu Das and David Kempe. Submodu-
lar meets spectral: Greedy algorithms for subset
selection, sparse approximation and dictionary se-
lection. In Proceedings of the 28th International
Conference on Machine Learning, 2011.

[3] A. Frank and A. Asuncion. UCI machine learning
repository, 2010.

[4] J. H. Friedman. Greedy function approximation:
A gradient boosting machine. Annals of Statis-
tics, 29:1189–1232, 2000.

[5] S.G. Mallat and Zhifeng Zhang. Matching pur-
suits with time-frequency dictionaries. Signal
Processing, IEEE Transactions on, 41(12):3397 –
3415, dec 1993.

[6] L. Mason, J. Baxter, P. L. Bartlett, and M. Frean.
Functional gradient techniques for combining hy-
potheses. In Advances in Large Margin Classi-
fiers. MIT Press, 1999.

[7] I. Mukherjee and R. E. Schapire. A theory of
multiclass boosting. In Advances in Neural Infor-
mation Processing Systems 22, Cambridge, MA,
2010. MIT Press.

[8] Y. C. Pati, R. Rezaiifar, Y. C. Pati R. Rezaiifar,
and P. S. Krishnaprasad. Orthogonal matching
pursuit: Recursive function approximation with
applications to wavelet decomposition. In Pro-
ceedings of the 27 th Annual Asilomar Confer-
ence on Signals, Systems, and Computers, pages
40–44, 1993.

[9] Lev Reyzin. Boosting on a budget: Sampling for
feature-efficient prediction. In Proceedings of the
28th Internation Conference on Machine Learn-
ing (ICML), 2011.

[10] Mohammad J. Saberian and Nuno Vasconcelos.
Boosting classifier cascades. In Proceedings of the
24th Annual Conference on Neural Information
Processing Systems (NIPS), 2010.

[11] R. E. Schapire. The boosting approach to ma-
chine learning: An overview. In MSRI Workshop
on Nonlinear Estimation and Classification, 2002.

[12] Jan Sochman and Jiri Matas. Waldboost: Learn-
ing for time constrained sequential detection. In
Proceedings of the 2005 IEEE Computer Soci-
ety Conference on Computer Vision and Pattern
Recognition (CVPR’05) - Volume 2 - Volume 02,
CVPR ’05, pages 150–156, 2005.

[13] Boris Sofman, J. Andrew Bagnell, and Anthony
Stentz. Anytime online novelty detection for vehi-
cle safeguarding. In Proceedings of the IEEE In-
ternational Conference on Intelligent Robots and
Systems (ICRA), 2010.

[14] Matthew Streeter and Daniel Golovin. An online
algorithm for maximizing submodular functions.
In Proceedings of the 22nd Annual Conference on
Neural Information Processing Systems (NIPS),
2008.

[15] Joel A. Tropp. Greed is good: Algorithmic results
for sparse approximation. IEEE Trans. Inform.
Theory, 50:2231–2242, 2004.

[16] Ken Ueno, Xiaopeng Xi, Eamonn Keogh, and
Dah-Jye Lee. Anytime classification using the
nearest neighbor algorithm with applications to
stream mining. Data Mining, IEEE International
Conference on, 0:623–632, 2006.

[17] Paul Viola and Michael J. Jones. Rapid object
detection using a boosted cascade of simple fea-
tures. In Proceedings of the Conference on Com-
puter Vision and Pattern Recognition, 2001.

[18] Shlomo Zilberstein. Using anytime algorithms in
intelligent systems. AI Magazine, 17(3):73–83,
1996.

466

