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Abstract

To relax the homogeneity assumption of clas-
sical dynamic Bayesian networks (DBNs),
various recent studies have combined DBNs
with multiple changepoint processes. The
underlying assumption is that the parame-
ters associated with time series segments de-
limited by multiple changepoints are a priori
independent. Under weak regularity condi-
tions, the parameters can be integrated out
in the likelihood, leading to a closed-form ex-
pression of the marginal likelihood. However,
the assumption of prior independence is unre-
alistic in many real-world applications, where
the segment-specific regulatory relationships
among the interdependent quantities tend
to undergo gradual evolutionary adaptations.
We therefore propose a Bayesian coupling
scheme to introduce systematic information
sharing among the segment-specific interac-
tion parameters. We investigate the effect
this model improvement has on the network
reconstruction accuracy in a reverse engineer-
ing context, where the objective is to learn
the structure of a gene regulatory network
from temporal gene expression profiles.

1 Introduction

There is considerable interest in structure learning
of dynamic Bayesian networks (DBNs), with a vari-
ety of applications in computational systems biology.
However, the standard assumption underlying DBNs
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– that time-series have been generated from a homo-
geneous Markov process – is too restrictive in many
applications and can potentially lead to artifacts and
erroneous conclusions. While there have been vari-
ous efforts to relax the homogeneity assumption for
undirected graphical models (Talih and Hengartner
(2005), and Xuan and Murphy (2007)), relaxing this
restriction in DBNs is a more recent research topic
(Ahmed and Xing (2009), Kolar et al. (2009), Lèbre
et al. (2010), Robinson and Hartemink (2010), and
Grzegorczyk and Husmeier (2011)). Various authors
have proposed relaxing the homogeneity assumption
by complementing the traditional homogeneous DBN
with a Bayesian multiple changepoint process (Lèbre
et al. (2010), Robinson and Hartemink (2010), and
Grzegorczyk and Husmeier (2011)). Each time series
segment defined by two demarcating changepoints is
associated with separate node-specific DBN parame-
ters, and in this way the conditional probability distri-
butions are allowed to vary from segment to segment.
An attractive feature of this approach is that under
certain regularity conditions, most notably parameter
independence and conjugacy of the prior, the parame-
ters can be integrated out in closed form in the likeli-
hood. The inference task thus reduces to sampling the
network structure as well as the number and location
of changepoints from the posterior distribution, which
can be effected with reversible jump Markov chain
Monte Carlo (RJMCMC) (Green, 1995), as in Lèbre
et al. (2010) and Robinson and Hartemink (2010), or
with dynamic programming (Fearnhead, 2006), as in
Grzegorczyk and Husmeier (2011).
In many real-word applications, the assumption of pa-
rameter independence is questionable, though. Con-
sider the cellular processes during an organism’s devel-
opment (morphogenesis) or its adaptation to chang-
ing environmental conditions. The assumption of
a homogeneous process with constant parameters is
over-restrictive in that it fails to allow for the non-
stationary nature of the processes. However, complete
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parameter independence is over-flexible in that it ig-
nores the evolutionary aspect of adaptation processes.
Given a regulatory network at some time interval in an
organism’s life cycle, it is unrealistic to assume that at
the adjacent time intervals, nature has reinvented dif-
ferent regulatory circuits from scratch. Instead, we
would assume that the knowledge of the interaction
strengths at other time intervals will improve the in-
ference of the interaction strengths associated with the
given time interval, especially for sparse data. In what
follows, we will describe how this idea can be imple-
mented in the model, and which adaptations are re-
quired for the inference scheme.
There are various articles from the signal processing
community that are related to our work. Our hierar-
chical Bayesian model structure is similar to the one
proposed in Punskaya et al. (2002). However, con-
ditionally on the hyperparameters, the regression pa-
rameters in Punskaya et al. (2002) are independent,
and there is no explicit conditional dependence rela-
tion of the form we propose below. Like the model
in Punskaya et al. (2002), our model is based on a
switching piecewise homogeneous autoregressive pro-
cess, whereas the models in Andrieu et al. (2003),
Moulines et al. (2005), and Wang et al. (2011) are
based on continuously time varying autoregressive pro-
cesses. Like our paper, Moulines et al. (2005) and
Wang et al. (2011) introduce information sharing be-
tween consecutive regression parameter vectors; this
is only achieved indirectly in Andrieu et al. (2003) via
a nonlinear transformation into the space of complex-
valued poles. Moulines et al. (2005) is a theoretical
non-Bayesian paper on error bounds under a Lips-
chitz condition. A closer relative to our paper is the
method of Wang et al. (2011), whose objective is on-
line parameter estimation via particle filtering, with
applications e.g. in tracking. This is a different sce-
nario from most systems biology applications, where
an interaction structure is typically learnt off-line af-
ter completion of the experiments. Unlike Wang et al.
(2011), our work thus follows other applications of
DBNs in systems biology (Lèbre et al. (2010), Robin-
son and Hartemink (2010), and Grzegorczyk and Hus-
meier (2011)) and aims to infer the model structure by
marginalizing out the parameters in closed form. To
paraphrase this: while inference in Wang et al. (2011)
is based on filtering, inference in our work is based on
smoothing.

2 Bayesian linear regression

Consider a simple linear regression

f(x) = wTx, y = f(x) + ε (1)

where x is the input vector, w is a vector of (in-
teraction) parameters, f is the function value, y is

the observed target variable, and ε is additive Gaus-
sian iid noise: ε ∼ N (0, σ2

n). Given a training set
D = {(xt, yt), t = 1, . . . , T}, we collect the targets in
the vector y = (y1, . . . , yT )

T and define the design ma-
trix X = (x1, . . . ,xT ). The likelihood is given by

P (y|X,w) = N (XTw, σ2
nI) (2)

where I denotes the unit matrix. We put a Gaussian
distribution with mean vector m0 and covariance ma-
trix Σ0 onto the parameters,

P (w) = N (m0,Σ0) (3)

With Bayes’ rule,

P (w|y,X) = P (y|X,w)P (w)/P (y|X) (4)

and the application of standard Gaussian integrals (see
e.g. Bishop (2006), Section 3.3) we get for the poste-
rior distribution of the parameters:

P (w|y,X) = N (mN ,ΣN ) (5)

wheremN = ΣN (Σ−1
0 m0+σ−2

n Xy) andΣ−1
N = Σ−1

0 +
σ−2
n XXT. Let us now assume that we have a set of

changepoints τ = {τ1, . . . , τK−1} with 1 ≤ τj ≤ T − 1
that divide the data into K subsets:

Dh = {(xt, yt), t = τh−1, . . . , τh − 1} (6)

All subsets are modelled with the linear model
of (1), but with different parameter vectors wh

(h = 1, . . . ,K). Introducing the subsequent def-
initions yh = (yτh−1

, . . . , yτh−1)
T, and Xh =

(xτh−1
, . . . ,xτh−1), and imposing the prior of (3) onto

each wh, we get for the posterior distributions:

P (wh|yh,Xh,m0) = N (mN [h],ΣN [h]) (7)

where mN [h] = ΣN [h](Σ−1
0 m0 + σ−2

n Xhyh) and
Σ−1

N [h] = Σ−1
0 + σ−2

n XhX
T
h . For a fixed prior (3),

e.g. m0 = 0 and Σ0 = I, where I is the unit ma-
trix, the parameter vectors wh are conditionally in-
dependent. To introduce information sharing among
the segments, we can add an extra layer to the
Bayesian hierarchy and turn m0 into a random vec-
tor, which is given a conjugate Gaussian prior dis-
tribution with mean vector m† and covariance ma-
trix Σ†, P (m0|m†,Σ†) = N (m†,Σ†); see e.g. Sec-
tion 3.6 in Gelman et al. (2004). Sampling of the
parameters and hyperparameters from the posterior
distribution follows a Gibbs sampling strategy. Given
m0, we can sample the parameter vectors w1, . . . ,wK

from (7). Given {w1, . . . ,wK}, the sufficient statis-

tics m⋆ = Σ⋆(Σ
−1
† m† + Σ−1

0 [
∑K

h=1 wh]), and Σ⋆ =

(Σ−1
† + KΣ−1

0 )−1 can be computed, and m0 can be
re-sampled from its posterior distribution

P (m0|{wh}h=1,...,K) = N (m⋆,Σ⋆) (8)
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3 Application to dynamic Bayesian
networks

3.1 Fixed changepoints

We now generalize this coupling scheme for the
interaction parameter prior distributions to non-
homogeneous dynamic Bayesian networks (NH-DBNs)
along the lines proposed in Lèbre et al. (2010). We re-
strict our NH-DBN to first-order Markov dynamics,
noting that a generalization to higher order Markov
dependencies, as included in Punskaya et al. (2002),
is straightforward. Consider a set of N nodes g ∈
{1, . . . , N} in a network M = {π1, . . . ,πN}, where πg

denotes the parents of node g, that is the set of nodes
with a directed edge pointing to g. We follow Grzegor-
czyk and Husmeier (2011) and assume that the regu-
latory network structure M is fixed over time. While
it is straightforward to allow M to vary with time,
as in Lèbre et al. (2010), this flexibility would not be
appropriate for our real-world applications (see Sub-
sections 4.2 and 4.3), for which developmental (mor-
phogenetical) changes can be excluded. Let yg,t de-
note the realization of the random variable associated
with node g at time t ∈ {1, . . . , T}, and let xπg,t de-
note the vector of realizations of the random variables
associated with the parents of node g, πg, at the pre-
vious time point, (t − 1), and including a constant
element equal to 1 (for the bias or intercept). We con-
sider N sets of (Kg − 1) node-specific changepoints
τ g = {τg,h}1≤h≤(Kg−1), 1 ≤ g ≤ N , which for now
we assume to be fixed, with Tg,h = τg,(h+1) − τg,h.

We define yg,h = (yg,(τg,h+1), . . . , yg,τg,(h+1)
)T, and

Xπg,h = (xπg,(τg,h+1), . . . ,xπg,τg,(h+1)
) and apply the

linear Gaussian regression model defined in (1-2):

P (yg,h|Xπg,h,wg,h, σ
2
g,h) = N (XT

πg,hwg,h, σ
2
g,hI)

For the prior on wg,h we use:

P (wg,h|mg, σ
2
g,h, δg) = N (wg,h|mg, δgσ

2
g,hCg,h)

(9)
where δg can be interpreted as a gene-specific ”signal-
to-noise” hyperparameter. Unlike other authors (An-
drieu and Doucet (1999), Punskaya et al. (2002), and
Lèbre et al. (2010)), we do not fix mg in equation (9),
but leave this hyperparameter variable, with its own
prior distribution (a hyperprior)

P (mg|m†,Σ†) = N (m†,Σ†) (10)

with mean vector m† and covariance matrix Σ†.
This follows exactly the principle illustrated for the
Bayesian linear regression model in Section 2. Note
that when mg is fixed, the wg,h’s are conditionally
independent, or d-separated in the parlance of prob-
abilistic graphical models. Hence, there is no infor-
mation coupling between them. When mg is flexible,

d-separation is lost, and the wg,h’s become dependent
or “coupled”, as a consequence of the marginalization
over mg. We therefore refer to the proposed model,
which provides an essential regularization effect, as the
“coupled” model.
For the posterior distribution we get, in direct adap-
tation of (5):

P (wg,h|yg,h,Xπg,h, σ
2
g,h, δg,mg) = N (m⋆

g,h, σ
2
g,hΣ

⋆
g,h)
(11)

where m⋆
g,h = Σ⋆

g,h([δgCg,h]
−1mg + Xπg,hyg,h) and

Σ⋆
g,h =

(
[δgCg,h]

−1 +Xπg,hX
T
πg,h

)−1

. We obtain the

marginal likelihood by application of standard results
for Gaussian integrals; see e.g. Section 2.3.2 and Ap-
pendix B in Bishop (2006):

P (yg,h|Xπg,h, σ
2
g,h, δg,mg) (12)

=

∫
P (yg,h|Xπg,h, σ

2
g,h,wg,h)P (wg,h|σ2

g,h, δg,mg)dwg,h

= N (yg,h|m̃g,h, σ
2
g,hΣ̃g,h)

where Σ̃g,h = I + δgX
T
πg,h

Cg,hXπg,h, and m̃g,h =

XT
πg,h

mg. Note that the application of the matrix in-

version theorem (e.g. Bishop, Appendix C) gives:

Σ̃−1
g,h = I−XT

πg,h([δgCg,h]
−1 +Xπg,hX

T
πg,h)

−1Xπg,h

So far, we have assumed that σg,h and δg are fixed.
We now relax this constraint and impose conjugate
gamma priors on σ−2

g,h and δ−1
g :

P (σ−2
g,h|ασ, βσ) = Gam(σ−2

g,h|ασ, βσ) (13)

P (δ−1
g |αδ, βδ) = Gam(δ−1

g |αδ, βδ) (14)

We set ασ = βσ = ν/2 and note that the integral re-
sulting from the marginalization over σ−2

g,h has a closed-

from solution; see e.g. Section 2.3.7 in Bishop (2006):

P (yg,h|Xπg,h, δg) (15)

=

∫ ∞

0

P (yg,h|Xπg,h, σ
2
g,h, δg)P (σ

−2
g,h|ασ, βσ)dσ

−2
g,h

=

∫ ∞

0

N (yg,h|m̃g,h, σ
2
g,hΣ̃g,h)Gam(σ

−2
g,h|ν/2, ν/2)dσ

−2
g,h

=
Γ(Tg,h/2 + ν/2)νν/2

Γ(ν/2)(π)Tg,h/2|Σ̃g,h|1/2
(
ν + ∆

2
g,h

)−(Tg,h+ν)/2

with the squared Mahalanobis distance

∆2
g,h = (yg,h − m̃g,h)

TΣ̃−1
g,h(yg,h − m̃g,h) (16)

This is a multivariate Student t-distribution with ν
degrees of freedom. For updating the noise variances
σ2
g,h and the signal-to-noise hyperparameters δg with

a Gibbs sampling scheme (see Section 3.3) note that

δ−1
g |(yg,.,wg,.,σ

2
g,.,Xπg,.) ∼ Gam(αδ +Aδ, βδ +Bδ)

(17)
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with Bδ = 1
2

∑
h

1
σ2
g,h

[wg,h − mg]
TC−1

g,h[wg,h − mg],

and Aδ =
Kgkg

2 , where Kg is the number of seg-
ments for node g, kg is the cardinality of the par-
ent set, πg, and yg,. := (yT

g,1, . . . ,y
T
g,Kg

)T, wg,. :=

(wT
g,1, . . . ,w

T
g,Kg

)T, σ2
g,. := (σ2

g,1, . . . , σ
2
g,Kg

), and

Xπg,. := (Xπg,1, . . . ,Xπg,Kg
); for a derivation see sup-

plementary material.
For the inverse variances σ−2

g,h we could in principle fol-
low the same procedure and then use Gibbs sampling.
However, a computationally more efficient way is to
use the marginal likelihood (12) instead of (9), i.e. to
use a collapsed Gibbs sampler in which the interaction
parameters wg,h have been integrated out. From (12)
and (13) we obtain (see supplementary material):

σ−2
g,h|(yg,h,Xπg,h, δg) ∼ Gam(ασ +Aσ, βσ +Bσ)

(18)

where Bσ =
∆2

g,h

2 , and Aσ =
Tg,h

2 . ∆2
g,h was defined in

(16) and depends on the hyperparameter δg via (12).
The previous discussions follow Andrieu and Doucet
(1999) and Lèbre et al. (2010) and assume that there
is a separate noise variance σ2

g,h associated with each
segment h for each node g. Other choices could be
considered. For example, in our study we obtained
better results when using a common variance shared
by all segments: σ2

g,h = σ2
g ∀h. Equation (18) will then

change as follows:

σ−2
g |(yg,.,Xπg,., δg) ∼ Gam(ασ +A⋆

σ, βσ +B⋆
σ) (19)

where A⋆
σ =

Tg

2 , B⋆
σ =

∑Kg

h=1

∆2
g,h

2 , Tg =
∑Kg

h=1 Tg,h,

and ∆2
g,h was defined in (16) and depends on δg via

(12). A comparison between (18) and (19) leads to
the intuitive result that we can obtain the posterior
distribution of σ−2

g from the one of σ−2
g,h by summing

the sufficient statistics in the gamma distribution over
all segments. Note that using a common variance σ2

g

implies changes in equations (11) and (15). Denote
by m̃g,. the accumulated vector (m̃T

g,1, . . . , m̃
T
g,Kg

)T,

and denote by Σ̃g,. a matrix with block structure, in

which the matrices Σ̃g,h are arranged along the diag-
onal, and all other entries are 0. In modification of
equations (11) and (15) we now get:

P (wg,h|yg,h,Xπg,h, σg) = N (m⋆
g,h, σ

2
gΣ

⋆
g,h) (20)

P (yg,.|Xπg ,., δg) =
Γ(Tg/2 + ν/2)νν/2

Γ(ν/2)(π)Tg/2|Σ̃g,.|1/2
(
ν +∆2

g

)−Tg+ν

2

(21)
where with definition (16) and by exploiting the block

structure of Σ̃g,. we get:

∆2
g = (yg,. − m̃g,.)

TΣ̃−1
g,. (yg,. − m̃g,.) =

∑
h
∆2

g,h (22)

3.2 Variable changepoints

So far, we have assumed that the node-specific change-
points τ g are fixed, but it is straightforward to make
them variable. To this end, we need to decide on a
prior distribution. Two alternative forms have been
compared in Fearnhead (2006). The first approach,
adopted in Lèbre et al. (2010), is based on a truncated
Poisson prior on the number of changepoints (Kg−1),
and an explicit specification of P (τ g|(Kg − 1)), e.g.
the uniform distribution. The second alternative, pur-
sued in Grzegorczyk and Husmeier (2011) and used in
the present work, is based on a point process, where
the distribution of the distance between two successive
points is a negative binomial distribution. For space
restrictions, the mathematical details have been rele-
gated to the supplementary material.

3.3 Inference

Given the data D = {yg,t}, 1 ≤ g ≤ N, 1 ≤ t ≤ T ,
the ultimate objective is to infer the network structure
M = {π1, . . . ,πN} from the marginal posterior distri-
bution P (M|D). The other variable quantities are nui-
sance parameters, which are marginalized over; these
are the changepoints τ g, the interaction parameters
wg,h, the noise variances σ2

g , and the signal-to-noise
hyperparameters δ = (δ1, . . . , δN ). Our model also
depends on various higher-level hyperparameters that
are fixed; these are the parameters of the changepoint
prior as well as the hyperparameters of the gamma
distributions: {ασ, βσ, αδ, βδ}. To avoid notational
opacity we do not make them explicit in the following
equations. We pursue inference based on the partially
collapsed Gibbs sampler used in Lèbre et al. (2010):

P (M|D, {τ g}, δ) ∝ P (M)
∏

g

∏
h
P (yg,h|Xπg,h, δg)

(23)

P ({τ g}|D, δ,M) ∝
∏

g
P (τ g)

∏
h
P (yg,h|Xπg,h, δg)

(24)
where P (M) is the prior distribution on network
structures, e.g. a uniform distribution subject to
a fan-in restriction. Note that the expressions for
P (yg,h|Xπg,h, δg), which are given by (21), have been
obtained by marginalizing over wg,h and σ2

g (“col-
lapsed” Gibbs steps). We sample from (23) with the
improved structure MCMC scheme proposed in Grze-
gorczyk and Husmeier (2011), and from (24) with the
RJMCMC scheme of Lèbre et al. (2010). To sample
the signal-to-noise hyperparameters δ = (δ1, . . . , δN )
from the posterior distribution, we need to resort to
an uncollapsed Gibbs step:

P (δ|D, {τ g},M) =
∏

g
P (δ−1

g |yg,.,wg,.,σ
2
g,.,Xπg,.)

(25)
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where P (δ−1
g |yg,.,wg,.,σ

2
g,.,Xπg,.) is given by (17).

“Uncollapsing” requires the interaction and noise pa-
rameters to be sampled from the corresponding poste-
rior distributions; these are given by (19-20).
In the proposed coupled NH-DBN these MCMC
steps are followed by ”uncollapsed” Gibbs sampling
steps: For each gene g the interaction parameters
wg,1, . . . ,wg,Kg

are sampled from (11). Conditional
on the sampled parameter vectors, the hyperparam-
eter mg in (9) can be re-sampled from the posterior
distribution

mg|(wg,1, . . . ,wg,Kg
) ∼ N (m⋆,g,Σ⋆,g) (26)

which depends on the sufficient statistics:

Σ⋆,g := (Σ−1
† +KgΣ

−1
0 )−1 (27)

m⋆,g := Σ⋆,g(Σ
−1
† m† +Σ−1

0 [

Kg∑

h=1

wg,h]) (28)

where Σ0 := δgσ
2
g,hCg,h (see Section 3.6 in Gelman

et al. (2004)).

4 Data

4.1 Simulated data from the RAF pathway

For the RAF pathway, shown in Figure 1a), we gen-
erate non-homogeneous dynamic expression data. We
assume that we have a time series with four segments
h = 1, . . . , 4, which consist of 10 observations each, and
that the network interaction parameters vary from seg-
ment to segment. We assume that there is a global pa-
rameter vector wg,⋆ with amplitude (Euclidean norm)
1, |wg,⋆|2 = 1, for each interaction between a node, g,
and its parent nodes in πg, where the latter are defined
by the graph in Figure 1a). Segment-specific param-
eter vectors wg,h (h = 1, . . . , 4) can then be obtained
by adding iid random noise vectors w̃g,h to the global
vector wg,⋆. The similarity between the four segment-
specific parameter vectors depends on the amplitude ε
of the random vectors w̃g,h. Re-normalization ensures
that the segment-specific interaction parameters wg,h

have amplitude 1 independently of ε:

wg,h =
wg,⋆ + εw̃g,h

|wg,⋆ + εw̃g,h|2
(29)

We sample the elements of the global parameter vec-
tors wg,⋆ (g = 1, . . . , N) and the random noise vectors
w̃g,h (g = 1, . . . , N ; h = 1, . . . , 4) from iid N (0, 1) dis-
tributions and we normalize the vectors wg,⋆ and w̃g,h

to Euclidean norm 1. Having computed all the inter-
action parameter vectors wg,h from equation (29), the
data can be generated straighforwardly: We sample
observations for the first time point, t = 1, from iid
N (0, 0.025) distributions, before we generate data for

40 subsequent time points. The complete data set D
is then an 11-by-41 matrix, where for t = 2, . . . , 41 the
t-th observation of node g, Dg,t, is given by:

Dg,t = (1,DT
πg,t−1)wg,H(t) + ug,t (30)

where Dπg,t−1 is the vector of observations of the par-
ent nodes of g at the previous time point t − 1, the
function H(.) indicates the segment (H(t) = 1 for
t = 2, . . . , 11, H(t) = 2 for t = 12, . . . , 21, etc.), and
the ug,t are iid N(0, 0.025) distributed dynamic noise
variables. We also include white observational noise
with the objective to control the signal-to-noise ratio
(SNR). Here, we add noise in a gene-wise manner: For
each g we compute its standard deviation sg and add
iid N (0, (SNR)−1sg) distributed noise to each indi-
vidual observation of g.

4.2 Circadian rhythms in A. thaliana

Four gene expression time series related to the study of
circadian regulation in plants were measured in Ara-
bidopsis thaliana. Arabidopsis seedlings, grown un-
der artificially controlled Te-hour-light/Te-hour-dark
cycles, were transferred to constant light and harvested
at 12-13 time points in τ -hour (τ ∈ 2, 4) intervals. For
an overview see Table 1 in the supplementary material.
The data and the experimental protocols are avail-
able from Edwards et al. (2006), Grzegorczyk et al.
(2008), and Mockler et al. (2007). We focus on nine
genes that are involved in circadian regulation (LHY,
TOC1, CCA1, ELF4, ELF3, GI, PRR9, PRR5, and
PRR3) and we arrange the four individual time se-
ries successively, so as to obtain one single time series,
where each of the four segments has been measured
under constant light after different Te-hour-light/Te-
hour-dark pre-experimental entrainment conditions.

4.3 Synthetic biology in S. cerevisiae

Cantone et al. (2009) synthetically designed a network
of five genes in Saccharomyces cerevisiae (yeast), de-
picted in Figure 3a). The authors measured expression
levels of these genes in vivo with quantitative real-time
PCR at 37 time points over 8 hours. In about the mid-
dle of this time period, they changed the environment
by switching the carbon source from galactose (“switch
on”) to glucose (“switch off”). We removed the two
measurements that were taken during the washing
steps, i.e while the glucose (galactose) medium was
removed and the fresh new galactose (glucose) con-
taining medium was added, before we re-arranged the
two time series successively to one single time series.
Since the first time point after the washing period of
the “switch off” time series has then no relation with
the expression values at the last time point of the pre-
ceding “switch on” time series, the first time point of
the second series was also appropriately removed to
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ensure that for all pairs of consecutive time points a
proper conditional dependence relation is given. The
merged time series was standardized via a log trans-
formation and a subsequent mean standardization.

5 Simulation study

We want to compare the proposed coupled (regular-
ized) NH-DBN with the conventional uncoupled (un-
regularized) NH-DBN akin to Lèbre et al. (2010). We
assume that the gene-specific variances are shared by
all segments: σ2

g,h = σ2
g . The prior distributions of

the inverse variances σ−2
g are assumed to be Gamma

distributed (see (13)), and we set ασ = βσ = ν/2
with ν = 0.01 (g = 1, . . . , N). For the inverse Gamma
distributed hyperparameters δg we follow Lèbre et al.
(2010) and set αδ = 2 and βδ = 0.02 in (14). The
gene- and segment-specific interaction parameter vec-
tors wg,h are assumed to be multivariate Gaussian dis-
tributed according to (9), and we set Cg,h = I. In
the conventional NH-DBN, mg = 0 is fixed, which
yields, from equation (9): wg,h|(σg, δg) ∼ N (0, δgσ

2
gI).

For the proposed coupled NH-DBN, mg is flexible,
with prior distribution N (m†,Σ†) – see equation (9)
– where we set m† = 0 and Σ† = I.
We aim to monitor the network reconstruction accu-
racy on a series of increasingly strong violations of the
prior assumption inherent in (10). To this end, we gen-
erate synthetic data, as explained in Subsection 4.1,
and we reverse-engineer the RAF pathway by sam-
pling networks from the posterior distribution (23) for
fixed changepoints. In the absence of a gold standard
for the A. thaliana data, described in Subsection 4.2,
our focus is on quantifying the strength of the infor-
mation coupling between the time series segments and
the influence this coupling has on the regulatory net-
work reconstruction. For the S. cerevisiae data from
Subsection 4.3 the true regulatory network is known
(see Figure 3a)), and our focus is on monitoring the
network reconstruction accuracy. We follow an unsu-
pervised approach and assume that the changepoints
segmenting the time series are unknown. To infer dif-
ferent segmentations we employ different hyperparam-
eters of the point process prior on the changepoint sets;
see supplementary material for details.
We pursue inference based on the partially collapsed
Gibbs sampler, described in Subsection 3.3, and the
output is a sample of networks from the posterior dis-
tribution. We applied standard convergence diagnos-
tics, based on trace plots (Giudici and Castelo, 2003)
and the potential scale reduction factor (Gelman and
Rubin, 1992), and found that the PSRF’s of all indi-
vidual edges were below 1.1 for simulation lengths of
100,000 MCMC steps; see supplementary material.
From the sampled networks we can obtain a ranking of
the gene interactions based on their marginal posterior

(a) The RAF network (Sachs et al., 2005)
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(b) Network reconstruction accuracy for the RAF network

Figure 1: Reconstruction of the RAF pathway from
simulated expression data. (a) The RAF pathway, as
reported in Sachs et al. (2005). Panel (b) monitors the
network reconstruction accuracy in terms of AUC-ROC
scores for the conventional uncoupled (dotted gray) and the
proposed coupled (solid black lines) NH-DBN and demon-
strates how the proposed regularization scheme is affected
by increasing violations of the prior assumption inherent
in equation (10). Simulated data were generated as de-
scribed in Subsection 4.1. The global parameter vector
with amplitude 1 was perturbed in a segment-wise manner
by a random perturbation of amplitude ε (abscissa); see
equation (29). The columns represent the SNR levels 10,
3, and 1. The top row shows the absolute values of the
AUC-ROC scores, while the bottom row shows the differ-
ences between the proposed coupled and the conventional
uncoupled NH-DBN. All simulations were repeated on 25
independent data instantiations, with error bars indicat-
ing two-sided 95% confidence intervals. A similar plot with
AUC-PR scores is provided in the supplementary material.

probabilities. If the true network is known, this rank-
ing can be employed to obtain the ROC and precision-
recall (PR) curves (Davis and Goadrich (2006), and
Prill et al. (2010)). These curves can be numerically
integrated to get the areas under the curves (AUC)
for both (AUC-ROC or AUC-PR, respectively) as a
global measure of network reconstruction accuracy
(with larger values indicating a better performance);
see supplementary material for details.

6 Results

We first evaluated the proposed Bayesian regulariza-
tion scheme on simulated data. We took the RAF
network from Sachs et al. (2005), see Figure 1a), and
generated synthetic non-homogeneous time series from
a multiple changepoint linear regression model, as ex-
plained in Subsection 4.1. Our objective was to moni-
tor the network reconstruction accuracy on a series of
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Figure 2: Inference for the A. thaliana gene expression time series. a) Histograms of the average similarities
(correlations) of the interaction parameters, sampled from the posterior distribution with MCMC between four time
series segments, indicated by the rows and columns. Details on the segmentation can be found in Subsection 4.2. The
networks were sampled from the posterior distribution, see (23), with MCMC. Each panel contains a histogram that
shows the average similarity of the interaction parameters among segments for the conventional uncoupled (grey) and
the proposed coupled (black bars) NH-DBN; see main text for details on our similarity measure. b) Scatter plot of the
marginal edge posterior probabilities inferred with the uncoupled (horizontal) and the coupled (vertical axis) NH-DBN.
c) The (differential) network prediction that can be obtained when the threshold 0.75 is imposed on the edge posterior
probabilities. Thin black edges indicate interactions that are inferred with both NH-DBNs. Three edges (dotted) are
inferred with the conventional NH-DBN only while four edges (bold) are inferred with the coupled NH-DBN only.

(a) The true network

0 2 4 6 8
0.5

0.75

1

mean number of changepoints per gene

m
ea

n 
A

U
C

−
R

O
C

 

 

Uncoupled
Coupled

(b) Network reconstruction accuracy

Figure 3: Gene network reconstruction accuracy for the S. cerevisiae data. Cantone et al. (2009) designed the
network shown in panel a) and measured in vivo gene expression levels with RT-PCR. The graph shows the network recon-
struction accuracy (ordinate) plotted against the mean number of changepoints per gene (abscissa) for the conventional
uncoupled (dashed) and the proposed coupled NH-DBN (solid line). The network reconstruction accuracy is quantified in
terms of mean AUC-ROC scores, averaged over 5 MCMC simulations, with the vertical bars indicating standard errors.
A similar plot with AUC-PR scores is provided in the supplementary material.

increasingly strong violations of the prior assumption
inherent in equation (10). The results are shown in
Figure 1b). For the low signal-to-noise ratio (SNR=1)
there is no significant difference between the models.
However, owing to the high noise level, the network re-
construction accuracy is close to random expectation
in that case (AUC-ROC = 0.5). For low (SNR=10)
and moderate (SNR=3) noise levels, the proposed cou-
pled NH-DBN increasingly outperforms the conven-
tional NH-DBN as the amplitude of the perturbation
ε of the parameter vectors decreases. In particular,
for perturbations of ε < 1/4 the performance improve-
ment of the proposed regularized NH-DBN over the
conventional NH-DBN is clearly significant. We used
the gene expression time series from A. thaliana, de-
scribed in Subsection 4.2, to investigate which effect

the proposed Bayesian coupling scheme has on the in-
ference of the interaction parameters. To focus on the
relevant task, the regulatory network reconstruction,
we kept the changepoints fixed at their known true
values. We compared the correlations of the segment-
specific interaction parameter vectors for the uncou-
pled and for the coupled NH-DBN. During the RJM-
CMC simulation, we sampled for each segment h the
interaction parameters from equation (11), agglomer-
ated the interaction parameters for each h into a long
vector vh, and computed as a similarity measure the
correlation coefficient between pairwise different vec-
tors vh1

and vh2
(h1 6= h2). The results are shown

in Figure 2a) and suggest that the proposed Bayesian
regularization scheme increases the average similarity
between the interaction parameters from the four time
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series. This is a shrinkage effect that one would ex-
pect from a Bayesian hierarchical model, in the sense
of the well-known ”Stein and Lindley effect” (Stein
(1955), and Lindley (1962)), and it has the potential
to improve the inference for time series segments that
are fairly short, as we demonstrate below. Our re-
sults also indicate that the proposed Bayesian regu-
larization scheme avoids a complete coupling, corre-
sponding to a perfect correlation. This would be un-
realistic, as the four time series segments were sub-
ject to different pre-entrainment conditions, which are
known to influence the regulatory relationships (John-
son et al. (2003), and McClung (2006)). Figure 2b)
shows a scatter plot of the marginal edge posterior
probabilities from both NH-DBNs. Despite a certain
correlation, there are several edges for which different
posterior probabilities have been inferred. To more
clearly demonstrate the effect of the proposed regu-
larization scheme on the network reconstruction, Fig-
ure 2c) shows a network possessing only those edges
whose posterior probability exceeds the threshold of
0.75 for at least one of the two NH-DBNs. It can be
seen that the proposed Bayesian regularization scheme
has a clear influence on the inferred structure. We
queried the biological literature and found evidence for
at least three of the four gene interactions that were
inferred with the proposed coupled NH-DBN only (i.e.
75%): CCA1 → TOC1 (Alabadi et al., 2001) as well
as ELF3 → CCA1 and ELF3 → LHY (Kikis et al.,
2005). On the other hand, we only found evidence for
one out of the three interactions that were solely pre-
dicted with the conventional NH-DBN (corresponding
to 33%); this is the feedback loop GI ↔ TOC1, re-
ported in (Locke et al., 2005). We acknowledge that
this evaluation is somewhat subjective and susceptible
to a certain selection bias, which is the inevitable con-
sequence of the absence of a gold-standard. For that
reason, we also tested the methods on gene expression
profiles from S. cerevisiae, described in Subsection 4.3.
Here we do know the true regulatory network, shown
in Figure 3a), so that we can objectively compare the
network reconstruction accuracy of the two NH-DBNs.
With both NH-DBNs we ran RJMCMC simulations
for various hyperparameter values of the negative bino-
mial prior on the number of changepoints (see supple-
mentary material), and we sampled the networks, the
number of changepoints and the location of change-
points with the RJMCMC scheme described in Sec-
tion 3. Figure 3b) shows the average AUC-ROC scores
plotted against the mean posterior mode1 of the num-
ber of changepoints, K. It is clearly seen that the pro-
posed coupled NH-DBN yields a systematically better

1For each gene, the mean of the posterior distribution
of the number of changepoints was determined, and these
values were averaged over all genes.

network reconstruction accuracy than the conventional
non-homogeneous NH-DBN. The best performance of
the novel coupled NH-DBN is given for K ≈ 1, which
reflects the imposed environment change related to the
switch of the carbon source from galactose to glucose.
The value of K = 0 corresponds to the traditional
homogeneous DBN, for which the network reconstruc-
tion is significantly worse. Much larger values of K
render the model over-flexible, which is reflected by
a decline in the AUC-ROC scores. Interestingly, this
decline is less pronounced for the proposed regularized
NH-DBN model than for the conventional NH-DBN
model, indicating increased robustness with respect to
a variation of the prior assumptions on the time series
segmentation.

7 Conclusion

Modelling non-homogeneous dynamic Bayesian net-
works (NH-DBNs) with a multiple changepoint pro-
cess is popular due to the fact that conditional on
the changepoints, the marginal likelihood can be com-
puted in closed form. To our knowledge, all previ-
ous studies, including Lèbre et al. (2010), Robinson
and Hartemink (2010), and Grzegorczyk and Husmeier
(2011), compute the marginal likelihood under the as-
sumption of parameter independence and the same in-
dependent parameter prior distributions for all time
series segments. These approaches ignore the fact that
many systems, e.g. regulatory networks and signalling
pathways in the cell, adapt to changing internal and
external conditions gradually. To allow for information
sharing among separate time series segments we have
proposed a novel regularized NH-DBN with a coupling
mechanism in the sense that a priori the interaction
parameters associated with separate time series seg-
ments are encouraged to be similar. Our empirical
assessment on simulated data has revealed that the
proposed method leads to an improvement in the net-
work reconstruction accuracy. We have quantified the
effect of the regularization for gene expression time se-
ries from A. thaliana. For time series from RT-PCR
experiments in S. cerevisiae, we have demonstrated
that the novel NH-DBN also yields a better network
reconstruction accuracy than the conventional uncou-
pled NH-DBN, and that it leads to increased robust-
ness with respect to a variation of the prior assump-
tions about the temporal heterogeneity.
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