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Abstract

Model validation constitutes a fundamental step
in data clustering. The central question is: Which
cluster model and how many clusters are most
appropriate for a certain application? In this
study, we introduce a method for the validation of
spectral clustering based upon approximation set
coding. In particular, we compare correlation and
pairwise clustering to analyze the correlations of
temporal gene expression profiles. To evaluate
and select clustering models, we calculate their
reliable informativeness. Experimental results in
the context of gene expression analysis show that
pairwise clustering yields superior amounts of re-
liable information. The analysis results are con-
sistent with the Bayesian Information Criterion
(BIC), and exhibit higher generality than BIC.

1 Introduction

Clustering constitutes a fundamental task in exploratory
data analysis to compress the data and to abstract concepts.
Typically, the analyst has the possibility to select a clus-
tering model from a plethora of alternatives. The central
question is: Which model is most appropriate for a certain
application? In this study, we introduce a method for the
statistical validation of spectral clustering by searching for
an information theorectically optimal tradeoff between sta-
bility and informativeness.

The structure of this manuscript is as follows. This section
contains a summary of relevant work and of the preliminary
background. Subsequently, we introduce the method and
its properties. Finally, we report and discuss experimental
results with gene expression profiles.
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Motivation. Spectral clustering (that is, clustering with
data characterized by relations rather than by vectors) lacks
a reliable principle for model selection. This deficit ex-
ists despite the theoretical and practical importance of the
task [6]. Typically, model selection is performed accord-
ing to heuristic approaches or it requires expert knowledge.
Heuristic strategies are also employed for model order se-
lection, which concerns the number of clusters [11, 15].
At present, practical solutions appeal to intuition. General
principles for validation are not available.

Related work. Due to simplicity and proved effective-
ness, the Bayesian Information Criterion (BIC) is arguably
the favored principle for model order selection [13]. Never-
theless, BIC exhibits two fundamental limitations. First, its
applicability is limited to models with directly determined
free parameters (e.g. mixture of Gaussians). Second, BIC
can be applied only to finite dimensional data spaces. Its
extension to spectral clustering remains unclear, because
the effective dimensionality grows with the sample size.

More generally, model selection criteria indicate a tradeoff
between two antagonistic goals: informativeness and solu-
tion stability. Abundant results demonstrate the power of
stability criteria for model order selection [7, 11] (although
not undisputedly [3]). In the same spirit, PAC-Bayesian
generalization bounds have been derived for different clus-
tering models [14]. Appeal to stability in data analysis
is related to two fundamental scientific concepts: mathe-
matical well-posedness [10] and experimental repeatabil-
ity. In principle, controlled experiments are expected to
obtain similar outcomes under similar (controlled) condi-
tions. But what about informativeness? Overestimating the
information content increases the overfitting risk. The ex-
planatory power of models comes from their ability to gen-
eralize. Quantifying the “information content” of a solu-
tion constitutes a necessary condition to obtain the optimal
tradeoff between stability and informativeness. Reasonable
reductions of stability are acceptable, as long as they are
compensated by better representations [16]. Such tradeoffs
are conventionally calculated within the framework of sta-
tistical learning theory. In this context, a central concept is
that of generalization capacity [17]. Absolute measures of
capacity can be obtained through information theory. Ap-

495



Information Theoretic Model Validation for Spectral Clustering

proximation Set Coding (ASC) [4, 5] is centered around
the identification of optimal tradeoffs between stability and
informativeness. The process benefits from the analogy to
communication: optimal models maximize the reliable in-
formation transfer between data sets.

Contribution. This study introduces a method for the
validation of spectral clustering based upon the principle of
ASC. The method converts sets of approximate clustering
solutions into codes. The noisy channel of the equivalent
communication scenario is defined (explicitly) by the cost
function and (implicitly) by the fluctuations of the data.
First, we demonstrate how to apply this principle to spectral
clustering. Then, we select the number of clusters which
maximize the reliable informativeness of the solution. Fi-
nally, we select alternative clustering models (correlation
and pairwise clustering) for grouping genes, a scientific
data analysis application in molecular biology.

The method is evaluated on temporal gene expression
profiles of M. galloprovincialis. We show that pairwise
clustering provides three times more informative solutions
given the gene expression profiles than correlation cluster-
ing. We compare our results with BIC and the stability cri-
terion, demonstrating consistency and wide applicability.

2 ASC based model validation

We start by introducing notation and basic definitions, i.e.,
summarizing the relevant background with particular em-
phasis to the ASC principle.

Notation and basic definitions. Let O be a set of n ob-
jects respectively associated with their measurements X.
Multiple representations of the measurements are admissi-
ble. In general, one might specify vector-based representa-
tions (where xi denotes the vector of object i), as well as
relation-based ones (where the entry Xij refers to the pair-
wise similarity between objects i and j). Different clus-
tering models are characterized by distinct cost functions,
which are denoted by R(c,X). Relevant parameters are
incorporated in clustering solutions (denoted by c). c(i) in-
dicates the cluster index for object i. Cluster membership
can be encoded by the binary co-clustering matrix H. In
this case, one has that Hij = 1 if and only if objects i
and j belong to the same cluster. Otherwise, Hij = 0. In
parametric models (such as K-means), the clustering solu-
tion c contains the inferred parameters as well (that is, the
centroids µk). The solution c⊥(X) indicates the empirical
minimizer of a given cost function.

The principle of ASC. Consider two data sets, denoted
by X(m),m ∈ {1, 2}. Let us assume that they share
the same inherent structure. At the same time, the two
data sets exhibit different noise instantiations. For a given

cost function, the globally minimal solutions correspond-
ing to the two data sets are generally different, meaning
c⊥(X(1)) 6= c⊥(X(2)). This variability is caused by data
fluctuations which induce stochastic variations in the solu-
tions as well. Hence, partitioning a data set by calculating
the empirical optimum of clustering costs lacks robustness.
ASC addresses this problem by ranking all clustering so-
lutions according to approximation weights, which are de-
noted by w(c,X). For this purpose, one can use the family
of Boltzmann weights w(c,X) := exp(−βR(c,X)) that
are parametrized by the inverse computational temperature
β. They define the two weight sums

Zm =
∑

c∈C(X(m))

exp
(
−βR(c,X(m))

)
, m = 1, 2 (1)

and the joint weight sum

Z12 =
∑

c∈C(X(2))

exp
(
−β(R(c,X(1)) +R(c,X(2)))

)
. (2)

The set of all clusterings of X(m) is here denoted by
C(X(m)). Essentially, Zm counts all statistically indistin-
guishable clustering solutions which approximate the point
of minimum cost. At the same time, exp(−β(R(c,X(1))+
R(c,X(2)))) measures how well a solution c minimizes
costs on both data sets.

Learning problems can be defined in terms of identification
of optimal “resolution”, which is induced by the fluctua-
tions of the noise. In ASC, this resolution scale is formal-
ized by the choice of the parameter β. How large can β be
chosen to still ensure stability of solution under variation
of the data X? Too low β yields excessively coarse reso-
lutions. The maximal amount of predictive information is
not captured in this limit.

The optimal β maximizes the mutual information [4]

Iβ(X(1),X(2)) =
1

n
log

( |{σ}|Z12

Z1 · Z2

)
. (3)

For X(1), the number of all distinct clustering solutions is
given by the cardinality |{σ}|. The maximum of Iβ as a
function of β is called the Approximation Capacity (AC),
AC(R) ≡ Iβ? with β? = argmaxβ Iβ . AC determines
the best resolution in the solution space achievable for cost
function R, that is the best tradeoff between stability and
informativeness.

ASC for clustering. ASC enables the comparative eval-
uation of cluster models. Consider a clustering problem
with a number of clusters K. The potential hik indicates
the costs of assigning object i to cluster k. For the mo-
ment, let us assume that the potentials hik are provided,
for 1 ≤ i ≤ n, 1 ≤ k ≤ K. In a factorial model
such as K-means, the cost function can be expressed as
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R(c,X) =
∑
i ‖xi − µc(i)‖2. In this case, the potential

hi,c(i) = ‖xi − µc(i)‖2 corresponds to squared distance
between data vector and centroid. For non-factorial mod-
els, however, computing the potentials is not as straightfor-
ward. In the method section, we explain how to compute
the potentials for non-factorial models.

Given the potentials, the AC is computed in two main steps:

1. Calculate the cardinality |{σ}|, the weight sums
Z1,Z2 and the joint weight sum Z12.

2. Maximize Iβ (3), which yields β? = argmaxβ Iβ .

The cardinality |{σ}| is determined by the entropy of the
empirical minimizer c⊥(X(1)) (depending on its type). In
other words, one has

1

n
log |{σ}| = −

K∑

k=1

Pk logPk, (4)

where Pk is the probability of the kth cluster in c⊥(X(1)).

The weight sums (m = 1, 2) are calculated by

Zm =
∑

c∈C(X(m))

exp

(
−β

n∑

i=1

h
(m)
i,c(i)

)

=
n∏

i=1

K∑

k=1

exp
(
−βh(m)

ik

)
. (5)

Similarly, the joint weight sum amounts to

Z12 =
∑

c∈C(X(2))

exp

(
−β

n∑

i=1

(h
(1)
i,c(i) + h

(2)
i,c(i))

)

=
n∏

i=1

K∑

k=1

exp
(
−β
(
h
(1)
ik + h

(2)
ik

))
. (6)

In general, there might not exist any analytic solution
which satisfies dIβ

dβ = 0. This limitation can be overcome
by numerical optimization.

Model (order) selection. AC evaluates models and
model orders. To identify the optimal number of clusters,
one has to select an initial number of clustersKmax and then
select the correct number according to its score. Algorithm
1 describes this procedure.

At each (computational) temperature β−1, potentials hik
and other parameters are updated. In the case ofK ≥ Kopt,
the optimal parameters are expected to be found at the op-
timal temperature. The result corresponds to the identifica-
tion of the correct number of clusters. Greater detail about
this task is provided in the method section, where concrete
case studies are considered.

Algorithm 1 Calculate Model Order
1: for 1 ≤ K ≤ Kmax do
2: Perform either annealed Gibbs sampling or annealed

mean-field approximation to compute the potentials
hik at different temperatures.

3: At each temperature β−1 ∈, calculate IKβ .
4: Compute ACK := maxβ IK

β (that is, the AC).
5: end for
6: return Kopt := argmax1≤K≤Kmax ACK.

Similarly, a set of L candidate cost functions R =
{Rl(.,X) : 1 ≤ l ≤ L} can be ranked by their ACs:
after the evaluation, the model exhibiting the highest AC is
selected.

Algorithm 2 Model Comparison
1: Fix initial number of clusters Kinit sufficiently large.
2: for Rl(.,X) ∈ R do
3: Compute the approximation capacity ACRl .
4: end for
5: return Ropt := argmax1≤l≤L ACRl .

Computational complexity. ASC requires to estimate
weight sums. Thus, its computational costs are dominated
by the computational complexity of approximating parti-
tion functions. Algorithmic techniques to estimate partition
functions such as MCMC methods or variational Bayes
methods are applicable. Furthermore, subsampling can be
beneficial to compute AC for large data sets.

3 Method

In this section, we introduce the new validation method
for spectral clustering. The study investigates two spec-
tral models: pairwise clustering and correlation clustering.
Both respective subsections follow parallel structure, con-
sisting of problem formulation and calculation of AC.

A spectral clustering problem is often mathematically char-
acterized by an attributed graph (V, E) with vertex set V
and edge set E . The vertices have to be clustered into
groups Gu := {i : c(i) = u}, 1 ≤ u ≤ K. The set
of edges between elements of group Gu and Gv is denoted
by Euv := {(i, j) : c(i) = u ∧ c(j) = v}.

Algorithm sketch: Given are data and a class of models,
1: Split the data set in two subsets.
2: for all models do
3: evaluate the AC of all model orders (that is, find the

correct number of clusters).
4: select the correct model order.
5: end for
6: evaluate the AC of all models.

497



Information Theoretic Model Validation for Spectral Clustering

7: select the correct cluster model.

The output consists of the model which exhibits the optimal
tradeoff between informativeness and stability.

3.1 AC of pairwise clustering

Arguably,K-means is one of the preferred choices for clus-
tering in many application domains. This preference as-
sumes vector data in a Euclidean space. What if the mea-
surements are characterized by relations, such as pairwise
similarities? Then the potentials {hi,c(i)} cannot be di-
rectly extracted from the cost function. As a general strat-
egy, we propose to use mean-field approximations to esti-
mate the potentials. However, for the specific case of pair-
wise clustering [8], there exists a straightforward way to
compute the potentials by embedding relational data into a
Euclidean vector space (without distortions of the cluster-
ing solutions).

Problem formulation. Given a set of pairwise similari-
ties X, the pairwise clustering cost function is defined as

Rpc(c,X) = −1

2

K∑

k=1

|Gk|
∑

(i,j)∈Ekk

Xij

|Ekk|
. (7)

This cost function sums the average similarities per clus-
ter (weighted by the respective cluster sizes). Therefore,
adding a constant to all pairwise similarities shifts the cost
value by a constant multiplied by the number of objects. At
the same time, it does not modify the order of the cluster-
ings induced by the costs [12], nor it changes the approx-
imation capacity (3). This invariance renders the embed-
ding of the objects into a n − 1 dimensional kernel space
possible. The similarity Xij is then interpreted as a scalar
product between two vectors representing object i and j.
If we appropriately convert similarities X into dissimilari-
ties (D = const−X), then pairwise clustering equivalently
performsK-means clustering in kernel space. Using mean-
field approximations, the calculation of the weight sums
(5), which can be performed analytically forK-means clus-
tering, is hence exact for pairwise clustering (see [12]).

Calculation of AC. For the purpose of illustration, let
us consider two sets of objects O(1) and O(2) of identi-
cal size, consisting of n = 800 objects each. The data
sets are drawn from four isotropic Gaussian sources. For
each source, the component parameters are πk = 1/4,
the means are µ = [(4, 4); (−4, 4); (−4,−4); (4,−4)] and
the covariances are isotropic Σ = 5 · I. Now, we con-
vert the pairwise squared Euclidean distances into similar-
ity matrices. On the basis of this information, the poten-
tials {hi,c(i), 1 ≤ i ≤ n} are calculated by performing
annealed Gibbs sampling for different numbers of initial
clusters (varying from 1 to 10). For different β, the mutual

information is calculated using the potentials {hi,c(i)}. The
approximation capacity is then obtained by maximization.

Figure 1 shows the data set (a) and the approximation ca-
pacity for different numbers of initial clusters. The AC
saturates at approximately 1.5 bits per object since objects
have probabilistic assignments to clusters at the optimal β?

value. Note that in the case of very well separated clusters,
AC leads to log2(4) = 2 bits. As shown in Figure 1(c),
BIC and AC selections are consistent for these data sets.

For the case K = 8, the trajectories of the clusters are
illustrated in detail. As a function of the (inverse) temper-
ature, the positions of the centroids diverge as the system
cools down (increase of β) and the model parameters are
optimized. Figure 2(a) shows the positions of the inferred
centroids. The colors of the trajectories indicate the value
of β. β ≈ 0 is dark blue and β � 1 is red. The transi-
tion from green to yellow denotes the simultaneous split of
four to eight clusters at β?. At high temperature all cen-
troids coincide, indicating that the optimizer favors a sin-
gle cluster. At very low to zero temperature, the algorithm
estimates 8 clusters with locations strongly determined by
fluctuations. Figure 2(b) depicts the mutual information as
a function of β. The optimal temperature corresponding
to the approximation capacity is the lowest temperature at
which the correct number of clusters is found.

3.2 AC of correlation clustering

An alternative clustering principle for relational data is de-
fined by correlation clustering [2]. Objects are partitioned
based on a multi-cut of a similarity graph that is annotated
with positive and negative edge weights. For correlation
clustering, the potentials have to be approximated through
e.g. mean-field approximation since no product form of the
weight sums (1, 2) is known. Approximate estimates of
Zm, Z12 can be inserted into Eq. (3) to calculate the AC.

Problem formulation. We consider the complete graph
with vertex set O and edge weights given by a similarity
matrix X := {Xij} (between objects i and j). The cost
function for correlation clustering consists of the sum of the
disagreements. The disagreements correspond to negative
intra-cluster edges and positive inter-cluster edges. For the
tuple (c,X), the costs are

Rcc(c,X) =
1

2

∑

1≤u≤K

∑

(i,j)∈Euu
(|Xij | −Xij)

+
1

2

∑

1≤u≤K

∑

1≤v<u

∑

(i,j)∈Euv
(|Xij |+Xij). (8)

Non-factorial mean-field approximation. In statistical
models where Boltzmann weights do not assume a prod-
uct form, such as correlation clustering, the weight sums
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(a) the data generated with Σ = 5 · I (b) approximation capacity (c) BIC score

Figure 1: Approximation capacity and BIC score for pairwise clustering as a function ofK. Both principles yield consistent
results on these two dimensional data (Figure 1(a)).

(a) Cluster trajectories (b) Mutual Information

Figure 2: Annealed Gibbs sampling for pairwise clustering. Influence of the stopping temperature for annealed optimiza-
tion on the mutual information and on the positions of the cluster centroids.

have to be calculated numerically by sampling or analyt-
ically by a mean-field approximation. The potentials hik
are determined by approximating the Gibbs distribution
p(c) = w(c,X)/Z by a factorial distribution with the
mean-fields as adjustable parameters. Given these poten-
tials, the assignments c(.) of objects to clusters are inde-
pendent, i.e., c(i) is not influencing c(j), j 6= i. The family
of factorial distributions is defined as

Q =

{
Q : Q(c) =

n∏

i=1

qi,c(i), qi,c(i) ∈ [0, 1]

}
. (9)

The closest factorial distribution (in an information theo-
retic sense) can be determined by minimizing the Kullback-
Leibler divergence (see[8])

DKL (Q||Pcc) =
∑

c∈C
Q log

Q

exp(−β(Rcc − F cc))

=

n∑

i=1

K∑

k=1

qik log qik + βEQ{Rcc} − βF cc. (10)

The free energy F cc := −β logZ(X) does not depend on
qik. To find the optimal factorial distribution, we minimize
DKL (Q||Pcc) w.r.t qik observing the normalization con-

straint
∑K
k=1 qik = 1,∀i:

0 =
∂

∂qik


DKL (Q||Pcc) +

n∑

j=1

λj(
K∑

k=1

qjk − 1)


 (11)

=
∑

c∈C

∏

j≤n:j 6=i
qj,c(j)I{c(i)=k}Rcc +

1

β
(log qik + 1) + λi.

For the extremum of the bound, the necessary condition
determines the mean-field assignments

qik =
exp(−βhik)∑
k′ exp(βhik′)

, with hik = EQi→k
{Rcc}. (12)

EQi→k
{Rcc} is the expectation over all configurations sub-

ject to the constraint of assigning object i to cluster k.
Thereby, to calculate the mean-fields, Rcc is decomposed
into contributions which depend on object i and on the
costs of all other objects. Each qik is influenced uniquely
by the terms which depend on object i.

For correlation clustering, mean-field approximation yields
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the equations

hik =
1

2

∑

j≤n:j 6=i
(|Xij |+Xij)(1− EQi→k

{I{c(j)=k}})

+
1

2

∑

j≤n:j 6=i
(|Xij | −Xij)EQi→k

{I{c(j)=k}}+ const.

=
1

2

∑

j≤n:j 6=i
(|Xij |+Xij)(1− qjk)

+
1

2

∑

j≤n:j 6=i
(|Xij | −Xij)qjk + const. (13)

Through the annealing scheme, at each temperature an iter-
ative EM-type algorithm approximates the mean-fields and
the probabilities by mutual conditioning. The t-th iteration
of the algorithm consists of two main steps. First, q(t)ik is
estimated as a function of hik(t−1). Second, hik(t) is cal-
culated for given q(t)ik . Finally, the weight sums (1, 2) and
the AC are calculated from the potentials.

Figure 3: Approximation capacity in three different set-
tings of correlation clustering for ξ = 0.35.

Figure 4: Instability measure in three different settings of
correlation clustering for ξ = 0.35. For η = 0.75 instabil-
ity is always zero for 5 and more clusters.

Calculation of AC. For the experiments on synthetic
data, we generate two correlation graphs X(1) and X(2).
Given the noise parameter η and the complexity parameter
ξ, the correlation graph is constructed as follows:

1. First, a perfect graph is constructed. In other words,
+1 is assigned to intra-cluster edges, while −1 to
inter-cluster edges.

2. Then, each edge in Euv, v 6= u is flipped to +1 with
probability ξ. This step tends to increase the complex-
ity of the structure.

3. Finally, each edge (Euv, v 6= u and Euu) is replaced
by a random edge with probability η.

By construction, each graph consists of 1500 nodes and
5 clusters. Identity mapping between objects in O(1) and
O(2) is guaranteed by the same order of construction of the
graphs. Structure complexity is anchored at ξ = 0.35 and
noise level η varies from 0.75 to 0.95, thus generating data
sets with a broad range of difficulty.

Varying the number of initial clusters from 1 to 10, the
mean-field algorithm is executed with 10 random initial-
izations per model order. The best result in terms of cost
value is taken at each round, and on the basis of that the
mutual information is optimized over different values of β.
Figure 3 illustrates the results of this procedure. The re-
sults of mean-field approximation are verified by checking
the consistency with Gibbs sampling.

The data analysis problem is easy for η = 0.75. In this
regime, Gibbs samplers or mean-field annealing proce-
dures select the correct number of clusters even when ini-
tialized with a large number of clusters. In fact, superfluous
clusters are simply left empty as the cost function prefers
large clusters for low noise levels. The effective number
of clusters remains 5 regardless of the initialization and,
hence, the approximation capacity is invariant.

At η = 0.85 the problem is rather complicated due to noise
but still learnable. In this regime, substantial variations are
exhibited in the inferred clustering for different choices of
the number of clusters. Approximation capacity system-
atically selects the correct number of clusters. For larger
numbers of clusters, the effective number is still 5 and
the capacity reduces slightly due to degeneracy. Both for
η = 0.75 and η = 0.85, the instability measure (computed
as proposed in [11]) is consistent with the ASC principle
(see Figure 4).

At η = 0.95 the edge labels are almost entirely random,
obfuscating all structure in the data. Therefore, as shown in
Figure 3, the number of learnable clusters is just 1. In this
regime, instability cannot be used to determine the number
of clusters as it remains undefined for K = 1.
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(a) correlation clustering (CC) (b) pairwise clustering (PC) (c) number of clusters in PC

Figure 5: Approximation capacity for correlation clustering and for pairwise clustering applied to Gene expression data.
For correlation clustering the mutual information is computed by mean-field approximation and by Gibbs sampling to
compare both methods. Figure 5(c) shows the number of clusters at different temperatures.

(a) instability of CC (b) instability of PC (c) BIC score for PC

Figure 6: Instability measure and BIC score computed for Gene expression data. BIC relies upon the calculation of the
effective dimensionality. In some cases, such as pairwise clustering, the number of free parameters is unclear but heuristics
exist. In other cases, such as correlation clustering, it is rather problematic.

4 Clustering of gene expression profiles

In this section, we analyze experimental gene expression
profiles with the introduced method. This analysis pro-
vides a worked-through procedure for model comparison
and validation. We show how to select the number of clus-
ters and how to evaluate the informativeness of clustering
methods. In particular, we compare pairwise and correla-
tion clustering and demonstrate that the former yields sig-
nificant amount of additional (reliable) information. The
results show consistency with BIC and wider applicability.

Experiment description. Conventional K-means ap-
proaches rely upon the definition of explicit metrics in the
feature space. However, there exist numerous applications
(such as gene expression analysis) in which the choice of
a natural metric is far from obvious. Spectral clustering
techniques have the potential to overcome this limitation,
since they rely upon implicit metrics whose specification
may be straightforward. In this experiment, the analyzed
data set consists of gene expression profiles from Mytilus
galloprovincialis female digestive gland [1]. Time points
corresponds to 12 consecutive months, chosen to study how

seasonal environmental changes affect physiology across
the annual cycle. The first sample, which corresponds to
January, is defined as reference. Logarithmic values are
obtained for the 295 differentially expressed genes [1].

Taking advantage of the temporal structure of the data, the
two object sets O(1) and O(2) are constructed by splitting
the feature vector, i.e., the measurements for the months
(Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec) are
separated into the values for (Mar, May, Jul, Sep, Nov) and
for (Apr, Jun, Aug, Oct, Dec). This interleaved separation
captures the statistical dependence of the samples due to
time proximity. Thus it avoids the risk of undersampling
small clusters of high biological relevance (as in this study)
by having too few genes per cluster. Pearson correlation
coefficients are calculated for each pair of genes in each set
to construct the similarity matrices X(1) and X(2).

Gene expression clustering. To obtain the approxima-
tion capacity, we fix the number of initial clusters at 10
and compute the mutual information at different tempera-
tures. Figure 5 demonstrates the approximation capacity
for the two models. In Figure 5(a) we have investigated the
accuracy of the mean-field approximation by Gibbs sam-
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(a) pairwise clustering (b) pairwise vs. correlation cluster-
ing

(c) correlation matrix

Figure 7: Comparison of optimal pairwise and correlation clustering solutions. The objects are permuted according to
pairwise clustering. In the color coding, the first bit refers to Hpc

ij and the second bit corresponds to Hcc
ij .

pling. Comparing the capacities shows the advantage of
pairwise clustering over correlation clustering. This result
means that under identical noise effects, pairwise clustering
is able to discover more structure from data than correlation
clustering. In this data set, ASC validates pairwise cluster-
ing (maxβ Iβ = 1.03) as 3.5 times more informative than
correlation clustering (maxβ Iβ = 0.272).

Figure 5(c) shows the number of clusters identified by pair-
wise clustering at different temperatures. At the optimal
temperature, 7 clusters are discovered by pairwise cluster-
ing. This diversity is in contrast to the 2 clusters identified
by correlation clustering. Correlation clustering exhibits by
construction a bias that favors clusters with equal sizes. In
contrast, pairwise clustering is unbiased to size due to its
shift-invariant property. Subcluster consistency is substan-
tial: 6398/8231 of the co-clustered pairs in pairwise clus-
tering result co-clustered in correlation clustering as well.

To provide a more detailed analysis of the problem, two
well known model order selection criteria are considered
for comparison: the BIC score and the instability measure.
BIC is a principle which is hard to apply in cases where the
effective dimensionality is unclear. Such a situation arises
for pairwise clustering and it is even less well defined in the
case of correlation clustering. In the former model, the BIC
score has been computed according to the effective number
of dimensions, calculated as the ratio between the trace and
the largest eigenvalue [9]. On the other hand, instability is
a heuristic in the spirit of two-instance cross validation. It
is applicable to both models but its generality remains con-
fined to alternatives with comparable informativeness. BIC
and instability constitute potentially inconsistent criteria, as
apparent in Figures 6(a) and 6(c).

Figure 7 provides an in depth comparison study. Fig-
ure 7(a) shows the permutation of the objects based on
the co-clustering induced by pairwise clustering at optimal
temperature. Thereby the inferred clusters appear as diag-
onal blocks of the co-clustering matrix Hpc. In Figure 7(b)

the correlation clustering of the permuted objects, i.e. Hcc,
is compared with pairwise clustering. For the pair of ob-
jects i and j, the following encoding is used: i) ‘yellow’ if
(Hpc

ij , H
cc
ij ) = (1, 1), ii) ‘red’ if (Hpc

ij , H
cc
ij ) = (1, 0), iii)

‘light blue’ if (Hpc
ij , H

cc
ij ) = (0, 1), and iv) ‘dark blue’ if

(Hpc
ij , H

cc
ij ) = (0, 0). A substantial consistency between

pairwise and correlation clusterings is observed. However,
the pairwise clustering finds finer representations (more de-
tailed and still validated structures) than correlation clus-
tering that only identifies coarser structures. Figure 7(c)
shows the correlation matrix for gene expressions.

5 Discussion

The introduced method addresses the task of model valida-
tion for spectral clustering. The optimal tradeoff between
stability and informativeness is achieved by maximizing
approximation capacity. Assignment potentials and result-
ing partition sums are computed either by embedding into a
vector space (for pairwise clustering) or by mean-field ap-
proximation (for correlation clustering). In particular, this
study showed the following properties:

1. self-consistency of ASC and the consistency with BIC
(in contrast to the instability criterion),

2. greater generality of ASC in comparison to BIC,
3. applicability in the biological context of gene expres-

sion analysis,
4. three-fold higher informativeness of pairwise cluster-

ing in comparison to correlation clustering in a bio-
logical application.

Future work addresses generalizations of the introduced
method to algorithms without an explicit cost function.
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