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Abstract

Latent Dirichlet Allocation models discrete
data as a mixture of discrete distribu-
tions, using Dirichlet beliefs over the mixture
weights. We study a variation of this con-
cept, in which the documents’ mixture weight
beliefs are replaced with squashed Gaussian
distributions. This allows documents to be
associated with elements of a Hilbert space,
admitting kernel topic models (KTM), mod-
elling temporal, spatial, hierarchical, social
and other structure between documents. The
main challenge is efficient approximate infer-
ence on the latent Gaussian. We present an
approximate algorithm cast around a Laplace
approximation in a transformed basis. The
KTM can also be interpreted as a type of
Gaussian process latent variable model, or as
a topic model conditional on document fea-
tures, uncovering links between earlier work
in these areas.

1 Introduction

Latent Dirichlet Allocation (LDA) [Blei et al., 2003]
is a generative model for datasets comprising collec-
tions of discrete samples. Each collection is assumed to
be generated from a mixture of discrete distributions,
such that both the belief over the discrete distribu-
tions and over the mixture weights are Dirichlet. Text
documents constitute the most popular domain with
this anatomy: Each document in a corpus, treated as a
“bag of words” (i.e. ignoring word order), is one collec-
tion of (discrete) words, and the mixture components
are interpreted as topics. Thus, each document ex-
hibits several topics to varying degree, with each word
in the document sampled from one specific topic.
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Real documents do not exist void of context. They are
products of their authors, time, and place. Electronic
communication has intensified this truism, and online
corpora are now invariably accompanied by copious
amounts of meta-data. The identity of the author may
be augmented by additional knowledge about their lo-
cation in a social graph, autobiographic information,
and many more. Such features convey semantic in-
formation: Topic popularity varies between West and
East, conservatives and progressives, rich and poor,
scientists and celebrities, young and old, contempo-
raries and forebears.

In its standard form, LDA can not take advantage of
such metadata; but extensions proposed by several au-
thors have addressed certain types of meta-structure.
Dynamic development of topics over sequential sets of
documents was considered by Blei and Lafferty [2006],
Wang and McCallum [2006] and Wang et al. [2009].
Both Mimno and McCallum [2008] and Zhu and Xing
[2010] considered a more general description of topics
in terms of a linear function in a latent real vector
space, linked to the topic dimension through the soft-
max function. These works differ in their details (some
assume the topics stay constant over time while their
distribution changes, others that the topics themselves
change. Words may be assumed to generate features,
or the other way round), but are linked by their com-
mon use of Gaussian random variables to describe dy-
namics or regress on document features. They also
all use maximum likelihood, or maximum a-posteriori
inference to fit regression weights where they exist.

This work generalizes these approaches by replacing
real-valued features with elements of a Hilbert space,
and point estimates with Gaussian process measures
(Figure 1). The resulting kernel topic model provides
an expressive framework for the inclusion of virtually
all types of metadata in the semantic description of
topical data, and allows a rich description of nonlinear
topic dynamics. The main mathematical challenge is
that inference on the latent Gaussian belief is not ana-
lytically tractable. We address this through a numer-
ically lightweight Laplace approximation for Dirichlet
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Figure 1: Dimensionality-reduction view of topic mod-
els. Top: LDA describes D documents containing
words from a vocabulary of size V in terms of K top-
ics. Middle: Dirichlet multinomial regression por-
trays the documents in terms of F features, which
generate the topics through a linear map. Bottom:
The kernel topic model replaces the features with co-
ordinates of a Hilbert spaceH, and the linear map with
a nonlinear one. The curly brace denotes a softmax-
projection from RK to the [0, 1]K simplex.

distributions in the softmax basis, extending on a note
by MacKay [1998]. As a side effect, this approximation
also admits a particularly efficient implementation of
Bayesian inference on linear latent models, such as the
one introduced by Mimno and McCallum [2008]. The
kernel topic model links topic modelling and Gaussian
process latent variable models, effectively casting LDA
as a likelihood for generalised Gaussian process mod-
els. The price of the increased modelling flexibility is
a comparably high computational cost – cubic in the
number of documents.

2 Methods

2.1 Model

We consider a corpus of D documents. Document d
contains Id words wdi ∈ {1, . . . , V }, d ∈ {1, . . . , D}, i ∈
{1, . . . , Id} from a vocabulary of size V . Additional
aspects of d are described by features φd ∈ H in a
Hilbert space H. In other words, the dataset consists
of pairs (wd,φd) ∈ {1, . . . , V }Id ×H.

We construct a topic model conditional on the observ-
able features of the documents, using the following
generative process for the vector wd from K topics:

• For each topic k ∈ {1, . . . ,K}, generate a discrete
probability distribution with parameters θk ∈
[0, 1]V over the vocabulary of size V by sampling
from a Dirichlet distribution with parameter vec-

tor βk (Γ denotes the Gamma function):

p(θk |βk) = D(θk;βk) =
Γ
(∑V

v βkv

)

∏V
v Γ(βkv)

∏

k

θβkv−1
kv .

(1)

• Independently sample K functions hk(φ) : H _
R from the Hilbert space of real-valued functions
over H, by sampling from Gaussian process priors
with mean functions µk(φd) and covariance func-
tions Σk(φd,φd′), induced by (potentially topic-
specific) kernels ηk:

p(hk |µk,Σk) = GP(hk;µk,Σ
2
k) (2)

• For each document d with features φd ∈ RF ,

– Draw a latent variable yd by evaluating
h(φd) and adding Gaussian noise of standard
deviation τ :

p(yd |h, τ,φd) =
∏

k

N (ydk;hk(φd), τ
2) (3)

– Define the topic proportions πd = σ(y) ∈
[0, 1]K where σ is the softmax function

σk(y) =
exp(yk)

∑K
` exp(y`)

(4)

– For each of Id words

∗ draw a topic cdi from the discrete distri-
bution defined by πd:

p(cdi = k |πd) = πdk (5)

∗ draw word wdi from the discrete distribu-
tion of topic cdi:

p(wdi = v | cdi,Θ) = θcdiv (6)

The directed graphical model in Figure 2, left, sheds
light on the dependency structure of this generative
model. If we replace everything to the left of πd in
that figure by a single Dirichlet parameter vector α
(identical for all d), then the parts shown to the right
of and including the node π correspond to the tradi-
tional LDA model [Blei et al., 2003] (Figure 2, right).
On the other hand, we can identify the parts to the left
of (and excluding) π as a case of Gaussian process re-
gression. It is the connection between these two parts
that makes the model challenging, and approximate
inference will in fact separate in this way.

In passing, we note a connection to the correlated topic
model [Blei and Lafferty, 2007], which shares every-
thing to the right of and including y in Figure 2, but
not the regression element to its left. Instead, that
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Figure 2: Left: Directed graphical model of the kernel topic model. Some variables labeled for clarity. Right:
latent Dirichlet allocation. The models are identical to the right of and including π.

model focusses on estimating the correlation between
topics, which here is replaced by a simpler, diagonal
covariance. Introducing correlations between topics is
possible in our model using an approach analogous to
the cited work (maximum likelihood estimation on the
covariance structure), but left out here for clarity.

3 Inference

Ample expertise has accumulated in the literature, on
inference for both LDA, and Gaussian processes given
(approximately) Gaussian likelihoods. What is miss-
ing is a connection between the two paradigms. This
link is the main contribution of this paper. To clarify
the setting, however, we give a very brief introduction
to the two sub-systems in this section, then derive the
link – the Laplace bridge – in Section 3.3.

3.1 Semi-Collapsed Variational Inference

Broadly speaking, there are two popular methods for
inference in LDA: variational inference [Blei et al.,
2003] and collapsed Gibbs sampling [Griffiths and
Steyvers, 2004]. Gibbs samples come from the exact
posterior, but provide no analytic form for the be-
liefs. Since our extension benefits from such forms,
we opt for a variational approximation. Standard in-
ference in LDA [Blei et al., 2003, Blei and Lafferty,
2009, Hoffman et al., 2010] uses a fully factorized ap-
proximate distribution, but Teh et al. [2007] showed
that this Ansatz entails an unnecessarily loose bounds
and slow convergence. To mitigate this problem, latent
variables should be integrated out wherever possible.
Since we require explicit forms for the per-document
topic distributions πd, we can not integrate out this
variable, but we can collapse the bound on the per-
topic distributions θ. This amounts to an adaptation
to Teh et al.’s work, which we do not dwell on here
for brevity. The bottom line is that it is possible to
construct a variational bound that, given a Dirichlet

prior
p(πd |αd) = D(πd;αd) (7)

on πd, assigns approximate Dirichlet “posterior” be-
liefs

p(πd |αd,wd) = D(πd;αd + νd) (8)

with a vector νd ∈ RK of pseudo-counts. At the
LDA end of the divide between Gaussian regression
and LDA, we thus require a Dirichlet belief.

3.2 Gaussian Process Regression

For the moment, assume there be some isomorphism
L between K-dimensional Dirichlet distributions and
K approximately independent Gaussian ones (to be
developed in Section 3.3).

L : D(πd;αd) ]
K∏

k=1

N (yd;µdk, σ
2
dk) (9)

This transformation provides approximate Gaussian
messages from πd to yd in the graph of Figure 2.
With these messages, Gaussian process inference over
the Hilbert space H becomes a known problem, and
we can implement an approximate Gaussian process
latent inference algorithm: For every topic k, the pos-
terior belief over the function hk(φ∗) at the Hilbert lo-
cation φ∗ is the product of the Gaussian process prior
and the D approximately independent Gaussian mes-
sages p(yd |h(φd),W ,Θ) = N (µkd;hk(φd), τ

2 + σ2
kd).

We subsume the means of these messages into a vec-
tor µk and their variances into a diagonal matrix
Σk = diag(τ2 + σ2

dk), which allows us to write the
mean and marginal variance functions of the posterior
Gaussian process as

E[h∗] = ηk(φ∗,Φ)ᵀH−1(H−1 + Σ̃−1
k )−1Σ̃−1

k µ̃k

V[h∗] = ηk(φ∗,φ∗)− ηk(φ∗,Φ)(H + Σ̃)−1ηk(Φ,φ∗)
(10)

writing the message precisions (inverse variances) as
ζd = (σ2

d + τ2)−1, we construct a matrix S̃ = diag(ζ)
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and message precision adjusted means ν̃ = S̃µ̃. Us-
ing this notation, the implementation of iterative
Gaussian process inference from approximate Gaus-
sian messages contained in Section 3.6.3, in particular
Algorithms 3.5 and 3.6 in Rasmussen and Williams
[2006] can be used almost without changes.

In Gaussian process generalised regression, the hy-
perparameters (kernel parameters and observation
noise) are usually estimated by evidence maximisation
(“type-II maximum likelihood”). In our case, the un-
known function is h, the data isw and let the hyperpa-
rameters be ξ. Evidence maximisation would amount
to optimising p(w | ξ) =

∫
p(w | f, ξ)p(f | ξ) df . How-

ever, in our case, there is an approximate inference
algorithm separating the Gaussian process regression
from the observed data, so this kind of optimisation
has exceedingly high computational cost (each eval-
uation of p(w | ξ) involves running the LDA part of
Section 3.1 to convergence). Instead, a much cheaper,
if less effective, method is to maximise p(y | ξ), where
y are the estimated per-document topic distributions.
Defining the matrix B = I + S̃1/2KS̃1/2, a simple al-
gebraic argument similar to the one in Rasmussen and
Williams [2006], Section 3.6.3, gives the log evidence

logZ =
1

2

[
log |S̃| − log |B| − µ̃ᵀS̃1/2B−1S̃1/2µ̃

]

(11)
which is numerically stable (because all eigenvalues of
B are larger than 1), and can be implemented effi-
ciently. Derivatives of logZ with respect to the ker-
nel parameters, required for efficient optimisation, are
straightforward to calculate using linear algebra iden-
tities.

3.3 The Laplace Bridge

To link these two parts of the inference, we must con-
nect the Dirichlet belief on πd and the Gaussian do-
main required for yd. Since σ(yd) = πd, this task
amounts to an uncertain form of logistic regression, in
the sense that discrete samples cdn from the distribu-
tion defined by πd are replaced by probabilistic beliefs
over cdn. Our solution to this problem is to construct
a Laplace approximation to Dirichlet distributions in
the softmax basis, in which these distributions can be
approximated by Gaussians much better than in the
popular simplex basis.

MacKay [1998] showed that, because the softmax func-
tion has a Jacobian proportional to

∏
k πk, a basis

change from probabilities π to real numbers y =
σ−1(π) gives the Dirichlet a new parametric form

Dy(π(y);α) =
Γ
(∑K

k αk

)

∏K
k Γ(αk)

K∏

k

παk

k g(1ᵀy) (12)

g(1ᵀy) is an arbitrary normalisable measure, required
to ensure integrability by restricting the sum of the
elements of y (1 is the vector [1, 1, 1, . . . ]). In this
basis, the Dirichlet lacks the−1 terms in the exponents
present in the standard representation, and thus does
not diverge for |x| _ ∞ and αi < 1. It is also a
unimodal distribution whose mode at π(y) = α/‖α‖
now falls together with its mean. These aspects allow
a good quality Laplace approximation.

For numerical convenience, we choose (like MacKay)

g = exp
(
− ε

2
(1ᵀy)2

)
. (13)

MacKay shows the Hessian of the logarithm of this
distribution has elements

Lk`(y) =
∂2D(y)

∂yk∂yl
= α̂ (δk`πk − πkπ`) + ε(11ᵀ)k`

(14)
(using Kronecker’s δ, and α̂ =

∑
k αk. The ε stems

from Eq. (13)). To construct a Laplace approximation
of the Dirichlet in the form of a multivariate Gaussian
N (y;µ,Σ) (deviating from MacKay’s derivations from
here on), we identify the mean µ with the mode of the
distribution,

µk = logαk −
1

K

K∑

`=1

logα`, (15)

and the negative logarithm of its Hessian with Σ. To
gain a sparse approximation, we analytically invert the
Hessian. To do so, we introduce the rectangular matrix
X ∈ RK×2 with elements Xku = π̂kδ1u + 1kδ2u and
the square matrices A ∈ RK×K and B ∈ R2×2

A = diag(α) and B =

(
−α̂ 0
0 ε

)
(16)

which allows us to write L = A + XBXᵀ. Both A
and B are diagonal with strictly positive diagonal ele-
ments, and thus invertible. Hence we can use the ma-
trix inversion lemma, which exposes an analytically in-
vertible 2×2 Schur complement and thus easily yields
the inverse of the Hessian

L−1
k` = δk`

1

αk
− 1

K

[
1

αk
+

1

α`
− 1

K

(
1

ε
+

K∑

u

1

αu

)]

(17)
because this inverse is defined for all positive values of
ε, we can safely take the limit of ε _ ∞, i.e. g(x) _
δ(x), to the Dirac point distribution. Note that the off-
diagonal elements of this matrix are suppressed with
O(1/K), so for large K, the belief is approximately
independent, with element-wise variances

Σkk =
1

αk

(
1− 2

K

)
+

1

K2

K∑

`

1

α`
. (18)
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Figure 3: Laplace approximations between Gaussians and Dirichlets. Left: Simplex basis. Right: Soft-
max basis. The parameter choices for the Beta distributions (special 1D case of the Dirichlet) are (a, b) =
(2, 1.2); (0.5, 0.9); (3, 4). Under the Laplace approximation, these correspond to one-dimensional Gaussian pa-
rameters (µ, σ2) = (0.5, 1.3); (−0.6, 3.1); (−0.3, 0.6). Note that the Laplace approximation matches modes and
means in the softmax basis, but not in the simplex basis.

(This map is only valid for K > 2. In the 2D-case, a
special, much simpler solution can be derived by map-
ping directly to the real line. See also Figure 3). It is
not hard to invert this α _ (µ,Σ) map from Dirichlet
to Gaussian parameters, giving

αk =
1

Σkk

(
1− 2

K
+
e−µk

K2

K∑

`

e−µ`

)
∀ k = 1, . . . ,K

(19)
Figure 3 gives an intuition for the quality and defects of
this approximation in the 2D case. The approximation
is very good for large entries in α, but retains good
quality even for α < 1, which is important for topic
models, where the prior is often sparse.

While it has previously been investigated in MacKay
[1998], the use of this approximation here differs con-
siderably from the setting studied in the cited paper
(which dealt with evidence estimation in neural net-
works). Its use here amounts to the following:

• Some unobserved process with known parameters
µ,σ generates data as follows:

– Sample x ∈ RK ∼ N (x;µ,Σ)N (0; 1ᵀx, ε2)

– Map π = σ(x)

– Sample data c from p(c = k |π) = π

• The inference method tries to infer x thus:

– Use the Laplace map to gain a Dirichlet belief
on π from the Gaussian prior (15)

– Update this belief using the data (which is
trivial, due to the Dirichlet’s conjugacy to the
Multinomial distribution)

– Use the Laplace map in the opposite direc-
tion, to get a Gaussian belief on Rk, claim
the resulting belief to be an approximate pos-
terior on x

Figure 4 compares this approximate scheme to an
asymptotically exact Markov Chain Monte Carlo
scheme (the particular MCMC method chosen for this
task is elliptical slice sampling [Murray et al., 2010],
which has the advantage of having no free parame-
ters). The figure shows the 2-norm error of a point
estimate for x returned by the two methods (solid
lines) and error estimates constructed from the algo-
rithms’ results. For the MCMC sampler, these two
estimates are the sample mean and (unbiased) sam-
ple covariance. For the Laplace approximations, the
two estimates are the mean and standard deviation
of the approximate Gaussian belief. The prior mean
and covariance were sampled, for each experiment sep-
arately, from the standard Gaussian and the standard
inverse Wishart distribution, respectively. The num-
ber of dimensions was set to K = 10. Note that the
Laplace bridge does not show any discernible bias or
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over-convergence. Its only two apparent drawbacks are
its relatively bad fit for α _ 0 and that covariance can
not be captured by the Dirichlet.
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Figure 4: Convergence behaviour of approximate in-
ference using the Laplace bridge compared to MCMC
inference. Solid lines represent deviation of mean es-
timate (sample mean for MCMC) from ground truth,
dashed lines the error estimate of the inference algo-
rithm (one standard deviation). Both methods were
initialised with a prior of µ = 0, σ = 1. Plots are
averages over 12 independent experiments.

3.4 The Wider View

Within the wider context of unsupervised learning
methods, the kernel topic model establishes a connec-
tion between conditional topic models and Gaussian
process latent variable models (GPLVM) [Lawrence,
2004]. GPLVMs learn mappings from data-space to
a lower-dimensional space, assuming the generative
model for the data in the latent space is a Gaussian
process. In the case of the kernel topic model, the
variational part of the inference learns a mapping from
the V -dimensional space of documents defined by their
words to the K-dimensional space of topics defined by
their topics (Figure 1), where the documents’ topics
are assumed to be generated by a Gaussian process.
However, in GPLVMs the map between data and their
low-dimensional representation is usually assumed to
be generated by another Gaussian process. In the ker-
nel topic model, the lower dimensional distributions
are discrete, and sampled from Dirichlet distributions.
The kernel topic model thus performs Gaussian pro-
cess regression, under a “latent Dirichlet likelihood”.

4 Experiments

4.1 Euclidean and Discrete Spaces

We compare the kernel topic model to its conceptually
closest competitor, the Dirichlet-Multinomial Regres-
sion (DMR) model by Mimno and McCallum [2008],
which was, in the cited work, shown to give superior
results to a number of other models, such as topics
through time [Wang and McCallum, 2006] and the au-
thor topic model [Rosen-Zvi et al., 2004]. The dataset
consists of the annual State Of The Union addresses by
US presidents to the joint chambers of Congress, an-
notated with both the speaker’s identity and the year
of delivery. This dataset is interesting because it com-
bines continuous features (time) with 44 discrete ones
(author identity) and thus falls outside of the descrip-
tive power of time drift models like the one by Wang
et al. [2009]. All models used K = 10 topics.

For the linear model of DMR, we represented time us-
ing 100 radial basis functions spaced evenly through
the time period from years 1790 to 2011, each with a
width of 5 years, and used 44 binary author indicator
features. For the kernel topic model, we used a ra-
tional quadratic kernel [Matérn, 1960, Rasmussen and
Williams, 2006] on the space of time and author iden-
tity, assigning a distance between documents linear in
time (initially using the same scale of 5 years), with an
additional constant term if the authors of two docu-
ments are not the same. The rational quadratic kernel
is equivalent to an infinite scale mixture of square ex-
ponential kernels: It assigns nonzero mass to functions
with a range of length scales, while the the square ex-
ponential (for which the radial basis functions of the
linear model are a finite-dimensional approximation)
can only construct functions of a single length scale.
So the kernel model is strictly more expressive than
the linear model in this case. In addition, the evidence
maximisation description as introduced in Section 3.2
allows an optimisation of the kernel parameters during
training. For DMR, this would amount to optimising
the feature set, rather than the feature parameters,
which is more difficult to do efficiently.

Figure 5 shows the consequences of this additional
expressive power: The kernel model captures inter-
esting detail in the development of American interior
and foreign policy, including long-term developments
like the industrial revolution (bright red topic at bot-
tom of plot) and faster developments like the Spanish-
American war (light blue, top).

Figure 6 shows the development of the perplexity score
[Rosen-Zvi et al., 2004] of the two models, on the train-
ing set, during training on three different datasets (see
caption for details on datasets). (The vocabulary size
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Figure 5: Inferred topic distribution of State Of The Union addresses by US American presidents. Top: kernel
topic model using a rational quadratic kernel on the 45 dimensional space of authors and time; Bottom: Linear
model using 100 radial basis functions in time and 44 binary author features. To generate this plot, either model
was used to predict the topic distributions at the given date, conditioned on the author being the president in
office at that time.

for this dataset is V = 5000, so the initial perplexity
is 5000.) Optimisation of kernel hyperparameters was
performed every tenth variational loop, and is visible
as discrete steps in the plots when it has non-negligible
effect, thus also giving an intuition for the model per-

formance without hyper-optimisation.

The kernel topic model converges about as fast as the
DMR, but achieves a final score about 12% below that
of DMR. The two methods’ runtimes are roughly com-
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parable on our datasets: Both models share the LDA
part. In the regression part, DMR requires numerical
optimisation of the feature weights, while the kernel
topic model requires inverting a large matrix.

4.2 Topics on Graphs

The kernel view on topic models also allows a relatively
elegant treatment of non-Euclidean feature spaces. As
an example, we construct a topic model on a graph.
For our experiment, D = 318 documents were taken
from Wikipedia’s “list of probability topics1”. We con-
struct a positive definite kernel by embedding the doc-
uments in the RD Euclidean vector space, setting

k(d1, d2) = s exp(−1

2
(x1 − x2)ᵀS(x1 − x2)) (20)

where the vector elements xd,j are the shortest dis-
tances, on the graph of links between documents, from
document d to document i (links are interpreted as
undirected edges, documents not linked by any path
are assigned infinite distance), s and S = diagi(Si) are
parameters. Of course it is possible to define corre-
sponding linear features, but the kernel view arguably
allows a more natural way of deriving such measures.

5 Conclusion

We have presented the kernel topic model, allowing
nonparametric regression of topics on document meta-
data of various kinds. The model is a combination of
Gaussian process regression and latent Dirichlet allo-
cation; these two conditionally independent parts are
linked efficiently through a lightweight Laplace ap-
proximation. Inference in the kernel topic model is
cubic in the number of documents. In large corpora,
this can compare unfavourably to other feature-based
topic models, but it offers superior power of expression
for small and medium-sized corpora, where (approxi-
mate) analytic Gaussian process inference can even be
faster than EM optimization of point estimates. An el-
egant side-effect of the Laplace approximation, which
we have only touched upon marginally, is that it re-
places the point estimates of earlier approaches with a
full Bayesian belief. This means that topics can be pre-
dicted with uncertainty, and that hyperparameters of
the model can be inferred consistently, using higher or-
der maximum likelihood (maximum evidence) optimi-
sation. A strength of the kernel formulation is its ap-
plicability to non-Euclidean feature spaces. Although
not detailed this paper, this may connect our work to
special types of topic models, e.g. citation [Daumé III,
2009], network [Chang and Blei, 2009], and multilin-
gual models [Mimno et al., 2009].

1
http://en.wikipedia.org/wiki/List of probability topics
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Figure 6: Perplexity of kernel topic model (blue) and
linear maximum-likelihood Gaussian model or a con-
stant LDA model (red). KTM hyper -parameters were
optimised after every 10 iterations (the kernel regres-
sion itself is updated after every document inference).
Top: State Of The Union dataset. Here, the hyperpa-
rameters happened to be chosen well, optimising them
had negligible effect on perplexity. Middle: Wiki doc-
uments (Section 4.2). Note the spike in the perplexity
of the kernel model in the latter plot, caused by the
optimisation of hyperparameters – since the optimisa-
tion is not performed directly on the word level, the
topic model crosses over into a more perplexed state at
this point, but this subsequently allows a better repre-
sentation. Bottom: NIPS dataset [Globerson et al.,
2007], again showing considerable improvement after
hyperparameter optimisation.
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