Supplementary Material for the Paper: "Stochastic Bandit Based on Empirical Moments"

Junya Honda

Akimichi Takemura

The University of Tokyo

In this document we summarize results on Tchebycheff systems and moment spaces and prove Theorem 3.

B Tchebycheff Systems and Moment Spaces

In this section all functions and measures are defined on $[a, b](a<b)$ whereas they are on $[0,1]$ elsewhere. For any set of points $\left\{x_{1}, \cdots, x_{l}\right\}$, we always assume $a \leq x_{1}<x_{2}<\cdots<x_{l} \leq b$.
Definition 1. Let $u_{0}(x), \cdots, u_{d}(x)$ denote continuous real-valued functions on $[a, b]$. These functions are called a Tchebycheff system (or T-system) if determinants

$$
\operatorname{det}\left(\begin{array}{cccc}
u_{0}\left(x_{0}\right) & u_{1}\left(x_{0}\right) & \cdots & u_{d}\left(x_{0}\right) \tag{15}\\
u_{0}\left(x_{1}\right) & u_{1}\left(x_{1}\right) & \cdots & u_{d}\left(x_{1}\right) \\
\vdots & \vdots & & \vdots \\
u_{0}\left(x_{d}\right) & u_{1}\left(x_{d}\right) & \cdots & u_{d}\left(x_{d}\right)
\end{array}\right)
$$

are positive for all $\left\{x_{0}, \cdots, x_{d}\right\}$.
A typical T-system is $u_{i}(x)=x^{i}(i=0,1, \cdots, d)$, where (15) is represented as the Vandermonde determinant

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & x_{0} & \cdots & x_{0}^{d} \\
1 & x_{1} & \cdots & x_{1}^{d} \\
\vdots & \vdots & & \vdots \\
1 & x_{d} & \cdots & x_{d}^{d}
\end{array}\right)=\prod_{0 \leq i<j \leq d}\left(x_{j}-x_{i}\right)>0
$$

Let $Z(u)$ of a function $u(x)$ denote the number of distinct points $x \in[a, b]$ such that $u(x)=0$. Then T systems are discriminated by the following proposition.
Proposition 3 (Karlin and Studden (1966), Chap. I, Theorem 4.1). If a system $\left\{u_{i}\right\}_{i=0}^{d}$ of continuous functions on $[a, b]$ satisfies $Z(u) \leq d$ for all

$$
u(x)=\sum_{i=0}^{d} a_{i} u_{i}(x), \quad\left\{a_{i}\right\} \in \mathbb{R}^{d+1} \backslash\left\{0^{d+1}\right\}
$$

then $\left(u_{0}, u_{1}, \cdots, u_{d-1}, u_{d}\right)$ or $\left(u_{0}, u_{1}, \cdots, u_{d-1},-u_{d}\right)$ is a T-system.
Lemma 3. For any p and $q>0$ satisfying $b<p / q$, $\left(1, x, \cdots, x^{d},-\log (p-q x)\right)$ is a T-system on $[a, b]$.

Proof. Let $b^{\prime} \in(b, p / q)$ be sufficiently close to p / q and consider function

$$
u(x)=\sum_{m=0}^{d} a_{m} x^{m}+a_{d+1} \log (p-q x)
$$

on $x \in\left[a, b^{\prime}\right]$. Since the derivative of $u(x)$ is written as

$$
\frac{\mathrm{d} u(x)}{\mathrm{d} x}=\frac{(p-q x) \sum_{m=1}^{d} a_{m} x^{m-1}-a_{d+1} q}{p-q x},
$$

$u(x)$ has at most d extreme points in $\left[a, b^{\prime}\right]$. Therefore $Z(u) \leq d+1$ and $\left(1, x, \cdots, x^{d}, \log (p-q x)\right)$ or $\left(1, x, \cdots, x^{\bar{d}},-\log (p-q x)\right)$ is a T-system on $\left[a, b^{\prime}\right]$ from Prop. 3.
The determinant (15) for the system $\left(1, x, \cdots, x^{d}\right.$, $\log (p-q x))$ is written as

$$
\begin{array}{r}
\operatorname{det}\left(\begin{array}{llllc}
1 & x_{0} & \cdots & x_{0}^{d} & \log \left(p-q x_{0}\right) \\
1 & x_{1} & \cdots & x_{1}^{d} & \log \left(p-q x_{1}\right) \\
\vdots & \vdots & & \vdots & \vdots \\
1 & x_{d+1} & \cdots & x_{d+1}^{d} & \log \left(p-q x_{d+1}\right)
\end{array}\right) \\
=\sum_{m=0}^{d+1}(-1)^{d+m+1}\binom{\prod_{0 \leq i<j \leq d+1: i, j \neq m}}{\cdot \log \left(p-q x_{m}\right)} .
\end{array}
$$

For the case that $x_{d+1}=b^{\prime}$ with $b^{\prime} \uparrow p / q, \log (p-$ $\left.q x_{d+1}\right)$ goes to $-\infty$ and the sign of the determinant is controlled by the term involving $\log \left(p-q x_{d+1}\right)$, which is written as
$(-1)^{2 d+2}\left(\prod_{0 \leq i<j \leq d+1: i, j \neq d+1}\left(x_{j}-x_{i}\right)\right) \log \left(p-q x_{d+1}\right)$

Then, $\left(1, x, \cdots, x^{d}, \log (p-q x)\right)$ cannot be a T-system on $\left[a, b^{\prime}\right]$ for b^{\prime} sufficiently close to p / q and therefore $\left(1, x, \cdots, x^{d},-\log (p-q x)\right)$ has to be a T-system on $\left[a, b^{\prime}\right]$. From the definition of T-system, it also is a T-system on $[a, b] \subset\left[a, b^{\prime}\right]$.

Let \mathcal{V} be the family of positive measures on $[a, b]$ and define a subset $\mathcal{V}(\tilde{\boldsymbol{M}})$ of \mathcal{V} for a vector $\boldsymbol{M}=$ $\left(M_{0}, M_{1}, \cdots, M_{d}\right)$ as

$$
\begin{align*}
\mathcal{V} & (\tilde{\boldsymbol{M}}) \\
& =\left\{\sigma \in \mathcal{V}: \forall m \in\{0, \cdots, d\}, \int_{a}^{b} x^{m} \mathrm{~d} \sigma(x)=M_{m}\right\} . \tag{16}
\end{align*}
$$

The notion of moment spaces is essential to examine properties of T-systems.
Definition 2. The moment space $\mathcal{M}_{d+1} \subset \mathbb{R}^{d+1}$ with respect to the T-system $\left\{u_{i}\right\}$ is given by

$$
\begin{aligned}
& \mathcal{M}_{d+1} \equiv \\
& \left\{\left(\int_{a}^{b} u_{0}(x) \mathrm{d} \sigma(x), \cdots, \int_{a}^{b} u_{d}(x) \mathrm{d} \sigma(x)\right): \sigma \in \mathcal{V}\right\} .
\end{aligned}
$$

Consider the case that $\tilde{\boldsymbol{M}} \in \mathcal{M}_{d+1}$ satisfies

$$
\begin{equation*}
M_{m}=\sum_{i=1}^{l} f_{i} u_{m}\left(x_{i}\right) \quad(m=0, \cdots, d) \tag{17}
\end{equation*}
$$

with $x_{1}, \cdots, x_{l} \in[a, b]$ and $f_{1}, \cdots, f_{l}>0$ for any finite l. We call such an expression representation of $\tilde{\boldsymbol{M}}$. A representation of $\tilde{\boldsymbol{M}}$ corresponds uniquely to the measure

$$
\sigma=\sum_{i=1}^{l} f_{i} \delta\left(x_{i}\right) \in \mathcal{V}
$$

for the delta measure $\delta(x)$ at point x. We sometimes identify the measure σ with the representation of $\tilde{\boldsymbol{M}}$. The measure σ is a probability measure if $\sum_{i} f_{i}=1$.
Similarly to the index of the measure given in Sect. 4, define the index of the representation (17) as the number of the points $\left(x_{1}, \cdots, x_{l}\right)$ under the special convention that the points a, b are counted as one half. A representation is called principal if its index is $(d+1) / 2$. Furthermore, a principal representation is upper if $\left(x_{1}, \cdots, x_{l}\right)$ contains b and lower otherwise.
For the proof of Theorem 3, it is necessary to study the nature on the set $\mathcal{V}(\tilde{\boldsymbol{M}})$. It differs according to whether $\tilde{\boldsymbol{M}}$ is a boundary point of \mathcal{M}_{d+1} or an interior point of \mathcal{M}_{d+1}.

Proposition 4 (Karlin and Studden (1966), Chap. II, Theorem 2.1). $\tilde{\boldsymbol{M}} \in \mathcal{M}_{d+1}$ is a boundary point of \mathcal{M}_{d+1} if and only if there exists a representation of $\tilde{\boldsymbol{M}}$ with index at most $d / 2$. Moreover, if $\tilde{\boldsymbol{M}}$ is a boundary point of \mathcal{M}_{d+1} then $\mathcal{V}(\tilde{\boldsymbol{M}})$ has a unique element.
Proposition 5 (Karlin and Studden (1966), Chap. II, Corollary 3.1). If $\tilde{\boldsymbol{M}}$ is an interior point of \mathcal{M}_{d+1} then there exist precisely one upper and one lower principal representations of $\tilde{\boldsymbol{M}}$.

We use Prop. 5 implicitly in Prop. 6 below. Prop. 6 is the main result of this section.
Proposition 6 (Karlin and Studden (1966), Chap. III, Theorem 1.1). Assume $\left(u_{0}, u_{1}, \cdots, u_{d}\right)$ and $\left(u_{0}, u_{1}, \cdots, u_{d}, h\right)$ are T-systems and $\tilde{\boldsymbol{M}}$ is an interior point of \mathcal{M}_{d+1}. Then

$$
\max _{\sigma \in \mathcal{V}(\tilde{M})} \int_{a}^{b} h(x) \mathrm{d} \sigma(x)
$$

is attained uniquely by $\bar{\sigma}$, the upper principal representation of $\tilde{\boldsymbol{M}}$. Similarly,

$$
\min _{\sigma \in \mathcal{V}(\tilde{\boldsymbol{M}})} \int_{a}^{b} h(x) \mathrm{d} \sigma(x)
$$

is attained uniquely by $\underline{\sigma}$, the lower principal representation of \tilde{M}.

C Proof of Theorem 3

We omit the proof of (ii) (iii) of Theorem 3 since it is obtained as a direct application of Props. 3 and 6. Theorem 3 (i) is proved by the results in the previous section and the basic result on the existence of saddlepoints in the following. For a function $\varphi(x, y): \mathcal{X} \times$ $\mathcal{Y} \rightarrow[-\infty,+\infty]$, a point $(\bar{x}, \bar{y}) \in \mathcal{X} \times \mathcal{Y}$ is called a saddle-point if $\varphi(\bar{x}, y) \leq \varphi(\bar{x}, \bar{y}) \leq \varphi(x, \bar{y})$ for all $x \in$ \mathcal{X} and $y \in \mathcal{Y}$. A necessary and sufficient condition for a saddle-point is

$$
\begin{aligned}
\sup _{y \in \mathcal{Y}} \varphi(\bar{x}, y)=\inf _{x \in \mathcal{X}} & \sup _{y \in \mathcal{Y}} \varphi(x, y) \\
& =\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \varphi(x, y)=\inf _{x \in \mathcal{X}} \varphi(x, \bar{y}) .
\end{aligned}
$$

Proposition $\mathbf{7}$ (Minimax Theorem (Neumann, 1928)). Let \mathcal{X} and \mathcal{Y} be compact subsets of topological vector spaces \mathcal{V} and \mathcal{U}, respectively. Let $\varphi(x, y)$: $\mathcal{X} \times \mathcal{Y} \rightarrow[-\infty,+\infty]$ be a function such that $\varphi(\cdot, y)$ is convex and lower-semicontinuous for any fixed y and $\varphi(x, \cdot)$ is concave and upper-semicontinuous for any fixed x. Then there exists a saddle point $(\bar{x}, \bar{y}) \in \mathcal{X} \times \mathcal{Y}$.

In the following proof, we regard a probability measure F as an element of the family \mathcal{V} of positive measures on
$[0,1]$ to exploit the results in the previous section. By letting $\tilde{\boldsymbol{M}}:=\left(1, M_{1}, \cdots, M_{d}\right)$ for $\boldsymbol{M}=\left(M_{1}, \cdots, M_{d}\right)$, $D_{\min }^{(d)}(\boldsymbol{M}, \mu)$ is rewritten as

$$
\begin{align*}
& D_{\min }(\boldsymbol{M}, \mu) \\
& \quad=\inf _{F \in \mathcal{V}(\tilde{\boldsymbol{M}})} \max _{0 \leq \nu \leq \frac{1}{1-\mu}} \mathrm{E}_{F}[\log (1-(X-\mu) \nu)] \tag{18}
\end{align*}
$$

where $\mathcal{V}(\tilde{\boldsymbol{M}})$ is the set of positive measures with $0,1, \cdots, d$-th moments equal to $\tilde{\boldsymbol{M}}$, which is formally defined in (16).

Proof of Theorem 3 (i). Let

$$
\mathcal{M}_{d+1}=\left\{\left(\int_{0}^{1} x^{0} \mathrm{~d} F, \cdots, \int_{0}^{1} x^{d} \mathrm{~d} F\right): F \in \mathcal{V}\right\}
$$

be the moment space with respect to the system $\left(1, x, \cdots, x^{d}\right)$. Since $\tilde{\boldsymbol{M}}$ is assumed to have a representation with the index larger than or equal to $(d+1) / 2$, \tilde{M} cannot be a boundary point of \mathcal{M}_{d+1} from Prop. 4. Therefore $\tilde{\boldsymbol{M}}$ is an interior point of \mathcal{M}_{d+1}.
Consider applying the minimax theorem to (18). First, $\mathcal{F} \supset \mathcal{V}(\tilde{\boldsymbol{M}})$ is compact with respect to the Lévy distance and $\mathrm{E}_{F}[\log (1-(X-\mu) \nu)]$ is linear in $F \in \mathcal{V}$ for any fixed ν. Next, $\mathrm{E}_{F}[\log (1-(X-\mu) \nu)]$ is uppersemicontinuous and concave in ν for any fixed F. Then we obtain from the minimax theorem that

$$
\begin{aligned}
& D_{\min }(\boldsymbol{M}, \mu) \\
& \quad=\max _{0 \leq \nu \leq \frac{1}{1-\mu}} \inf _{F \in \mathcal{V}(\tilde{\boldsymbol{M}})} \mathrm{E}_{F}[\log (1-(X-\mu) \bar{\nu})] .
\end{aligned}
$$

Now we show that it suffices to consider the case $\nu<$ $(1-\mu)^{-1}$. From Prop. $5, \mathcal{V}(\tilde{M})$ contains the upper principal representation \bar{F} of $\tilde{\boldsymbol{M}}$, which has a positive weight at $x=1$, i.e., $\bar{F}(\{1\})>0$. Therefore it holds for $\nu=(1-\mu)^{-1}$ from $\log 0=-\infty$ that

$$
\begin{aligned}
& \inf _{F \in \mathcal{V}(M)} \mathrm{E}_{F}[\log (1-(X-\mu) \nu)] \\
& \quad \leq \mathrm{E}_{\bar{F}}[\log (1-(X-\mu) \nu)]=-\infty
\end{aligned}
$$

and therefore

$$
\begin{aligned}
& D_{\min }(\boldsymbol{M}, \mu) \\
& \quad=\max _{0 \leq \nu<\frac{1}{1-\mu}} \inf _{F \in \mathcal{V}(\tilde{\boldsymbol{M}})} \mathrm{E}_{F}[\log (1-(X-\mu) \nu)] .
\end{aligned}
$$

For $\nu<(1-\mu)^{-1},\left(1, x, \cdots, x^{d},-\log (1-(x-\mu) \nu)\right)$ is a T-system on $[0,1]$ from Lemma 3 with $p:=1+\mu \nu$
and $q:=\nu$. Therefore, we obtain from Prop. 6 that

$$
\begin{aligned}
& \max _{0 \leq \nu<\frac{1}{1-\mu}} \inf _{F \in \mathcal{V}(\tilde{\boldsymbol{M}})} \mathrm{E}_{F}[\log (1-(X-\mu) \nu)] \\
& \quad=\max _{0 \leq \nu<\frac{1}{1-\mu}}\left\{-\sup _{F \in \mathcal{V}(\tilde{\boldsymbol{M}})} \mathrm{E}_{F}[-\log (1-(X-\mu) \nu)]\right\} \\
& \quad=\max _{0 \leq \nu<\frac{1}{1-\mu}}\left\{-\mathrm{E}_{\bar{F}}[-\log (1-(X-\mu) \nu)]\right\} \\
& \quad=\max _{0 \leq \nu<\frac{1}{1-\mu}} \mathrm{E}_{\bar{F}}[\log (1-(X-\mu) \nu)]=D_{\min }(\bar{F}, \mu)
\end{aligned}
$$

where \bar{F} is the upper principal representation of $\tilde{\boldsymbol{M}}$. Since the upper principal representation is unique, it can be written as a unique solution of (8) and (9).

