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In this document we summarize results on Tchebycheff
systems and moment spaces and prove Theorem 3.

B Tchebycheff Systems and Moment
Spaces

In this section all functions and measures are defined
on [a, b] (a < b) whereas they are on [0, 1] elsewhere.
For any set of points {x1, · · · , xl}, we always assume
a ≤ x1 < x2 < · · · < xl ≤ b.

Definition 1. Let u0(x), · · · , ud(x) denote continu-
ous real-valued functions on [a, b]. These functions are
called a Tchebycheff system (or T-system) if determi-
nants

det


u0(x0) u1(x0) · · · ud(x0)
u0(x1) u1(x1) · · · ud(x1)

...
...

...
u0(xd) u1(xd) · · · ud(xd)

 (15)

are positive for all {x0, · · · , xd}.

A typical T -system is ui(x) = xi (i = 0, 1, · · · , d),
where (15) is represented as the Vandermonde deter-
minant

det


1 x0 · · · xd

0

1 x1 · · · xd
1

...
...

...
1 xd · · · xd

d

 =
∏

0≤i<j≤d

(xj − xi) > 0 .

Let Z(u) of a function u(x) denote the number of dis-
tinct points x ∈ [a, b] such that u(x) = 0. Then T -
systems are discriminated by the following proposition.

Proposition 3 (Karlin and Studden (1966), Chap. I,
Theorem 4.1). If a system {ui}di=0 of continuous func-
tions on [a, b] satisfies Z(u) ≤ d for all

u(x) =
d∑

i=0

aiui(x), {ai} ∈ Rd+1 \ {0d+1} ,

then (u0, u1, · · · , ud−1, ud) or (u0, u1, · · · , ud−1,−ud)
is a T -system.

Lemma 3. For any p and q > 0 satisfying b < p/q,
(1, x, · · · , xd,− log(p− qx)) is a T -system on [a, b].

Proof. Let b′ ∈ (b, p/q) be sufficiently close to p/q and
consider function

u(x) =
d∑

m=0

amxm + ad+1 log(p− qx)

on x ∈ [a, b′]. Since the derivative of u(x) is written as

du(x)

dx
=

(p− qx)
∑d

m=1 amxm−1 − ad+1q

p− qx
,

u(x) has at most d extreme points in [a, b′]. There-
fore Z(u) ≤ d + 1 and (1, x, · · · , xd, log(p − qx)) or
(1, x, · · · , xd,− log(p−qx)) is a T -system on [a, b′] from
Prop. 3.

The determinant (15) for the system (1, x, · · · , xd,
log(p− qx)) is written as

det


1 x0 · · · xd

0 log(p− qx0)
1 x1 · · · xd

1 log(p− qx1)
...

...
...

...
1 xd+1 · · · xd

d+1 log(p− qxd+1)


=

d+1∑
m=0

(−1)d+m+1

 ∏
0≤i<j≤d+1: i,j ̸=m

(xj − xi)


· log(p− qxm) .

For the case that xd+1 = b′ with b′ ↑ p/q, log(p −
qxd+1) goes to −∞ and the sign of the determinant is
controlled by the term involving log(p− qxd+1), which
is written as

(−1)2d+2

 ∏
0≤i<j≤d+1: i,j ̸=d+1

(xj − xi)

log(p− qxd+1)

< 0 .
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Then, (1, x, · · · , xd, log(p− qx)) cannot be a T -system
on [a, b′] for b′ sufficiently close to p/q and therefore
(1, x, · · · , xd,− log(p − qx)) has to be a T -system on
[a, b′]. From the definition of T -system, it also is a
T -system on [a, b] ⊂ [a, b′].

Let V be the family of positive measures on [a, b]
and define a subset V(M̃) of V for a vector M̃ =
(M0,M1, · · · ,Md) as

V(M̃)

=

{
σ ∈ V : ∀m ∈ {0, · · · , d},

∫ b

a

xmdσ(x) = Mm

}
.

(16)

The notion of moment spaces is essential to examine
properties of T -systems.

Definition 2. The moment space Md+1 ⊂ Rd+1 with
respect to the T -system {ui} is given by

Md+1 ≡{(∫ b

a

u0(x)dσ(x), · · · ,
∫ b

a

ud(x)dσ(x)

)
: σ ∈ V

}
.

Consider the case that M̃ ∈ Md+1 satisfies

Mm =
l∑

i=1

fium(xi) (m = 0, · · · , d) (17)

with x1, · · · , xl ∈ [a, b] and f1, · · · , fl > 0 for any finite
l. We call such an expression representation of M̃ .
A representation of M̃ corresponds uniquely to the
measure

σ =

l∑
i=1

fiδ(xi) ∈ V

for the delta measure δ(x) at point x. We sometimes
identify the measure σ with the representation of M̃ .
The measure σ is a probability measure if

∑
i fi = 1.

Similarly to the index of the measure given in Sect. 4,
define the index of the representation (17) as the num-
ber of the points (x1, · · · , xl) under the special conven-
tion that the points a, b are counted as one half. A rep-
resentation is called principal if its index is (d+ 1)/2.
Furthermore, a principal representation is upper if
(x1, · · · , xl) contains b and lower otherwise.

For the proof of Theorem 3, it is necessary to study
the nature on the set V(M̃). It differs according to
whether M̃ is a boundary point ofMd+1 or an interior
point of Md+1.

Proposition 4 (Karlin and Studden (1966), Chap. II,
Theorem 2.1). M̃ ∈ Md+1 is a boundary point of
Md+1 if and only if there exists a representation of M̃
with index at most d/2. Moreover, if M̃ is a boundary
point of Md+1 then V(M̃) has a unique element.

Proposition 5 (Karlin and Studden (1966), Chap. II,
Corollary 3.1). If M̃ is an interior point of Md+1 then
there exist precisely one upper and one lower principal
representations of M̃ .

We use Prop. 5 implicitly in Prop. 6 below. Prop. 6 is
the main result of this section.

Proposition 6 (Karlin and Studden (1966),
Chap. III, Theorem 1.1). Assume (u0, u1, · · · , ud)
and (u0, u1, · · · , ud, h) are T-systems and M̃ is an
interior point of Md+1. Then

max
σ∈V(M̃)

∫ b

a

h(x)dσ(x)

is attained uniquely by σ̄, the upper principal represen-
tation of M̃ . Similarly,

min
σ∈V(M̃)

∫ b

a

h(x)dσ(x)

is attained uniquely by σ, the lower principal represen-
tation of M̃ .

C Proof of Theorem 3

We omit the proof of (ii) (iii) of Theorem 3 since it
is obtained as a direct application of Props. 3 and 6.
Theorem 3 (i) is proved by the results in the previous
section and the basic result on the existence of saddle-
points in the following. For a function φ(x, y) : X ×
Y → [−∞,+∞], a point (x̄, ȳ) ∈ X × Y is called a
saddle-point if φ(x̄, y) ≤ φ(x̄, ȳ) ≤ φ(x, ȳ) for all x ∈
X and y ∈ Y. A necessary and sufficient condition for
a saddle-point is

sup
y∈Y

φ(x̄, y) = inf
x∈X

sup
y∈Y

φ(x, y)

= sup
y∈Y

inf
x∈X

φ(x, y) = inf
x∈X

φ(x, ȳ) .

Proposition 7 (Minimax Theorem (Neumann,
1928)). Let X and Y be compact subsets of topolog-
ical vector spaces V and U , respectively. Let φ(x, y) :
X × Y → [−∞,+∞] be a function such that φ(·, y) is
convex and lower-semicontinuous for any fixed y and
φ(x, ·) is concave and upper-semicontinuous for any
fixed x. Then there exists a saddle point (x̄, ȳ) ∈ X×Y.

In the following proof, we regard a probability measure
F as an element of the family V of positive measures on
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[0, 1] to exploit the results in the previous section. By
letting M̃ := (1,M1, · · · ,Md) forM = (M1, · · · ,Md),

D
(d)
min(M , µ) is rewritten as

Dmin(M , µ)

= inf
F∈V(M̃)

max
0≤ν≤ 1

1−µ

EF [log(1− (X − µ)ν)] , (18)

where V(M̃) is the set of positive measures with
0, 1, · · · , d-th moments equal to M̃ , which is formally
defined in (16).

Proof of Theorem 3 (i). Let

Md+1 =

{(∫ 1

0

x0dF, · · · ,
∫ 1

0

xddF

)
: F ∈ V

}

be the moment space with respect to the system
(1, x, · · · , xd). Since M̃ is assumed to have a represen-
tation with the index larger than or equal to (d+1)/2,
M̃ cannot be a boundary point of Md+1 from Prop. 4.
Therefore M̃ is an interior point of Md+1.

Consider applying the minimax theorem to (18). First,
F ⊃ V(M̃) is compact with respect to the Lévy dis-
tance and EF [log(1 − (X − µ)ν)] is linear in F ∈ V
for any fixed ν. Next, EF [log(1− (X −µ)ν)] is upper-
semicontinuous and concave in ν for any fixed F . Then
we obtain from the minimax theorem that

Dmin(M , µ)

= max
0≤ν≤ 1

1−µ

inf
F∈V(M̃)

EF [log(1− (X − µ)ν̄)] .

Now we show that it suffices to consider the case ν <
(1 − µ)−1. From Prop. 5, V(M̃) contains the upper
principal representation F̄ of M̃ , which has a positive
weight at x = 1, i.e., F̄ ({1}) > 0. Therefore it holds
for ν = (1− µ)−1 from log 0 = −∞ that

inf
F∈V(M)

EF [log(1− (X − µ)ν)]

≤ EF̄ [log(1− (X − µ)ν)] = −∞

and therefore

Dmin(M , µ)

= max
0≤ν< 1

1−µ

inf
F∈V(M̃)

EF [log(1− (X − µ)ν)] .

For ν < (1 − µ)−1, (1, x, · · · , xd,− log(1 − (x − µ)ν))
is a T -system on [0, 1] from Lemma 3 with p := 1+µν

and q := ν. Therefore, we obtain from Prop. 6 that

max
0≤ν< 1

1−µ

inf
F∈V(M̃)

EF [log(1− (X − µ)ν)]

= max
0≤ν< 1

1−µ

{
− sup

F∈V(M̃)

EF [− log(1− (X − µ)ν)]

}
= max

0≤ν< 1
1−µ

{−EF̄ [− log(1− (X − µ)ν)]}

= max
0≤ν< 1

1−µ

EF̄ [log(1− (X − µ)ν)] = Dmin(F̄ , µ) ,

where F̄ is the upper principal representation of M̃ .
Since the upper principal representation is unique, it
can be written as a unique solution of (8) and (9).


