Supplementary Material for the Paper: "Stochastic Bandit Based on Empirical Moments"

Junya Honda

Akimichi Takemura

The University of Tokyo

In this document we summarize results on Tchebycheff systems and moment spaces and prove Theorem 3.

B Tchebycheff Systems and Moment Spaces

In this section all functions and measures are defined on [a, b] (a < b) whereas they are on [0, 1] elsewhere. For any set of points $\{x_1, \dots, x_l\}$, we always assume $a \le x_1 < x_2 < \dots < x_l \le b$.

Definition 1. Let $u_0(x), \dots, u_d(x)$ denote continuous real-valued functions on [a, b]. These functions are called a Tchebycheff system (or T-system) if determinants

$$\det \begin{pmatrix} u_0(x_0) & u_1(x_0) & \cdots & u_d(x_0) \\ u_0(x_1) & u_1(x_1) & \cdots & u_d(x_1) \\ \vdots & \vdots & & \vdots \\ u_0(x_d) & u_1(x_d) & \cdots & u_d(x_d) \end{pmatrix}$$
(15)

are positive for all $\{x_0, \dots, x_d\}$.

A typical T-system is $u_i(x) = x^i (i = 0, 1, \dots, d)$, where (15) is represented as the Vandermonde determinant

$$\det \begin{pmatrix} 1 & x_0 & \cdots & x_0^d \\ 1 & x_1 & \cdots & x_1^d \\ \vdots & \vdots & & \vdots \\ 1 & x_d & \cdots & x_d^d \end{pmatrix} = \prod_{0 \le i < j \le d} (x_j - x_i) > 0.$$

Let Z(u) of a function u(x) denote the number of distinct points $x \in [a, b]$ such that u(x) = 0. Then T-systems are discriminated by the following proposition.

Proposition 3 (Karlin and Studden (1966), Chap. I, Theorem 4.1). If a system $\{u_i\}_{i=0}^d$ of continuous functions on [a,b] satisfies $Z(u) \leq d$ for all

$$u(x) = \sum_{i=0}^{d} a_i u_i(x), \ \{a_i\} \in \mathbb{R}^{d+1} \setminus \{0^{d+1}\},$$

then $(u_0, u_1, \dots, u_{d-1}, u_d)$ or $(u_0, u_1, \dots, u_{d-1}, -u_d)$ is a T-system.

Lemma 3. For any p and q > 0 satisfying b < p/q, $(1, x, \dots, x^d, -\log(p - qx))$ is a T-system on [a, b].

Proof. Let $b' \in (b, p/q)$ be sufficiently close to p/q and consider function

$$u(x) = \sum_{m=0}^{d} a_m x^m + a_{d+1} \log(p - qx)$$

on $x \in [a, b']$. Since the derivative of u(x) is written as

$$\frac{\mathrm{d}u(x)}{\mathrm{d}x} = \frac{(p - qx)\sum_{m=1}^{d} a_m x^{m-1} - a_{d+1}q}{p - qx},$$

u(x) has at most d extreme points in [a,b']. Therefore $Z(u) \leq d+1$ and $(1,x,\cdots,x^d,\log(p-qx))$ or $(1,x,\cdots,x^d,-\log(p-qx))$ is a T-system on [a,b'] from Prop. 3.

The determinant (15) for the system $(1, x, \dots, x^d, \log(p - qx))$ is written as

$$\det\begin{pmatrix} 1 & x_0 & \cdots & x_0^d & \log(p - qx_0) \\ 1 & x_1 & \cdots & x_1^d & \log(p - qx_1) \\ \vdots & \vdots & & \vdots & \vdots \\ 1 & x_{d+1} & \cdots & x_{d+1}^d & \log(p - qx_{d+1}) \end{pmatrix}$$

$$= \sum_{m=0}^{d+1} (-1)^{d+m+1} \left(\prod_{0 \le i < j \le d+1: i, j \ne m} (x_j - x_i) \right)$$

$$\cdot \log(p - qx_m)$$

For the case that $x_{d+1} = b'$ with $b' \uparrow p/q$, $\log(p - qx_{d+1})$ goes to $-\infty$ and the sign of the determinant is controlled by the term involving $\log(p - qx_{d+1})$, which is written as

$$(-1)^{2d+2} \left(\prod_{0 \le i < j \le d+1: i, j \ne d+1} (x_j - x_i) \right) \log(p - qx_{d+1})$$

Then, $(1, x, \dots, x^d, \log(p - qx))$ cannot be a T-system on [a, b'] for b' sufficiently close to p/q and therefore $(1, x, \dots, x^d, -\log(p - qx))$ has to be a T-system on [a, b']. From the definition of T-system, it also is a T-system on $[a, b] \subset [a, b']$.

Let \mathcal{V} be the family of positive measures on [a,b] and define a subset $\mathcal{V}(\tilde{M})$ of \mathcal{V} for a vector $\tilde{M} = (M_0, M_1, \dots, M_d)$ as

$$\mathcal{V}(\tilde{\boldsymbol{M}}) = \left\{ \sigma \in \mathcal{V} : \forall m \in \{0, \cdots, d\}, \int_{a}^{b} x^{m} d\sigma(x) = M_{m} \right\}.$$
(16)

The notion of *moment spaces* is essential to examine properties of *T*-systems.

Definition 2. The moment space $\mathcal{M}_{d+1} \subset \mathbb{R}^{d+1}$ with respect to the T-system $\{u_i\}$ is given by

$$\mathcal{M}_{d+1} \equiv \left\{ \left(\int_a^b u_0(x) d\sigma(x), \cdots, \int_a^b u_d(x) d\sigma(x) \right) : \sigma \in \mathcal{V} \right\}.$$

Consider the case that $\tilde{M} \in \mathcal{M}_{d+1}$ satisfies

$$M_m = \sum_{i=1}^{l} f_i u_m(x_i) \quad (m = 0, \dots, d)$$
 (17)

with $x_1, \dots, x_l \in [a, b]$ and $f_1, \dots, f_l > 0$ for any finite l. We call such an expression representation of $\tilde{\boldsymbol{M}}$. A representation of $\tilde{\boldsymbol{M}}$ corresponds uniquely to the measure

$$\sigma = \sum_{i=1}^{l} f_i \delta(x_i) \in \mathcal{V}$$

for the delta measure $\delta(x)$ at point x. We sometimes identify the measure σ with the representation of \tilde{M} . The measure σ is a probability measure if $\sum_i f_i = 1$.

Similarly to the index of the measure given in Sect. 4, define the index of the representation (17) as the number of the points (x_1, \dots, x_l) under the special convention that the points a, b are counted as one half. A representation is called *principal* if its index is (d+1)/2. Furthermore, a principal representation is *upper* if (x_1, \dots, x_l) contains b and lower otherwise.

For the proof of Theorem 3, it is necessary to study the nature on the set $V(\tilde{M})$. It differs according to whether \tilde{M} is a boundary point of \mathcal{M}_{d+1} or an interior point of \mathcal{M}_{d+1} . **Proposition 4** (Karlin and Studden (1966), Chap. II, Theorem 2.1). $\tilde{M} \in \mathcal{M}_{d+1}$ is a boundary point of \mathcal{M}_{d+1} if and only if there exists a representation of \tilde{M} with index at most d/2. Moreover, if \tilde{M} is a boundary point of \mathcal{M}_{d+1} then $\mathcal{V}(\tilde{M})$ has a unique element.

Proposition 5 (Karlin and Studden (1966), Chap. II, Corollary 3.1). If \tilde{M} is an interior point of \mathcal{M}_{d+1} then there exist precisely one upper and one lower principal representations of \tilde{M} .

We use Prop. 5 implicitly in Prop. 6 below. Prop. 6 is the main result of this section.

Proposition 6 (Karlin and Studden (1966), Chap. III, Theorem 1.1). Assume (u_0, u_1, \dots, u_d) and $(u_0, u_1, \dots, u_d, h)$ are T-systems and \tilde{M} is an interior point of \mathcal{M}_{d+1} . Then

$$\max_{\sigma \in \mathcal{V}(\tilde{\boldsymbol{M}})} \int_{a}^{b} h(x) \mathrm{d}\sigma(x)$$

is attained uniquely by $\bar{\sigma}$, the upper principal representation of $\tilde{\mathbf{M}}$. Similarly,

$$\min_{\sigma \in \mathcal{V}(\tilde{M})} \int_{a}^{b} h(x) d\sigma(x)$$

is attained uniquely by $\underline{\sigma}$, the lower principal representation of \tilde{M} .

C Proof of Theorem 3

We omit the proof of (ii) (iii) of Theorem 3 since it is obtained as a direct application of Props. 3 and 6. Theorem 3 (i) is proved by the results in the previous section and the basic result on the existence of saddle-points in the following. For a function $\varphi(x,y):\mathcal{X}\times\mathcal{Y}\to[-\infty,+\infty]$, a point $(\bar{x},\bar{y})\in\mathcal{X}\times\mathcal{Y}$ is called a saddle-point if $\varphi(\bar{x},y)\leq\varphi(\bar{x},\bar{y})\leq\varphi(x,\bar{y})$ for all $x\in\mathcal{X}$ and $y\in\mathcal{Y}$. A necessary and sufficient condition for a saddle-point is

$$\begin{split} \sup_{y \in \mathcal{Y}} \varphi(\bar{x}, y) &= \inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} \varphi(x, y) \\ &= \sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} \varphi(x, y) = \inf_{x \in \mathcal{X}} \varphi(x, \bar{y}) \,. \end{split}$$

Proposition 7 (Minimax Theorem (Neumann, 1928)). Let \mathcal{X} and \mathcal{Y} be compact subsets of topological vector spaces \mathcal{V} and \mathcal{U} , respectively. Let $\varphi(x,y)$: $\mathcal{X} \times \mathcal{Y} \to [-\infty, +\infty]$ be a function such that $\varphi(\cdot,y)$ is convex and lower-semicontinuous for any fixed y and $\varphi(x,\cdot)$ is concave and upper-semicontinuous for any fixed x. Then there exists a saddle point $(\bar{x}, \bar{y}) \in \mathcal{X} \times \mathcal{Y}$.

In the following proof, we regard a probability measure F as an element of the family \mathcal{V} of positive measures on

[0, 1] to exploit the results in the previous section. By letting $\tilde{\boldsymbol{M}} := (1, M_1, \cdots, M_d)$ for $\boldsymbol{M} = (M_1, \cdots, M_d)$, $D_{\min}^{(d)}(\boldsymbol{M}, \mu)$ is rewritten as

$$D_{\min}(\boldsymbol{M}, \mu) = \inf_{F \in \mathcal{V}(\tilde{\boldsymbol{M}})} \max_{0 \le \nu \le \frac{1}{1-\mu}} \mathbb{E}_{F}[\log(1 - (X - \mu)\nu)], \quad (18)$$

where $\mathcal{V}(\tilde{M})$ is the set of positive measures with $0, 1, \dots, d$ -th moments equal to \tilde{M} , which is formally defined in (16).

Proof of Theorem 3 (i). Let

$$\mathcal{M}_{d+1} = \left\{ \left(\int_0^1 x^0 dF, \cdots, \int_0^1 x^d dF \right) : F \in \mathcal{V} \right\}$$

be the moment space with respect to the system $(1, x, \dots, x^d)$. Since $\tilde{\boldsymbol{M}}$ is assumed to have a representation with the index larger than or equal to (d+1)/2, $\tilde{\boldsymbol{M}}$ cannot be a boundary point of \mathcal{M}_{d+1} from Prop. 4. Therefore $\tilde{\boldsymbol{M}}$ is an interior point of \mathcal{M}_{d+1} .

Consider applying the minimax theorem to (18). First, $\mathcal{F} \supset \mathcal{V}(\tilde{M})$ is compact with respect to the Lévy distance and $\mathrm{E}_F[\log(1-(X-\mu)\nu)]$ is linear in $F \in \mathcal{V}$ for any fixed ν . Next, $\mathrm{E}_F[\log(1-(X-\mu)\nu)]$ is uppersemicontinuous and concave in ν for any fixed F. Then we obtain from the minimax theorem that

$$D_{\min}(\boldsymbol{M}, \mu) = \max_{0 \le \nu \le \frac{1}{1-\mu}} \inf_{F \in \mathcal{V}(\tilde{\boldsymbol{M}})} \mathrm{E}_F[\log(1 - (X - \mu)\bar{\nu})].$$

Now we show that it suffices to consider the case $\nu < (1-\mu)^{-1}$. From Prop. 5, $\mathcal{V}(\tilde{\boldsymbol{M}})$ contains the upper principal representation \bar{F} of $\tilde{\boldsymbol{M}}$, which has a positive weight at x=1, i.e., $\bar{F}(\{1\})>0$. Therefore it holds for $\nu=(1-\mu)^{-1}$ from $\log 0=-\infty$ that

$$\inf_{F \in \mathcal{V}(\mathbf{M})} \mathcal{E}_F[\log(1 - (X - \mu)\nu)]$$

$$\leq \mathcal{E}_{\bar{F}}[\log(1 - (X - \mu)\nu)] = -\infty$$

and therefore

$$D_{\min}(\boldsymbol{M}, \mu) = \max_{0 \le \nu < \frac{1}{1-\mu}} \inf_{F \in \mathcal{V}(\tilde{\boldsymbol{M}})} \mathrm{E}_F[\log(1 - (X - \mu)\nu)].$$

For $\nu < (1-\mu)^{-1}$, $(1, x, \dots, x^d, -\log(1-(x-\mu)\nu))$ is a *T*-system on [0, 1] from Lemma 3 with $p := 1 + \mu\nu$

and $q := \nu$. Therefore, we obtain from Prop. 6 that

$$\begin{split} \max_{0 \leq \nu < \frac{1}{1-\mu}} \inf_{F \in \mathcal{V}(\tilde{M})} \mathbf{E}_{F}[\log(1-(X-\mu)\nu)] \\ &= \max_{0 \leq \nu < \frac{1}{1-\mu}} \left\{ -\sup_{F \in \mathcal{V}(\tilde{M})} \mathbf{E}_{F}[-\log(1-(X-\mu)\nu)] \right\} \\ &= \max_{0 \leq \nu < \frac{1}{1-\mu}} \left\{ -\mathbf{E}_{\bar{F}}[-\log(1-(X-\mu)\nu)] \right\} \\ &= \max_{0 \leq \nu < \frac{1}{1-\mu}} \mathbf{E}_{\bar{F}}[\log(1-(X-\mu)\nu)] = D_{\min}(\bar{F},\mu) \,, \end{split}$$

where \bar{F} is the upper principal representation of \tilde{M} . Since the upper principal representation is unique, it can be written as a unique solution of (8) and (9). \Box