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In this document we summarize results on Tchebycheff
systems and moment spaces and prove Theorem 3.

B Tchebycheff Systems and Moment
Spaces

In this section all functions and measures are defined
on [a,b] (a < b) whereas they are on [0,1] elsewhere.
For any set of points {x1,---,x;}, we always assume
a<zi<ao< - <x <bh

Definition 1. Let ug(z), - ,uq(z) denote continu-
ous real-valued functions on [a,b]. These functions are
called a Tchebycheff system (or T-system) if determi-
nants

uo(zo)  u1(zo) uq(zo)
e (15)
wo(ra) wilza) - ualra)
are positive for all {xg, -+ ,xq}.

A typical T-system is u;(z) = 2'(i = 0,1,---,d),
where (15) is represented as the Vandermonde deter-
minant

1 zg --- xg
1z -
det | . . = ] @-=)>o0.
B : 0<i<j<d
1 g -+ xﬁ

Let Z(u) of a function u(x) denote the number of dis-
tinct points z € [a,b] such that u(z) = 0. Then T-
systems are discriminated by the following proposition.
Proposition 3 (Karlin and Studden (1966), Chap. I,
Theorem 4.1). If a system {u;}%_, of continuous func-
tions on [a,b] satisfies Z(u) < d for all

d
u(z) =Y aw(z), {a;} € R\ {09,

=0

then (ug,u1,- - ,uqg—1,uq) or (Ug,uUt, - ,Ud—1, —Uq)

s a T-system.

Lemma 3. For any p and q¢ > 0 satisfying b < p/q,
(1,2, ,x% —log(p — qx)) is a T-system on [a, b].

Proof. Let b’ € (b, p/q) be sufficiently close to p/q and
consider function

d
u(x) = Z amx™ + ag41log(p — qz)
m=0

on z € [a,b']. Since the derivative of u(x) is written as

m—1

d
du(x) _ (p - (]l) Zm:l amT — aq+19

dz p—qr ’

u(z) has at most d extreme points in [a,b’]. There-
fore Z(u) < d+1 and (1,2, ---,2% log(p — qx)) or
(1,2, , 2% —log(p—qx)) is a T-system on [a, b'] from
Prop. 3.

The determinant (15) for the system (1,z,---, 2%,
log(p — qx)) is written as

1 =z _ xf)l log(p — qzo)

1 = coe2f log(p — qz1)
det .

1 zaq x4, log(p — qras1)

d+1

=Dy [ -

m=0 0<i<j<d+1:1,j#m
“log(p — qzm) -

For the case that z411 = b with & 1 p/q, log(p —
qTq4+1) goes to —oo and the sign of the determinant is
controlled by the term involving log(p — gz 4+1), which
is written as

(—1)%"+2 11 (zj — ;) |log(p — qza+1)
0<i<j<d+1:,jAd+1

<0.
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Then, (1,z,--- ,2% log(p — qx)) cannot be a T-system
on [a,b'] for b sufficiently close to p/q and therefore
(1,2, ,z% —log(p — qx)) has to be a T-system on
[a,b']. From the definition of T-system, it also is a
T-system on [a,b] C [a, b']. O

Let V be the family of positive measures on [a,b]
and define a subset V(M) of V for a vector M =
(M07M17 e 7Md) as

V(M)

= {O’ eV:¥me{0,--- 7d},/bzrmdo(gv) Mm}.
(16)

The notion of moment spaces is essential to examine
properties of T-systems.

Definition 2. The moment space Mgp1 C R with
respect to the T-system {u;} is given by

Mair =
{(/ab up(z)do(z), - - - ’/ab ud(x)da(x)> io € V} )

Consider the case that M € Mgy, satisfies

l
M,, = Z fitm(zs) (m=0,---,d) (17

with zq, -+ ,2; € [a,b] and fy,---, f; > 0 for any finite
. We call such an expression representation of M.
A representation of M corresponds uniquely to the
measure

l
o= fib(z;) €V
=1

for the delta measure d(x) at point x. We sometimes
identify the measure o with the representation of M.
The measure o is a probability measure if ), f; = 1.

Similarly to the index of the measure given in Sect. 4,
define the index of the representation (17) as the num-
ber of the points (z1, - - - , x;) under the special conven-
tion that the points a, b are counted as one half. A rep-
resentation is called principal if its index is (d + 1)/2.
Furthermore, a principal representation is wupper if
(z1,- - ,x;) contains b and lower otherwise.

For the proof of Theorem 3, it is necessary to study
the nature on the set V(M ). Tt differs according to
whether M is a boundary point of My, or an interior
pOiIlt of Md+1.

Proposition 4 (Karlin and Studden (1966), Chap. II,
Theorem 2.1). M € Mgy, is a boundary point of
M1 if and only if there exists a representation of M
with index at most d/2. Moreover, if M is a boundary
point of Mgy1 then V(M) has a unique element.

Proposition 5 (Karlin and Studden (1966), Chap. II,
Corollary 3.1). If M is an interior point of Myiq then
there exist precisely one upper and one lower principal
representations of M.

We use Prop.5 implicitly in Prop.6 below. Prop.6 is
the main result of this section.

Proposition 6 (Karlin and Studden (1966),
Chap.III, Theorem 1.1). Assume (ug,u1, - ,uUq)
and (ug,uy, -+ ,uq,h) are T-systems and M is an
interior point of Mgy1. Then

b
max / h(z)do(x)
ceV(M) Ja
is attained uniquely by o, the upper principal represen-
tation of M. Similarly,

min /ab h(z)do(x)

oceV(M)

is attained uniquely by o, the lower principal represen-
tation of M.

C Proof of Theorem 3

We omit the proof of (ii) (iii) of Theorem 3 since it
is obtained as a direct application of Props.3 and 6.
Theorem 3 (i) is proved by the results in the previous
section and the basic result on the existence of saddle-
points in the following. For a function ¢(z,y) : X x
Y — [—o00,+00], a point (Z,7) € X x Y is called a
saddle-point if ©(Z,y) < ¢(Z,7) < p(z,g) for all €
X and y € Y. A necessary and sufficient condition for
a saddle-point is

sup (@,y) = inf sup e(z,y)
ye ye
= sup inf = inf 7).
itelgg}gxw(x,y) nf v(z,7)

Proposition 7 (Minimax Theorem (Neumann,
1928)). Let X and Y be compact subsets of topolog-
ical vector spaces V and U, respectively. Let p(z,y) :
X XY — [—00,400] be a function such that ¢(-,y) is
convex and lower-semicontinuous for any fixed y and
o(x,-) is concave and upper-semicontinuous for any
fixzed z. Then there exists a saddle point (ZT,7) € X x Y.

In the following proof, we regard a probability measure
F as an element of the family V of positive measures on
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[0, 1] to exploit the results in the previous section. By
letting M := (1, My,--- , My) for M = (My,--- , My),
D@

in (M, ) is rewritten as
Dmin(Ma :u’)

= inf max  Ep[log(l — (X — p)v)], (18)
FeV(M) 0<v< 1

where V(M) is the set of positive measures with
0,1, ,d-th moments equal to M, which is formally
defined in (16).

Proof of Theorem 3 (i). Let

1 1
Md+1:{</ deF,~--,/ xddF> :Fev}
0 0

be the moment space with respect to the system
(1,z,---,2%). Since M is assumed to have a represen-
tation with the index larger than or equal to (d+1)/2,
M cannot be a boundary point of M1 from Prop. 4.
Therefore M is an interior point of Mgy1.

Consider applying the minimax theorem to (18). First,
F D V(M) is compact with respect to the Lévy dis-
tance and Ep[log(l — (X — p)v)] is linear in F' € V
for any fixed v. Next, Ep[log(1 — (X — u)v)] is upper-
semicontinuous and concave in v for any fixed F'. Then
we obtain from the minimax theorem that

Dmin(M» ,U)
= max inf  Epllog(l — (X — pn)v)].
0<v<yl; FEV(M)

Now we show that it suffices to consider the case v <
(1 — p)~'. From Prop.5, V(M) contains the upper
principal representation F' of M, which has a positive
weight at = 1, i.e., F({1}) > 0. Therefore it holds
for v = (1 — p)~! from log0 = —co that

inf Epllog(l - (X —
oo Breflog(1 = (X = o)

< Ep[log(l — (X — p)v)] = —o0
and therefore
Dmin(Ma /J')
= max inf  Ep[log(l — (X — p)v)].

0<v<ii; FEV(M)

For v < (1 - 'u)—l’ (1,33',' te axdv_log(l - ($ - /_L)V))
is a T-system on [0, 1] from Lemma 3 with p := 14 pv

and q := v. Therefore, we obtain from Prop. 6 that

max inf  Ep[log(l — (X — p)v)]
0<v< 11, FEV(M)

= max (— sup Ep[—log(l— (X —p)v)]
0sv<tiy | Fev(ar)

= nax, {-Egp[-log(1 = (X — p)v)]}

= max Epflog(1 — (X — p)v)] = Duin(F, 1) ,

0§V<Tu

where F is the upper principal representation of M.
Since the upper principal representation is unique, it
can be written as a unique solution of (8) and (9). O



