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Abstract

We present a variable-selection structure
learning approach for Gaussian graphical
models. Unlike standard sparseness promot-
ing techniques, our method aims at selecting
the most-important variables besides simply
sparsifying the set of edges. Through sim-
ulations, we show that our method outper-
forms the state-of-the-art in recovering the
ground truth model. Our method also ex-
hibits better generalization performance in a
wide range of complex real-world datasets:
brain fMRI, gene expression, NASDAQ stock
prices and world weather. We also show that
our resulting networks are more interpretable
in the context of brain fMRI analysis, while
retaining discriminability. From an optimiza-
tion perspective, we show that a block coor-
dinate descent method generates a sequence
of positive definite solutions. Thus, we re-
duce the original problem into a sequence of
strictly convex (`1,`p) regularized quadratic
minimization subproblems for p ∈ {2,∞}.
Our algorithm is well founded since the opti-
mal solution of the maximization problem is
unique and bounded.

1 Introduction

Structure learning aims to discover the topology of
a probabilistic graphical model such that this model
represents accurately a given dataset. Accuracy of
representation is measured by the likelihood that the
model explains the observed data. From an algo-
rithmic point of view, one challenge faced by struc-
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ture learning is that the number of possible struc-
tures is super-exponential in the number of variables.
From a statistical perspective, it is very important to
find good regularization techniques in order to avoid
over-fitting and to achieve better generalization per-
formance. Such regularization techniques will aim to
reduce the complexity of the graphical model, which
is measured by its number of parameters.

For Gaussian graphical models, the number of param-
eters, the number of edges in the structure and the
number of non-zero elements in the inverse covariance
or precision matrix are equivalent measures of com-
plexity. Therefore, several techniques focus on enforc-
ing sparseness of the precision matrix. An approxi-
mation method proposed in [1] relied on a sequence
of sparse regressions. Maximum likelihood estimation
with an `1-norm penalty for encouraging sparseness is
proposed in [2, 3, 4].

In this paper, we enforce a particular form of sparse-
ness: that only a small number of nodes in the graph-
ical model interact with each other. Intuitively, we
want to select these “important” nodes. However, the
above methods for sparsifying network structure do
not directly promote variable selection, i.e. group-
wise elimination of all edges adjacent to an “unim-
portant” node. Variable selection in graphical mod-
els present several advantages. From a computational
point of view, reducing the number of variables can
significantly reduce the number of precision-matrix pa-
rameters. Moreover, group-wise edge elimination may
serve as a more aggressive regularization, removing
all “noisy” edges associated with nuisance variables
at once, and potentially leading to better generaliza-
tion performance, especially if, indeed, the underly-
ing problem structure involves only a limited number
of “important” variables. Finally, variable selection
improves interpretability of the graphical model: for
example, when learning a graphical model of brain
area connectivity, variable selection may help to lo-
calize brain areas most relevant to particular mental
states.
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Table 1: Notation used in this paper.

Notation Description

‖c‖1 `1-norm of c ∈ RN , i.e.
∑

n |cn|
‖c‖∞ `∞-norm of c ∈ RN , i.e. maxn |cn|
‖c‖2 Euclidean norm of c ∈ RN , i.e.

√∑
n c2n

A º 0 A ∈ RN×N is symmetric and positive
semidefinite

A Â 0 A ∈ RN×N is symmetric and positive defi-
nite

‖A‖1 `1-norm of A ∈ RM×N , i.e.
∑

mn |amn|
‖A‖∞ `∞-norm of A ∈ RM×N , i.e. maxmn |amn|
‖A‖2 spectral norm of A ∈ RN×N , i.e. the maxi-

mum eigenvalue of A Â 0
‖A‖F Frobenius norm of A ∈ RM×N , i.e.√∑

mn a2
mn

〈A,B〉 scalar product of A,B ∈ RM×N , i.e.∑
mn amnbmn

Our contribution is to develop variable-selection in the
context of learning sparse Gaussian graphical models.
To achieve this, we add an `1,p-norm regularization
term to the maximum likelihood estimation problem,
for p ∈ {2,∞}. We optimize this problem through a
block coordinate descent method which yields sparse
and positive definite estimates. We show that our
method outperforms the state-of-the-art in recover-
ing the ground truth model through synthetic experi-
ments. We also show that our structures have higher
test log-likelihood than competing methods, in a wide
range of complex real-world datasets: brain fMRI,
gene expression, NASDAQ stock prices and world
weather. In particular, in the context of brain fMRI
analysis, we show that our method produces more in-
terpretable models that involve few brain areas, unlike
standard sparseness promoting techniques which pro-
duce hard-to-interpret networks involving most of the
brain. Moreover, our structures are as good as stan-
dard sparseness promoting techniques, when used for
classification purposes.

Sec.2 introduces Gaussian graphical models and tech-
niques for learning them from data. Sec.3 sets up the
`1,p-regularized maximum likelihood problem and dis-
cusses its properties. Sec.4 describes our block coor-
dinate descent method. Experimental results are in
Sec.5.

2 Background

In this paper, we use the notation in Table 1.

A Gaussian graphical model is a graph in which all
random variables are continuous and jointly Gaussian.
This model corresponds to the multivariate normal
distribution for N variables with covariance matrix
Σ ∈ RN×N . Conditional independence in a Gaussian
graphical model is simply reflected in the zero entries

of the precision matrixΩ = Σ−1 [5]. LetΩ = {ωn1n2},
two variables n1 and n2 are conditionally independent
if and only if ωn1n2 = 0.

The estimation of sparse precision matrices was first
introduced in [6]. It is well known that finding the
most sparse precision matrix which fits a dataset
is a NP-hard problem [2]. Therefore, several `1-
regularization methods have been proposed.

Given a dense sample covariance matrix Σ̂ º 0, the
problem of finding a sparse precision matrix Ω by reg-
ularized maximum likelihood estimation is given by:

max
ΩÂ0

(
log detΩ− 〈Σ̂,Ω〉 − ρ‖Ω‖1

)
(1)

for ρ > 0. The term log detΩ−〈Σ̂,Ω〉 is the Gaussian
log-likelihood. The term ‖Ω‖1 encourages sparseness
of the precision matrix or conditional independence
among variables.

Several algorithms have been proposed for solving
eq.(1): covariance selection [2], graphical lasso [3] and
the Meinshausen-Bühlmann approximation [1].

Besides sparseness, several regularizers have been pro-
posed for Gaussian graphical models, for enforcing di-
agonal structure [7], spatial coherence [8], common
structure among multiple tasks [9], or sparse changes
in controlled experiments [10]. In particular, differ-
ent group sparse priors have been proposed for en-
forcing block structure for known block-variable as-
signments [11, 12] and unknown block-variable assign-
ments [13, 14], or power law regularization in scale free
networks [15].

Variable selection has been applied to very diverse
problems, such as linear regression [16], classification
[17, 18, 19] and reinforcement learning [20].

Structure learning through `1-regularization has been
also proposed for different types of graphical models:
Markov random fields [21]; Bayesian networks on bi-
nary variables [22]; Conditional random fields [23]; and
Ising models [24].

3 Preliminaries

In this section, we set up the problem and discuss some
of its properties.

3.1 Problem Setup

We propose priors that are motivated from the variable
selection literature from regression and classification,
such as group lasso [25, 26, 27] which imposes an `1,2-
norm penalty, and simultaneous lasso [28, 29] which
imposes an `1,∞-norm penalty.
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Recall that an edge in a Gaussian graphical model cor-
responds to a non-zero entry in the precision matrix.
We promote variable selection by learning a structure
with a small number of nodes that interact with each
other, or equivalently a large number of nodes that are
disconnected from the rest of the graph. For each dis-
connected node, its corresponding row in the precision
matrix (or column given that it is symmetric) con-
tains only zeros (except for the diagonal). Therefore,
the use of row-level regularizers such as the `1,p-norm
are natural in our context. Note that our goal dif-
fers from sparse Gaussian graphical models, in which
sparseness is imposed at the edge level only. We ad-
ditionally impose sparseness at the node level, which
promotes conditional independence of variables with
respect to all other variables.

Given a dense sample covariance matrix Σ̂ º 0, we
learn a precision matrix Ω ∈ RN×N for N variables.
The variable-selection structure learning problem is de-
fined as:

max
ΩÂ0

(
log detΩ− 〈Σ̂,Ω〉 − ρ‖Ω‖1 − τ‖Ω‖1,p

)
(2)

for ρ > 0, τ > 0 and p ∈ {2,∞}. The term

log detΩ−〈Σ̂,Ω〉 is the Gaussian log-likelihood. ‖Ω‖1
encourages sparseness of the precision matrix or con-
ditional independence among variables. The last term
‖Ω‖1,p is our variable selection regularizer, and it is
defined as:

‖Ω‖1,p =
∑

n

‖(ωn,1, . . . , ωn,n−1, ωn,n+1, . . . , ωn,N )‖p

(3)

In a technical report, [30] proposed an optimization
problem that is similar to eq.(2). The main differ-
ences are that their model does not promote sparse-
ness, and that they do not solve the original maximum
likelihood problem, but instead build upon an approx-
imation (pseudo-likelihood) approach of Meinshausen-
Bühlmann [1] based on independent linear regression
problems. Finally, note that regression based meth-
ods such as [1] have been already shown in [3] to have
worse performance than solving the original maximum
likelihood problem. In this paper, we solve the original
maximum likelihood problem.

3.2 Bounds

In what follows, we discuss uniqueness and bounded-
ness of the optimal solution of our problem.

Lemma 1. For ρ > 0, τ > 0, the variable-selection
structure learning problem in eq.(2) is a maximization
problem with concave (but not strictly concave) objec-
tive function and convex constraints.

Proof. The Gaussian log-likelihood is concave, since
log det is concave on the space of symmetric positive
definite matrices, and since the linear operator 〈·, ·〉 is
also concave. Both regularization terms, the negative
`1-norm as well as the negative `1,p-norm defined in
eq.(3) are non-smooth concave functions. Finally, Ω Â
0 is a convex constraint.

For clarity of exposition, we assume that the diagonals
of Ω are penalized by our variable selection regularizer
defined in eq.(3).

Theorem 2. For ρ > 0, τ > 0, the optimal solution
to the variable-selection structure learning problem in
eq.(2) is unique and bounded as follows:

(
1

‖Σ̂‖2 +Nρ+N1/p′τ

)
I ¹ Ω∗ ¹

(
N

max(ρ, τ)

)
I

(4)
where `p′-norm is the dual of the `p-norm, i.e. (p =
2, p′ = 2) or (p = ∞, p′ = 1).

Proof. By using the identity for dual norms κ‖c‖p =
max‖d‖p′≤κ d

Tc in eq.(2), we get:

max
ΩÂ0

min
‖A‖∞≤ρ

‖B‖∞,p′≤τ

(
log detΩ− 〈Σ̂+A+B,Ω〉

)
(5)

where ‖B‖∞,p′ = maxn ‖(bn,1, . . . , bn,N )‖p′ . By virtue
of Sion’s minimax theorem, we can swap the order
of max and min. Furthermore, note that the opti-
mal solution of the inner equation is given by Ω =

(Σ̂+A+B)
−1

. By replacing this solution in eq.(5),
we get the dual problem of eq.(2):

min
‖A‖∞≤ρ

‖B‖∞,p′≤τ

(
− log det(Σ̂+A+B)−N

)
(6)

In order to find a lower bound for the minimum
eigenvalue of Ω∗, note that ‖Ω∗−1‖2 = ‖Σ̂ + A +

B‖2 ≤ ‖Σ̂‖2 + ‖A‖2 + ‖B‖2 ≤ ‖Σ̂‖2 + N‖A‖∞ +

N1/p′‖B‖∞,p′ ≤ ‖Σ̂‖2 +Nρ+N1/p′
τ . (Here we used

‖B‖2 ≤ N1/p′‖B‖∞,p′ as shown in Appendix A)

In order to find an upper bound for the maximum
eigenvalue of Ω∗, note that, at optimum, the primal-
dual gap is zero:

−N + 〈Σ̂,Ω∗〉+ ρ‖Ω∗‖1 + τ‖Ω∗‖1,p = 0 (7)

The upper bound is found as follows: ‖Ω∗‖2 ≤
‖Ω∗‖F ≤ ‖Ω∗‖1 = (N − 〈Σ̂,Ω∗〉 − τ‖Ω∗‖1,p)/ρ. Note

that τ‖Ω∗‖1,p ≥ 0, and since Σ̂ º 0 and Ω∗ Â 0, it

follows that 〈Σ̂,Ω∗〉 ≥ 0. Therefore, ‖Ω∗‖2 ≤ N
ρ . In
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a similar fashion, ‖Ω∗‖2 ≤ ‖Ω∗‖1,p = (N − 〈Σ̂,Ω∗〉 −
ρ‖Ω∗‖1)/τ . (Here we used ‖Ω∗‖2 ≤ ‖Ω∗‖1,p as
shown in Appendix A). Note that ρ‖Ω∗‖1 ≥ 0 and

〈Σ̂,Ω∗〉 ≥ 0. Therefore, ‖Ω∗‖2 ≤ N
τ .

4 Block Coordinate Descent Method

Since the objective function in eq.(2) contains a non-
smooth regularizer, methods such as gradient descent
cannot be applied. On the other hand, subgradient
descent methods very rarely converge to non-smooth
points [31]. In our problem, these non-smooth points
correspond to zeros in the precision matrix, are often
the true minima of the objective function, and are very
desirable in the solution because they convey informa-
tion of conditional independence among variables.

We apply block coordinate descent method on the pri-
mal problem [8, 9], unlike covariance selection [2] and
graphical lasso [3] which optimize the dual. Optimiza-
tion of the dual problem in eq.(6) by a block coordinate
descent method can be done with quadratic program-
ming for p = ∞ but not for p = 2 (i.e. the objective
function is quadratic for p ∈ {2,∞}, the constraints
are linear for p = ∞ and quadratic for p = 2). Op-
timization of the primal problem provides the same
efficient framework for p ∈ {2,∞}. We point out that
a projected subgradient method as in [11] cannot be
applied since our regularizer does not decompose into
disjoint subsets. Our problem contains a positive def-
initeness constraint and therefore it does not fall in
the general framework of [25, 26, 27, 32, 28, 29] which
consider unconstrained problems only. Finally, more
recent work of [33, 34] consider subsets with overlap,
but it does still consider unconstrained problems only.

Theorem 3. The block coordinate descent method
for the variable-selection structure learning problem in
eq.(2) generates a sequence of positive definite solu-
tions.

Proof. Maximization can be performed with respect
to one row and column of all precision matrices Ω at
a time. Without loss of generality, we use the last row
and column in our derivation. Let:

Ω =

[
W y
yT z

]
, Σ̂ =

[
S u
uT v

]
(8)

where W,S ∈ RN−1×N−1, y,u ∈ RN−1.

In terms of the variables y, z and the constant matrix
W, the variable-selection structure learning problem
in eq.(2) can be reformulated as:

max
ΩÂ0

(
log(z − yTW−1y)− 2uTy − (v + ρ)z
−2ρ‖y‖1 − τ‖y‖p − τ

∑
n ‖(yn, tn)‖p

)
(9)

where tn = ‖(wn,1, . . . , wn,n−1, wn,n+1, . . . , wn,N )‖p.
If Ω is a symmetric matrix, according to the
Haynsworth inertia formula, Ω Â 0 if and only if its
Schur complement z − yTW−1y > 0 and W Â 0. By
maximizing eq.(9) with respect to z, we get:

z − yTW−1y =
1

v + ρ
(10)

and since v > 0 and ρ > 0, this implies that the Schur
complement in eq.(10) is positive. Finally, in our itera-
tive optimization, it suffices to initialize Ω to a matrix
known to be positive definite, e.g. a diagonal matrix
with positive elements.

Theorem 4. The block coordinate descent method
for the variable-selection structure learning problem in
eq.(2) is equivalent to solving a sequence of strictly
convex (`1,`1,p) regularized quadratic subproblems for
p ∈ {2,∞}:

min
y∈RN−1

(
1
2y

T(v + ρ)W−1y + uTy
+ρ‖y‖1 + τ

2‖y‖p + τ
2

∑
n ‖(yn, tn)‖p

)
(11)

Proof. By replacing the optimal z given by eq.(10) into
the objective function in eq.(9), we get eq.(11). Since
W Â 0 ⇒ W−1 Â 0, hence eq.(11) is strictly convex.

Lemma 5. If ‖u‖∞ ≤ ρ+τ/(2(N−1)1/p
′
) or ‖u‖p′ ≤

ρ+ τ/2, the (`1, `1,p) regularized quadratic problem in
eq.(11) has the minimizer y∗ = 0.

Proof. Note that since W Â 0 ⇒ W−1 Â 0, y∗ = 0
is the minimizer of the quadratic part of eq.(11). It
suffices to prove that the remaining part is also min-
imized for y∗ = 0, i.e. uTy + ρ‖y‖1 + τ

2‖y‖p +
τ
2

∑
n ‖(yn, tn)‖p ≥ τ

2

∑
n tn for an arbitrary y. The

lower bound comes from setting y∗ = 0 in eq.(11) and
by noting that (∀n) tn > 0.

By using lower bounds
∑

n ‖(yn, tn)‖p ≥ ∑
n tn and

either ‖y‖p ≥ ‖y‖1/(N − 1)1/p
′
or ‖y‖1 ≥ ‖y‖p,

we modify the original claim into a stronger one,
i.e. uTy + (ρ + τ/(2(N − 1)1/p

′
))‖y‖1 ≥ 0 or

uTy + (ρ + τ/2)‖y‖p ≥ 0. Finally, by using the
identity for dual norms κ‖y‖p = max‖d‖p′≤κ d

Ty,

we have max‖d‖∞≤ρ+τ/(2(N−1)1/p′ ) (u+ d)
T
y ≥ 0 or

max‖d‖p′≤ρ+τ/2 (u+ d)
T
y ≥ 0, which proves our

claim.

Remark 6. By using Lemma 5, we can reduce the size
of the original problem by removing variables in which
this condition holds, since it only depends on the dense
sample covariance matrix.
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Theorem 7. The coordinate descent method for the
(`1, `1,p) regularized quadratic problem in eq.(11) is
equivalent to solving a sequence of strictly convex
(`1, `p) regularized quadratic subproblems:

min
x

(
1

2
qx2 − cx+ ρ|x|+ τ

2
‖(x, a)‖p +

τ

2
‖(x, b)‖p

)

(12)

Proof. Without loss of generality, we use the last row
and column in our derivation, since permutation of
rows and columns is always possible. Let:

W−1 =

[
H11 h12

h12
T h22

]
, y =

[
y1

x

]
, u =

[
u1

u2

]

(13)
where H11 ∈ RN−2×N−2, h12,y1,u1 ∈ RN−2.

In terms of the variable x and the constants q = (v +
ρ)h22, c = −((v + ρ)h12

Ty1 + u2), a = ‖y1‖p, b = tn,
the (`1, `1,p) regularized quadratic problem in eq.(11)
can be reformulated as in eq.(12). Moreover, since
v > 0∧ρ > 0∧h22 > 0 ⇒ q > 0, and therefore eq.(12)
is strictly convex.

For p = ∞, eq.(12) has five points in which
the objective function is non-smooth, i.e. x ∈
{−max(a, b),−min(a, b), 0,min(a, b),max(a, b)}. Fur-
thermore, since the objective function is quadratic on
each interval, it admits a closed form solution.

For p = 2, eq.(12) has only one non-smooth point,
i.e. x = 0. Given the objective function f(x), we
first compute the left derivative ∂−f(0) = −c− ρ and
the right derivative ∂+f(0) = −c + ρ. If ∂−f(0) ≤
0∧∂+f(0) ≥ 0 ⇒ x∗ = 0. If ∂−f(0) > 0 ⇒ x∗ < 0 and
we use the one-dimensional Newton-Raphson method
for finding x∗. If ∂+f(0) < 0 ⇒ x∗ > 0. For numerical
stability, we add a small ε > 0 to the `2-norms by
using

√
x2 + a2 + ε instead of ‖(x, a)‖2.

Algorithm 1 shows the block coordinate descent
method in detail. A careful implementation leads to
a time complexity of O(KN3) for K iterations and
N variables. In our experiments, the algorithm con-
verges quickly in usually K = 10 iterations. Polyno-
mial dependence O(N3) on the number of variables is
expected since no algorithm can be faster than com-
puting the inverse of the sample covariance in the case
of an infinite sample.

5 Experimental Results

We test with a synthetic example the ability of the
method to recover ground truth structure from data.
The model contains N ∈ {50, 100, 200} variables. For
each of 50 repetitions, we first select a proportion of

Algorithm 1 Block Coordinate Descent

Input: Σ̂ º 0, ρ > 0, τ > 0, p ∈ {2,∞}
Initialize Ω = diag(Σ̂)

−1

for each iteration 1, . . . ,K and each variable 1, . . . , N
do

Split Ω into W,y, z and Σ̂ into S,u, v as described in
eq.(8)
Update W−1 by using the Sherman-Woodbury-
Morrison formula (Note that when iterating from one
variable to the next one, only one row and column
change on matrix W)
for each variable 1, . . . , N − 1 do

Split W−1,y,u as in eq.(13)
Solve the (`1, `p) regularized quadratic problem in
closed form (p = ∞) or by using the Newton-
Raphson method (p = 2)

end for
Update z ← 1

v+ρ
+ yTW−1y

end for
Output: Ω Â 0

“connected” nodes (either 0.2,0.5,0.8) from the N vari-
ables. The unselected (i.e. “disconnected”) nodes do
not participate in any edge of the ground truth model.
We then generate edges among the connected nodes
with a required density (either 0.2,0.5,0.8), where each
edge weight is generated uniformly at random from
{−1,+1}. We ensure positive definiteness of Ωg by
verifying that its minimum eigenvalue is at least 0.1.
We then generate a dataset of 50 samples. We model
the ratio σ̄c/σ̄d between the standard deviation of con-
nected versus disconnected nodes. In the “high vari-
ance confounders” regime, σ̄c/σ̄d = 1 which means
that on average connected and disconnected variables
have the same standard deviation. In the “low vari-
ance confounders” regime, σ̄c/σ̄d = 10 which means
that on average the standard deviation of a connected
variable is 10 times the one of a disconnected variable.
Variables with low variance produce higher values in
the precision matrix than variables with high variance.
We analyze both regimes in order to evaluate the im-
pact of this effect in structure recovery.

In order to measure the closeness of the recovered mod-
els to the ground truth, we measured the Kullback-
Leibler (KL) divergence, sensitivity (one minus the
fraction of falsely excluded edges) and specificity (one
minus the fraction of falsely included edges). We
compare to the following methods: covariance selec-
tion [2], graphical lasso [3], Meinshausen-Bühlmann
approximation [1] and Tikhonov regularization. For
our method, we found that the variable selection pa-
rameter τ = 50ρ provides reasonable results, in both
synthetic and real-world experiments. Therefore, we
report results only with respect to the sparseness pa-
rameter ρ.

First, we test the performance of our methods for in-
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Figure 1: ROC curves (first row) and KL divergence (sec-
ond row) for the “high variance confounders” regime. ROC
curves (third row) and KL divergence (fourth row) for the
“low variance confounders” regime. Left: N = 50 vari-
ables, center: N = 100 variables, right: N = 200 variables
(connectedness 0.8, edge density 0.5). Our proposed meth-
ods `1,2 (L2) and `1,∞ (LI) recover edges better and pro-
duce better probability distributions than Meinshausen-
Bühlmann with AND-rule (MA), OR-rule (MO), graphical
lasso (GL), covariance selection (CS) and Tikhonov regu-
larization (TR). Our methods degrade less in recovering the
ground truth edges when the number of variables grows.

creasing number of variables, moderate edge density
(0.5) and high proportion of connected nodes (0.8).
Fig.1 shows the ROC curves and KL divergence be-
tween the recovered models and the ground truth. In
both “low” and “high variance confounders” regimes,
our `1,2 and `1,∞ methods recover ground truth edges
better than competing methods (higher ROC) and
produce better probability distributions (lower KL
divergence) than the other methods. Our methods
degrade less than competing methods in recovering
the ground truth edges when the number of variables
grows, while the KL divergence behavior remains sim-
ilar.

Second, we test the performance of our methods with
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Figure 2: Cross-validated KL divergence for structures
learnt for the “low variance confounders” regime (N = 50
variables, different connectedness and density levels). Our
proposed methods `1,2 (L2) and `1,∞ (LI) produce bet-
ter probability distributions than Meinshausen-Bühlmann
with AND-rule (MA), OR-rule (MO), graphical lasso (GL),
covariance selection (CS) and Tikhonov regularization
(TR).

respect to edge density and the proportion of con-
nected nodes. Fig.2 shows the KL divergence be-
tween the recovered models and the ground truth for
the “low variance confounders” regime. Our `1,2 and
`1,∞ methods produce better probability distributions
(lower KL divergence) than the remaining techniques.
(Please, see Appendix B for results on ROC and the
“high variance confounders” regime.)

Our `1,2 method takes 0.07s for N = 100, 0.12s for
N = 200 variables. Our `1,∞ method takes 0.13s for
N = 100, 0.63s for N = 200. Graphical lasso [3],
the fastest and most accurate competing method in
our evaluation, takes 0.11s for N = 100, 0.49s for N =
200. Our `1,∞ method is slightly slower than graphical
lasso, while our `1,2 method is the fastest. One reason
for this is that Lemma 5 eliminates more variables in
the `1,2 setting.

For experimental validation on real-world datasets,
we use datasets with a diverse nature of probabilis-
tic relationships: brain fMRI, gene expression, NAS-
DAQ stock prices and world weather. The brain fMRI
dataset collected by [35] captures brain function of
15 cocaine addicted and 11 control subjects under
conditions of monetary reward. Each subject con-
tains 87 scans of 53 × 63 × 46 voxels each, taken ev-
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ery 3.5 seconds. Registration to a common spatial
template and spatial smoothing was done in SPM2
(http://www.fil.ion.ucl.ac.uk/spm/). After sampling
each 4 × 4 × 4 voxels, we obtained 869 variables.
The gene expression dataset contains 8,565 variables
and 587 samples. The dataset was collected by [36]
from drug treated rat livers, by treating rats with
a variety of fibrate, statin, or estrogen receptor ago-
nist compounds. The dataset is publicly available at
http://www.ebi.ac.uk/. In order to consider the full
set of genes, we had to impute a very small percentage
(0.90%) of missing values by randomly generating val-
ues with the same mean and standard deviation. The
NASDAQ stocks dataset contains daily opening and
closing prices for 2,749 stocks from Apr 19, 2010 to Apr
18, 2011 (257 days). The dataset was downloaded from
http://www.google.com/finance. For our experiments,
we computed the percentage of change between the
closing and opening prices. The world weather dataset
contains monthly measurements of temperature, pre-
cipitation, vapor, cloud cover, wet days and frost days
from Jan 1990 to Dec 2002 (156 months) on a 2.5×2.5
degree grid that covers the entire world. The dataset is
publicly available at http://www.cru.uea.ac.uk/. Af-
ter sampling each 5×5 degrees, we obtained 4,146 vari-
ables. For our experiments, we computed the change
between each month and the month in the previous
year.

For all the datasets, we used one third of the data for
training, one third for validation and the remaining
third for testing. Since the brain fMRI dataset has a
very small number of subjects, we performed six rep-
etitions by making each third of the data take turns
as training, validation and testing sets. In our evalua-
tion, we included scale free networks [15]. We did not
include the covariance selection method [2] since we
found it is extremely slow for these high-dimensional
datasets. We report the negative log-likelihood on the
testing set in Fig.3 (we subtracted the entropy mea-
sured on the testing set and then scaled the results
for visualization purposes). We can observe that the
log-likelihood of our method is remarkably better than
the other techniques for all the datasets.

Regarding comparison to group sparse methods, in
our previous experiments we did not include block
structure for known block-variable assignments [11, 12]
since our synthetic and real-world datasets lack such
assignments. We did not include block structure for
unknown assignments [13, 14] given their time com-
plexity ([14] has a O(N5)-time Gibbs sampler step for
N variables and it is applied for N = 60 only, while
[13] has a O(N4)-time ridge regression step). Instead,
we evaluated our method in the baker’s yeast gene ex-
pression dataset in [11] which contains 677 variables
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Figure 3: Test negative log-likelihood of structures learnt
for (a) addicted subjects and (b) control subjects in the
brain fMRI dataset, (c) gene expression, (d) NASDAQ
stocks and (e) world weather. Our proposed methods
`1,2 (L2) and `1,∞ (LI) outperforms the Meinshausen-
Bühlmann with AND-rule (MA), OR-rule (MO), graph-
ical lasso (GL), Tikhonov regularization (TR) and scale
free networks (SF).

and 173 samples. We used the experimental settings
of Fig.3 in [13]. For learning one structure, [13] took
5 hours while our `1,2 method took only 50 seconds.
Our method outperforms block structures for known
and unknown assignments. The log-likelihood is 0 for
Tikhonov regularization, 6 for [11, 13], 8 for [12], and
22 for our `1,2 method.

We show the structures learnt for cocaine addicted
and control subjects in Fig.4, for our `1,2 method
and graphical lasso [3]. The disconnected variables
are not shown. Note that our structures involve re-
markably fewer connected variables but yield a higher
log-likelihood than graphical lasso (Fig.3), which sug-
gests that the discarded edges from the disconnected
nodes are not important for accurate modeling of this
dataset. Moreover, removal of a large number of
nuisance variables (voxels) results into a more inter-
pretable model, clearly demonstrating brain areas in-
volved in structural model differences that discrimi-
nate cocaine addicted from control subjects. Note that
graphical lasso (bottom of Fig.4) connects most of the
brain voxels in both populations, making them impos-
sible to compare. Our approach produces more “local-
ized” networks (top of the Fig.4) involving a relatively
small number of brain areas: cocaine addicted subjects
show increased interactions between the visual cortex
(back of the brain, on the left in the image) and the
prefrontal cortex (front of the brain, on the right in the
image), while at the same time decreased density of in-
teractions between the visual cortex with other brain
areas (more clearly present in control subjects). The
alteration in this pathway in the addict group is highly
significant from a neuroscientific perspective. First,
the trigger for reward was a visual stimulus. Abnor-
malities in the visual cortex was reported in [37] when
comparing cocaine abusers to control subjects. Sec-
ond, the prefrontal cortex is involved in higher-order
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Figure 4: Structures learnt for cocaine addicted (left)
and control subjects (right), for our `1,2 method (top)
and graphical lasso (bottom). Regularization parameter
ρ = 1/16. Positive interactions in blue, negative interac-
tions in red. Our structures are sparser (density 0.0016)
than graphical lasso (density 0.023) where the number of
edges in a complete graph is ≈378000.

cognitive functions such as decision making and re-
ward processing. Abnormal monetary processing in
the prefrontal cortex was reported in [38] when com-
paring cocaine addicted individuals to controls. Al-
though a more careful interpretation of the observed
results remains to be done in the near future, these re-
sults are encouraging and lend themselves to specific
neuroscientific hypothesis testing.

In a different evaluation, we used generatively learnt
structures for a classification task. We performed a
five-fold cross-validation on the subjects. From the
subjects in the training set, we learned one structure
for cocaine addicted and one structure for control sub-
jects. Then, we assigned a test subject to the structure
that gave highest probability for his data. All meth-
ods in our evaluation except Tikhonov regularization
obtained 84.6% accuracy. Tikhonov regularization ob-
tained 65.4% accuracy. Therefore, our method pro-
duces structures that retain discriminability with re-
spect to standard sparseness promoting techniques.

6 Conclusions and Future Work

In this paper, we presented variable selection in the
context of learning sparse Gaussian graphical mod-
els by adding an `1,p-norm regularization term, for
p ∈ {2,∞}. We presented a block coordinate descent
method which yields sparse and positive definite esti-
mates. We solved the original problem by efficiently
solving a sequence of strictly convex (`1,`p) regularized
quadratic minimization subproblems.

The motivation behind this work was to incorporate
variable selection into structure learning of sparse
Markov networks, and specifically Gaussian graphi-

cal models. Besides providing a better regularizer (as
observed on several real-world datasets: brain fMRI,
gene expression, NASDAQ stock prices and world
weather), key advantages of our approach include a
more accurate structure recovery in the presence of
multiple noisy variables (as demonstrated by simula-
tions), significantly better interpretability and same
discriminability of the resulting network in practical
applications (as shown for brain fMRI analysis).

There are several ways to extend this research. In
practice, our technique converges in a small number of
iterations, but an analysis of convergence rate needs
to be performed. Consistency when the number of
samples grows to infinity needs to be proved.
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