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Abstract

We propose a new probabilistic generative model
for analyzing sparse and noisy pairwise rela-
tional data, such as friend-links on social net-
work services and customer records in online
shops. Real-world relational data often include
a large portion of non-informative pairwise data
entries. Many existing stochastic blockmodels
suffer from these irrelevant data entries because
of their rather simpler forms of priors. The pro-
posed model incorporates a latent variable that
explicitly indicates whether each data entry is
relevant or not to diminish bad effects associ-
ated with such irrelevant data. Through experi-
ments using synthetic and real data sets, we show
that the proposed model can extract clusters with
stronger relations among data within the cluster
than clusters obtained by the conventional model.

1 Introduction

Analysis of pairwise relational data, such as the customer
records of purchases in online shops, friend-links on so-
cial networks, or bibliographic citations between scientific
articles, is useful in many aspects. Many statistical mod-
els for relational data have been presented [Liben-Nowell
and Kleinberg, 2003, Clauset et al., 2008, Zhu et al., 2009,
Erosheva et al., 2004] in the literature. Among them,
the stochastic block model (SBM) [Nowicki and Snijders,
2001] and the infinite relational model (IRM) [Kemp et al.,
2006] perform simultaneous clustering on the row and col-
umn dimensions of a given pairwise relational data ma-
trix. For example, in the case of customer records, the row
and column correspond to users and items, respectively.
The row and column clusters are interpreted as latent user
groups and item topics, respectively. SBM requires spec-
ifying the number of clusters in advance, while IRM au-
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tomatically estimates the number of clusters depending on
the observed data. The usefulness of these models has al-
ready been established.

However, the real-world relational data are often noisy and
sparse. For example, relations between users and shop
items in online purchase records is very sparse: there are
thousands of items and users, but only very few item-user
pairs are observed in records. In the case of friend-links in
Social Network Services (SNS) such as Twitter, the prob-
lem of sparseness again holds. Furthermore, we can find
some noisy observations due to spam accounts that ran-
domly follow unknown users for advertisement or other
purposes. When applying the conventional block models
to such data, as shown later, we often obtain unexpected
clusters with weak relations among pairwise relational data
within the cluster.

In this paper, we address the problems of noisiness and
sparseness of real-world relational data. The number of
these irrelevant data entries (elements of the observed re-
lational data matrix) that do not strongly relate to the other
data entries is huge in the dataset. As a result, they may ob-
scure the interesting part of the observations. Assume each
user is a data point located in a sparse and high-dimensional
feature space: its feature vector is an observed relation be-
tween many other users. In such a space, every data point is
similarly distant from all other data points because most of
the feature vectors are sparse or uniformly distributed. This
means we cannot distinguish the users because of high-
dimensional irrelevant features. Also, since SBM and IRM
are optimized to maximize the posterior probability of all
clustering and parameters based on all the observations, the
irrelevant data entries make it difficult to extract the core
structure of small relevant and interesting clusters.

Specifically, we extend IRM so that only relevant rows and
columns of a given relational data matrix can automatically
be extracted for clustering. Intuitively, in the case of user-
item purchase records, not all users and items but some of
them are supposed to be analyzed for clustering. The pro-
posed model estimates the relevancy of each row and col-
umn depending on the observations. If a row (column) is
estimated as irrelevant to form a cluster, then the row (col-
umn) is excluded from the IRM process. We only perform
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the IRM on those who are classified as relevant; therefore,
the IRM analysis on the core relations are not disturbed by
noise observations. This relevancy and IRM-based cluster-
ing are seamlessly connected in the probabilistic genera-
tive model, and we can obtain its inference algorithm as a
straightforward Gibbs sampler. Our proposed model is in-
spired by the subset clustering model [Hoff, 2005, Guan
et al., 2011] that explicitly excludes irrelevant elements
from feature vectors for better clustering of these vectors.

The rest of this paper is organized as follows. In the
next section, we introduce the IRM as the baseline of our
method, and reveal its drawbacks. We present a new model
as a solution for the problem in the third section, and ex-
plain the inference procedure in the fourth section. The
fifth section is devoted to experimental evaluations, and the
final section concludes the paper.

2 Infinite Relational Models

We first explain the infinite relational model (IRM) [Kemp
et al., 2006], which estimates an unknown number of hid-
den clusters from relational data. In IRM, the Dirichlet pro-
cess (DP) is used as a prior for clusters of an unknown num-
ber, and is denoted as DP(α,G0) where α > 0 is a parameter
and G0 is a base measure. We write G ∼ DP(α,G0) when
a distribution G (θ) is sampled from DP. We can implement
DP by using either a stick-breaking process [Sethuraman,
1994] or a Chinese restaurant process (CRP) [Blackwell
and MacQueen, 1973] as a marginalized form of stick-
breaking process. In this paper, we employ the CRP repre-
sentation of DP. CRP itself is a probability of partitioning of
N objects. Let zi = k, i ∈ {1, . . . ,N}, k ∈ {1, . . . ,K} denote
that the ith object is assigned to the kth partition (cluster)
among the total K partitions. Then the CRP is represented
as the following equations:

CRP(z1:N |α) = αK
∏K

k=1 (nk − 1)!∏N
i=1 (α + i − 1)

, (1)

p(zi = k|z\i, α) =

 nk\i
n−1+α nk\i > 0,
α

N−1+α nk\i = 0.
(2)

Equation 1 shows the joint probability of K partitions.
Equation 2 represents the probability of the object i being
allocated to the partition k given K − 1 partitions. nk de-
notes the number of objects assigned to the partition k, and
nk\i denotes the same number excluding object i.

The IRM is an application of the DP for relational data.
Let us first assume a binary two-place relation on the set
of objects D = {1, . . . , i, . . . ,N} as D × D → {0, 1}. For
simplicity, we assume two-place relations throughout the
paper, but the extension for more high-dimensional data is
straightforward. The IRM divides the set of N objects into
multiple clusters based on the matrix of observed relational
data X = {xi, j ∈ {0, 1}; 1 ≤ i, j ≤ N}. The IRM is able to

infer the number of clusters at the same time because it uses
DP as a prior distribution of the cluster partition. A data en-
try xi, j ∈ {0, 1} denotes the existence of a relation between a
row object i and a column object j (i, j ∈ {1, 2, . . . ,N}). In
the case of SNS friend-links, if there is (not) a friend-link
from user i to user j, then xi, j = 1 (0). We allow asymmetric
relations xi, j , x j,i throughout the paper. The probabilistic
generative model of the IRM is as follows:

θk,l|ck,l, dk,l ∼ Beta
(
ck,l, dk,l

)
, (3)

zi|α ∼ CRP (α) , (4)

xi, j|Z, {θ} ∼ Bernoulli
(
θzi,z j

)
. (5)

In Eq. (3), θk,l is the strength of a relation between the ob-
jects in clusters k and l. We sample a cluster index of the
object i, zi = k, k ∈ {1, 2, . . . , } using the CRP as in Eq. (4).
Generating the observed relational data xi, j follows Eq. (5)
conditioned by the cluster assignments Z = {zi}Ni=1 and the
strengths θ. We call this model a “one-domain” model since
object indices i and j point to the same domain (in the case
of SNS, both i and j denote a user). A graphical model of
one-domain IRM is illustrated in Fig. 2(A).

Let us assume the case where relation is defined between
objects in different domains, namely D1 × D2 → {0, 1}
where D1 = {1, . . . , i, . . . ,N1} and D2 = {1, . . . , j, . . . ,N2}.
For such data, we define a “two-domain” IRM as follows:

θk,l|ck,l, dk,l ∼ Beta
(
ck,l, dk,l

)
, (6)

z1,i|α1 ∼ CRP (α1) , (7)
z2, j|α2 ∼ CRP (α2) , (8)

xi, j|Z1, Z2, {θ} ∼ Bernoulli
(
θz1,i,z2, j

)
. (9)

In the above equations, i indexes the object of the first do-
main D1, and j indexes the object of the second domain D2.
In the case of an online purchase record, the first domain
corresponds to a user list, and an object i denotes a specific
user i. The second domain corresponds to a list of shop
items, and an object j denotes a specific item j. The data
entry xi, j represents a relation between the user i and the
item j: namely, the purchase record. In Eq. (6), θk,l is the
strength of a relation between the cluster k of the first do-
main and the cluster l in the second domain. z1,i in Eq. (7)
and z2, j in Eq. (8) denotes the cluster assignments in the
first domain and the second domain, respectively. The main
difference between the one-domain IRM and two-domain
IRM is that the object cluster assignments of two domains
are generated from independent CRP Eq. (7) and Eq. (8).
It means that each domain may have a different number of
clusters.

One drawback of IRM for highly noisy and sparse rela-
tional data, which is often the case, is the CRP prior itself.
As we can see from Eq. (1) and Eq. (2), the CRP prior
naively “counts” the cluster assignments. Therefore, the
counts of irrelevant objects of X affect the posterior of Z.
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Figure 1: Illustrative example of IRM and SIRM (best viewed in color). (A): Observed relationships of Enron (Aug.)
dataset (see the Experiments section for details). One black spot indicates existence of a link from a row object i to a
column object j. (B): Clustering result of dataset by IRM. Color lines indicate the boundaries of object clusters, and
each rectangle block represents a cluster-cluster relationship that abstracts individual data entries within the block. The
object indices are sorted. (C): Clustering result of the same dataset by proposed SIRM. The lower right region that is NOT
surrounded by color lines represents “irrelevant” data entries. SIRM automatically excludes these irrelevant data entries,
and finds a more detailed cluster structure within “relevant” objects in the upper left region.

Another problem is minute clusters. IRM assumes that ev-
ery object must be assigned to one of K clusters. According
to the stick-breaking construction of DP, the mixing ratio
of K clusters tends to follow the power law. Thus a typical
clustering result of IRM looks like Fig. 1(B): many minute
clusters in the lower right area. This is practically prob-
lematic because it makes it difficult to discern whether each
minute cluster truly extracts a property of given relational
data or just fits to noise.

3 Subset Infinite Relational Models

We introduce an extension of IRM called the Subset Infinite
Relational Model (SIRM) to deal with the aforementioned
problems of irrelevant data entries. The term “subset” in-
dicates that we only focus on hidden structure among the
relevant objects that are the subset of whole objects.

This SIRM is inspired by the subset clustering models in
[Hoff, 2005]. Similar models also have been proposed in
[Hoff, 2006, Guan et al., 2011]. Our assumption is that rele-
vant data entries follow some cluster-dependent properties,
and irrelevant ones have no such dependencies. According
to this assumption, a column (or row) data entry of an irrel-
evant object will distribute in the same manner regardless
to the object in its counterpart. Such objects are not useful
for data clustering nor do they characterize each cluster. To
address this problem, we try to remove objects that do not
contribute to the clustering under consideration. Thus, we
define them as “irrelevant” objects. To distinguish relevant
and irrelevant objects, we introduce a new hidden variable
ri ∈ {0, 1}. If object i is (not) relevant, then ri = 1 (0).

In the case of one-domain IRM (D×D→ {0, 1}), our SIRM
is described as follows:

φ|a, b ∼ Beta (a, b) , (10)
θk,l|ck,l, dk,l ∼ Beta

(
ck,l, dk,l

)
, (11)

λi|e, f ∼ Beta (e, f ) , (12)
ri|λi ∼ Bernoulli (λi) , (13)

zi|ri = 1, α ∼ CRP (α) , (14)
zi|ri = 0 ∼ I (zi = 0) , (15)

xi, j|Z, R, {θ}, φ ∼ Bernoulli
(
θ

rir j
zi,z jφ

1−rir j
)
. (16)

Equation 10 defines the distribution of a relation strength
for irrelevant data entries, and Eq. (11) defines a relation
strength for relevant data entries. Based on that assump-
tion, the relevant parameters are independently sampled for
each (k, l) cluster pair. λi in Eq. (12) denotes the probabil-
ity of a relevancy flag variable ri being 1. As explained,
ri = {0, 1} in Eq. (13) indicates whether the object i is rele-
vant or not.

The relevancy variables R = {ri}i=1,...,N affect the remaining
generative process. If ri = 1, then zi is chosen based on
the CRP as in Eq. (14). Otherwise (ri = 0), its cluster as-
signment is set to zi = 0 with a probability 1 as in Eq. (15).
I(·) denotes that the predicate always holds with a proba-
bility 1. The cluster 0 is an “irrelevant” cluster that is not
related to the CRP in Eq. (14). Finally, the observed rela-
tion xi, j is conditioned by Z and R. Equation 16 is slightly
tricky: if both items i and j are assumed as relevant objects,
i.e. ri = r j = 1, then “relevant” relation strength θ is used
as a parameter of a Bernoulli trial. Otherwise, “irrelevant”
relation strength φ is employed. These two equations indi-
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cate that the irrelevant object does not affect the clustering
by the CRP in terms of the CRP prior (Eq. (14)) nor the
likelihood (Eq. (16)). Thus, the SIRM focuses on relevant
objects and is able to effectively reconstruct the hidden re-
lation structure among these objects. A graphical model of
one-domain SIRM is illustrated in Fig. 2(B).

In the case of cross-domain relational data (D1 × D2 →
{0, 1}), we need to augment the “two-domain” IRM. Its
extension is easy: we just double the variables of “one-
domain” SIRM. The generative model for the two-domain
SIRM is described as follows:

φ|a, b ∼ Beta (a, b) , (17)
θk,l|ck,l, dk,l ∼ Beta

(
ck,l, dk,l

)
, (18)

λ1,i|e1, f1 ∼ Beta (e1, f1) , (19)
λ2, j|e2, f2 ∼ Beta (e2, f2) , (20)

r1,i|λ1,i ∼ Bernoulli
(
λ1,i
)
, (21)

r2, j|λ2, j ∼ Bernoulli
(
λ2, j

)
, (22)

z1,i|r1,i = 1, α1 ∼ CRP (α1) , (23)
z1,i|r1,i = 0 ∼ I (z1,i = 0

)
, (24)

z2, j|r2, j = 1, α2 ∼ CRP (α2) , (25)

z2, j|r2, j = 0 ∼ I
(
z2, j = 0

)
, (26)

xi, j|Z1,Z2,R1,R2,{θ},φ ∼ Bernoulli
(
θ

r1,ir2, j
z1,i,z2, jφ

1−r1,ir2, j
)
. (27)

Equation 19, Eq. (21), Eq. (23), and Eq. (24) define param-
eters and hidden variables for the first domain D1. Equation
20, Eq. (22), Eq. (25), and Eq. (26) define parameters and
hidden variables for the second domain D2.

We explain the virtues of SIRM for highly noisy and sparse
relational data using Fig. 1, comparing panels (B) and (C).
Panel (C) presents a typical clustering result of SIRM.
SIRM automatically excludes irrelevant data entries to the
lower right region thanks to relevance variables ri. Because
of Eq. (14) and Eq. (15), irrelevant objects have no impact
on the clustering of the detailed structure of relevant data
entries in the upper left region.

SIRM also solves the problem of minute clusters. One rea-
son for generating so many minute clusters in IRM is that
IRM partitions every object to one of K clusters. There-
fore, a noisy random object tends to fit as an independent
cluster. However, in SIRM only relevant objects are par-
titioned by CRP. Thus, most of the clusters in the color-
lines-surrounded upper left region in Fig. 1 (C) have some
meaning, including minute clusters. On the contrary, noisy
minute clusters will be merged in the irrelevant region.

3.1 Related Works

The proposed SIRM is most related to the feature (variable)
selection models like [Hoff, 2005], but is also connected to
sparse latent variable models and bi-clustering techniques.

Carvalho et al. applied a latent factor model for regres-
sion tasks of cancer characteristics using high-dimensional
gene expression feature vectors [Carvalho et al., 2008]. In
their work, sparsity priors were placed on loading matrices
of the regression to pick up a limited number of effective
elements. They also studied the use of Dirichlet Process
to discover the unknown number of latent factors. Miller
et al. [Miller et al., 2009] incorporated binary variable se-
lection variables in the context of relational data analysis.
In their model, each object is characterized by binary vari-
ables that select appropriate latent features to describe the
object. Their model extends the number of latent features
to infinite (so as the binary variables), and is formulated
using the Indian Buffet Process [Griffiths and Ghahramani,
2011]. One major difference between the model of [Miller
et al., 2009] and our proposed model is the usage of binary
variables. The former employs binary variables to select
latent features, while the latter, our model, employs binary
variables to select relevant and irrelevant observed data en-
tries: i.e. objects.

In the context of bi-clustering of relational data, Sutskever
et al. proposed a bi-clustering model called Bayesian Clus-
tered Tensor Factorization (BCTF) [Sutskever et al., 2010]
. BCTF is a richer bi-clustering model that the relations
itself can be decomposed into several clusters while our
model (and the original IRM) considers only one type of
relations. Instead, our model introduces the binary vari-
ables to cope with the sparsity problem mentioned above
while BCTF does not directly solve this problem. In [Bor-
des et al., 2011], the authors proposed a novel technique to
embed objects into a low-dimensional vector space using
object-object multi-type relations in knowledge bases such
as WordNet. Since the goals of [Bordes et al., 2011] and
our work is different, soft clustering of objects like vec-
tor embedding could be another possible application of our
“subset” model.

4 Inference

Since SIRM is a rather simple probabilistic model, a variety
of inference procedures are applicable for solving SIRM.
In this paper, we briefly explain the inference algorithm of
one-domain SIRM by Gibbs sampling. We can marginalize
out all parameters φ, θ, λ thanks to the conjugacy. Also we
fit hyperparameters α, a, b, c, d, e, f by posterior sampling
assuming Gamma priors.

For detailed derivations and the inference algorithms for
the two-domain SIRM, please consult the supplemental
material.

4.1 Sampling Hidden Variables

We found that simultaneous sampling of ri and zi leads to
a simpler inference for SIRM than deriving a solution for



Katsuhiko Ishiguro, Naonori Ueda, Hiroshi Sawada

(A) (B)

z i

x i, j

α

θk, l

ck, l

dk, l

k = 1, 2, ...

l = 1, 2, ...

j = 1, ..., N

i = 1, ..., N

i = 1, ..., N

z i

x i, j

r i

λ i

αfe

φ θk, l

a

b

ck, l

dk, l

k = 1, 2, ...

l = 1, 2, ...

j = 1, ..., N

i = 1, ..., N

i = 1, ..., N

Figure 2: Graphical models. Circle node denotes probabilistic variables, rectangle nodes denote constants, and shaded
nodes represent observations. (A): Original one-domain IRM. (B): Proposed one-domain SIRM.

each variable independently.

Let us denote the current number of realized clusters by
K. Regarding the sampling of the ith object, we divide the
observations X into two parts: data entries that relate to
the object i X+i = {xi,·, x·,i}, and those that do not X\i =
{X \ X+i}. Also we define the following quantities:

nk,l =
∑

i

∑
j

rizi,kr jz j,lxi, j, (28)

n̄k,l =
∑

i

∑
j

rizi,kr jz j,l

(
1 − xi, j

)
, (29)

mk =
∑

i

rizi,k, (30)

q =
∑

i

∑
j

(
1 − rir j

)
xi, j, (31)

q̄ =
∑

i

∑
j

(
1 − rir j

) (
1 − xi, j

)
. (32)

The superscript of \i denotes the above statistics computed
on X\i. Also, the superscript +i0, +ik denotes that the same
statistics are computed on X+i assuming ri = 0 or {ri =

1, zi = k}, respectively.

We formulate the Gibbs posterior of {ri, zi} as follows:

p
(
zi = k, ri|X, Z\i, R\i

)
∝ p
(
zi = k, ri|Z\i, R\i

)
× p
(
X+i|zi = k, ri, X\i, Z\i, R\i

)
(33)

The first term of the right hand of Eq. (33) is straightfor-
ward. Multiplying Eq. (13) and Eq. (14) and marginalizing

λi out using the conjugacy, we obtain the following:

p
(
zi = k, ri|Z\i, R\i

)

∝


f +
∑

i′,i (1 − ri′) ri = 0, zi = 0,(
e +
∑

i′,i ri′
) m\ik

α+
∑

k m\ik
ri = 1, zi = k ∈ {1, 2, . . . ,K},(

e +
∑

i′,i ri′
) α

α+
∑

k m\ik
ri = 1, zi = K + 1.

(34)

The second term of the right hand of Eq. (33) requires some
computations. This is a likelihood term; thus we separately
present the final results for ri = 0 and ri = 1.

p
(
X+i|zi = 0, ri = 0, X\i, Z\i, R\i

)
=

B
(
a + q\i + q+i0, b + q̄\i + q̄+i0

)
B
(
a + q\i, b + q̄\i

) (35)

p
(
X+i|zi = k, ri = 1, X\i, Z\i, R\i

)
=

B
(
a + q\i + q+i1k, b + q̄\i + q̄+i1k

)
B
(
a + q\i, b + q̄\i

)
×

B
(
ck,k + n\ik,k + n+i1k

k,k , dk,k + n̄\ik,k + n̄+i1k
k,k

)
B
(
ck,k + n\ik,k, dk,k + n̄\ik,k

)
×
∏
l,k

B
(
ck,l + n\ik,l + n+i1k

k,l , dk,l + n̄\ik,l + n̄+i1k
k,l

)
B
(
ck,l + n\ik,l, dk,l + n̄\ik,l

)
×
∏
l,k

B
(
cl,k + n\il,k + n+i1k

l,k , dl,k + n̄\il,k + n̄+i1k
l,k

)
B
(
cl,k + n\il,k, dl,k + n̄\il,k

) (36)
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4.2 Posteriors of parameters

Though all parameters are marginalized out during the in-
ference, the posteriors of parameters may be useful in many
cases. Here we present these posteriors for that purpose.

p (φ|X, Z, R) = Beta (a + q, b + q̄) (37)
p
(
θk,l|X, Z, R

)
= Beta

(
ck,l + nk,l, dk,l + n̄k,l

)
(38)

p (λi|R) = Beta (e + ri, f + (1 − ri)) (39)

5 Experiments

5.1 Data

We evaluated the performance of our methods with original
IRMs using synthetic data and real data.

For synthetic data, we assume a sparse data scenario: i.e.
the irrelevant objects have very few relation observations,
and relevant objects have some dense relationships among
them. We have prepared two datasets for one-domain mod-
els and two-domain models, respectively. For one-domain
models, N = 500 or N = 1, 000 while the number of rel-
evant objects is fixed at 50. The ground truth number of
hidden clusters among relevant objects is fixed at K = 3 for
each data. For two-domain models, {N1,N2} = {400, 500}
or {800, 900}. The number of relevant objects is again fixed
at 40 for domain 1, and 50 for domain 2. The ground truth
number of hidden clusters among relevant objects is fixed
at K1 = 4 and K2 = 5 for each data.

We choose the Enron e-mail dataset [Klimat and Yang,
2004] as an example of a real-world one-domain dataset,
and it is used in many studies [Tang et al., 2008, Fu et al.,
2009, Ishiguro et al., 2010]. We extracted monthly trans-
actions of e-mails sent in 2001. The dataset contained
N = 151 company members of Enron. xi, j = 1(0) if there is
(not) an e-mail sent from a member i to a member j. Out of
twelve months, we selected the transactions of August and
October because these two periods were milestones of the
Enron scandal: the CEO of Enron resigned in August, and
the accounting scandal was first reported in October.

As real-world cross domain relational data, we collected
log data of an online cartoon distribution service for mo-
bile phones in Japan. With this service, users pay monthly
to read cartoons on their phones. Thus, some users pur-
chased an item more than once to read it over the course of
a month. Some cartoons have several volumes, and we re-
garded a cartoon that had several volumes as one item. The
first domain index i corresponds to a user, and the second
domain index j corresponds to a cartoon item. We selected
N1 = 1000 users’ records randomly. The number of car-
toon items is N2 = 316. We prepared two datasets (Cartoon
1, Cartoon 2), each of which randomly and independently
subsamples users.

Table 1: Test data log likelihood per test data entry on one-
domain data. Averages of 20 runs are presented, parenthe-
sized numbers indicate standard deviations. Larger values
are better.

Dataset IRM SIRM
synth (small) -0.140 (0.007) -0.098 (0.001)
synth (large) -0.143 (0.082) -0.097 (0.000)
Enron (Aug.) -0.128 (0.012) -0.112 (0.006)
Enron (Oct.) -0.173 (0.006) -0.150 (0.004)

Table 2: Test data log likelihood per test data entry
on cross-domain data. Averages of 20 runs are pre-
sented, parenthesized numbers indicate standard devia-
tions. Larger values are better.

Dataset IRM SIRM
synth (small) -0.094 (0.007) -0.060 (0.000)
synth (large) -0.103 (0.006) -0.062 (0.000)
Cartoon 1 -0.130 (0.001) -0.122 (0.012)
Cartoon 2 -0.133 (0.013) -0.127 (0.007)

Please note that the sizes of these datasets are larger com-
pared to the original IRM paper [Kemp et al., 2006]. This
is because our goal is to build a model that is capable of
effectively analyzing larger and noisy relational data.

5.2 Quantitative Results

For quantitative comparisons, we compute test data log
likelihood per test data entry. For each experimental run,
we randomly pick test data entries from the matrix X (ap-
proximately 1% of the entire X entries), and hide them
during the training period. After the Gibbs inference of
the model is completed, we compute the log likelihoods of
these test data entries. To align the different number of test
data entries, we divide the log likelihoods by the number
of test data entries at that run. We tested several initial hy-
perparameter settings, and report the best result for each
model and the dataset.

Table 1 summarizes the test data log likelihoods on one-
domain models. Also, we show the test data log likelihoods
on two-domain models in Table 2. As evident from the
table, the proposed SIRM is better than the original IRM
for all datasets.

5.3 Qualitative Results on One-domain Data

Next, we qualitatively examine the clustering results of
one-domain real data from Enron. The raw data and clus-
tering results of the August data (Enron (Aug.)) are pre-
sented in Fig. 1. As evident from the figure, SIRM nicely
excludes irrelevant objects (company members) and finds
some detailed clusters within relevant objects.



Katsuhiko Ishiguro, Naonori Ueda, Hiroshi Sawada

s
e

n
d

in
g

 m
e

m
b

e
r 

i 
(s

o
rt

e
d

)

receiving member  j (sorted)

Clustering results of IRM
k = 1 k = 2 k = 3

k 
=

 1
k 

=
 2

k 
=

 3

s
e

n
d

in
g

 m
e

m
b

e
r 

i 
(s

o
rt

e
d

)

receiving member  j (sorted)

Clustering results of SIRM

k = 1 k = 2 k = 3 k = 4 k = 5

k 
=

 1
k 

=
 2

k 
=

 3
k 

=
 4

k 
=

 5

(A) (B)

Figure 3: Typical clustering results of Enron (Oct.) dataset (best viewed in color). (A) Clustering result by IRM. (B)
Clustering result by SIRM.

In this section, we closely look at the results on the Oc-
tober data. The clustering results of IRA and SIRM on
the October data (Enron (Oct.)) are presented in Fig. 3(A)
and Fig. 3(B), respectively. Comparing these two figures,
the most remarkable difference is the number of irrelevant
objects in SIRM. Out of N = 151 objects, 64 objects are
assumed irrelevant (ri = 0). Most of these irrelevant ob-
jects are merged in the first cluster in IRM, resulting in a
very sparse and non-informative cluster. On the other hand,
clusters in SIRM are much tighter and show strong (dense)
connections among the clusters.

The second cluster (k = 2) in SIRM is a set of VIP mem-
bers. The objects assigned to this cluster include presidents
of Enron companies such as Enron online and Enron Global
Markets, a governmental relation executive, a manager of
chief risk management officers, an in-house lawyer, a head
manager of risk management, several vice presidents and
the founder of Enron. We thought that these VIP mem-
bers must have had to keep in touch during this month to
deal with the accounting scandal news. We note that those
members are also clustered in the second cluster of the IRM
result (Fig. 3(A)). However, in the IRM result, it is difficult
to derive this VIP interpretation because other members are
also collected in the same cluster. This comparison indi-
cates that relevant variables ri effectively exclude irrelevant
objects, and “concentrate” the meaningful memberships.

One interesting point is that the third (k = 3) cluster by
IRM is almost the same with the third cluster by SIRM.
This cluster consists of employees and managers related to
pipeline and regulatory business. Clustered company mem-
bers include a manager and a vice president of regulatory
affairs, a director of pipeline business, and a president of
Enron Gas Pipeline.

As discussed, minute clusters in SIRM are meaningful
since irrelevant objects are excluded already. In Fig. 3(B),
the fourth and fifth clusters are the ones. Both clusters have
only one object as a cluster member. However these objects
show very active relations among other clusters. because
these two objects correspond to a manager and the COO.
As expected, the IRM could not find these clusters.

5.4 Qualitative Results on Two-domain Data

Next, we qualitatively examine the result of two-domain
real data from Cartoon purchase data. Clustering results
are almost the same between two datasets. The clustering
results of IRM and SIRM on the Cartoon data are presented
in Fig. 4(A) and Fig. 4(B), respectively.

Figure 4(A) shows a typical example of using IRM on real-
world dataset. Because of noisy inputs and many objects,
the first domain D1 (users, the vertical axis) and the second
domain D2 (cartoon items, the horizontal axis) have many
minute clusters that prevent an effective interpretation of
the clustering results. On the other hand, SIRM effectively
excludes irrelevant cartoon items, and results in a relatively
moderate numbers of clusters for both domains (Fig. 4(A)).

Since we have no information about the users (the first do-
main), we focus on the clusters of the second domains in
the SIRM result (Fig. 4(B)). The second cluster (l = 2)
of the second domain in SIRM is a cluster of major car-
toons for youngsters. Genres of cartoons in this clus-
ter is mixed: romantic comedies for girls and ladies (e,g,
“Sensual Phrase”), action mangas for boys (e.g, “Dev-
ilman”, “BASARA”), situation comedies (e.g. “Crayon
Shin-chan”) and others. However, cartoon items in this
cluster have several common points to be major such as:
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Figure 4: Typical clustering results of Cartoon dataset (best viewed in color). (A) Clustering result by IRM. (B) Clustering
result by SIRM.

1. Published in the major cartoon magazines, mainly tar-
geted for teenage boys and girls.

2. Animated as TV programs or OVAs. Some cartoons
are even filmized.

3. Relatively recent cartoons are assembled. Older car-
toons are famous among recent young readers because
they are reprinted over years.

The third cluster (l = 3) of the second domain in SIRM
are a set of cartoon items mainly targeted at older (20-40
year) male audiences. This cluster includes hard cyber-
punks (e.g. “Appleseed”), stories about outlaws and gang-
sters (e.g. “Ore-no-Sora”, “Lupin III”), and stories about
the historical heroes (of Japan and China).

The fourth cluster (l = 4) of the second domain in SIRM
would be collected through a different perspective. This
cluster consists of a mixture of different kinds of car-
toons such that some oldies (e.g. “Cyborg 009”, “Dokonjo
Gaeru”) and recent romance stories that were extraordinary
popular among the middle-aged (“Winter Sonata”). Our
guess is that this cluster is a set of cartoons popular for
male audiences of specific ages (around 30 to 50). The
oldies were popular when the audiences were very young,
while the recent stories started the boom when the audi-
ences got matured. Assuming from this observation, we
can infer that the fifth cluster (k = 5) of the first domain
would be the users with middle-aged males.

These qualitative results indicate that SIRM is useful for
noisy and sparse real-world cross-domain relational data
in the sense that it can extract interpretable and interesting
relations.

6 Conclusion
In this paper, we have addressed the problem of noisiness
and sparseness of the relational data. We have introduced
a notion of the relevancy of objects in relational data, and
proposed an extension of the IRM incorporating the rele-
vance variables. The proposed model partitions relevant
rows and columns of a given relational data matrix, while
automatically excludes irrelevant entries. Thus the IRM
analysis on the core relations is not annoyed by noise ob-
servations. Through experiments, we confirmed that the
proposed SIRM is superior in test data log likelihoods. We
also observed that the SIRM successfully extracted hidden
clusters of core relations from real-world datasets.

As future work, one promising way is to derive a dy-
namic extension of SIRM similar to a dynamic version
of IRM [Ishiguro et al., 2010]. Because the relationships
among objects are inherently time-varying, the relevancy of
an object in the relations is also time-varying. It is also im-
portant to verify the performance of SIRM against higher-
order tensor relations such as three-place relations.

The proposed model is a bold simplification of the actual
data generation process. For example, the proposed model
does not care why an item is assumed relevant or irrelevant
in purchase data. However, revealing such reasons (e.g.
shops to check items, or budget constraints of users) is use-
ful for further clustering. This simple example indicates
that there are still many open problems concerning the rel-
evance clustering models.
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