A supplemental material for "Subset Infinite Relational Models"

Katsuhiko Ishiguro
Naonori Ueda
Hiroshi Sawada
NTT Communication Science Laboratories, NTT Corporation. 619-0237 Kyoto, Japan.
\{ishiguro.katsuhiko , ueda.naonori , sawada.hiroshi\} @lab.ntt.co.jp

Abstract

This material provides additional information about the paper "Subset Infinite Relational Models" appeared in AISTATS 2012.

\section*{1 A Gibbs solution for the one-domain SIRM}

1.1 The generative model

First, we review the full description of the "one-domain" SIRM model.

$$
\begin{align*}
\phi \mid a, b & \sim \operatorname{Beta}(a, b), \tag{1}\\
\theta_{k, l} \mid c_{k, l}, d_{k, l} & \sim \operatorname{Beta}\left(c_{k, l}, d_{k, l}\right), \tag{2}\\
\lambda_{i} \mid e, f & \sim \operatorname{Beta}(e, f), \tag{3}\\
r_{i} \mid \lambda_{i} & \sim \operatorname{Bernoulli}\left(\lambda_{i}\right), \tag{4}\\
z_{i} \mid r_{i}=1, \alpha & \sim \operatorname{CRP}(\alpha) \tag{5}\\
z_{i} \mid r_{i}=0 & \sim \mathbb{I}\left(z_{i}=0\right), \tag{6}\\
x_{i, j} \mid \boldsymbol{Z}, \boldsymbol{R},\{\theta\}, \phi & \sim \operatorname{Bernoulli}\left(\theta_{z_{i}, z_{j}}^{r_{j} r_{j}} \phi^{1-r_{i} r_{j}}\right) . \tag{7}
\end{align*}
$$

Eq. (1) defines the distribution of a relation strength for irrelevant data entries ϕ. Eq. (2) defines an relation strength from the clsuter k to cluster l for relevant data entries. $\lambda_{i}, i=1,2, \ldots, N$ in Eq. (3) denotes the probability of a relevancy flag variable r_{i} being $1 . r_{i}=\{0,1\}$ in Eq. (4) indicates whether the object i is relevant or not.
$z_{i}=k \in\{1,2, \ldots\}$ indicates the clsuter assignment of the object $i . z_{i}$ is also represented as a 1 -of-K type vector: i.e. if $z_{i}=k$, then $z_{i, k}=1$ and $z_{i, k^{\prime} \neq k}=0$. The relevancy variables $\boldsymbol{R}=\left\{r_{i}\right\}_{i=1, \ldots, N}$ affects the remaining generative process. If $r_{i}=1$, then z_{i} is chosen based on the CRP as in Eq. (5). Otherwise ($r_{i}=0$), then its cluster assignments is set to

[^0]$z_{i}=0$ with a probability 1 as in Eq. (6). $\mathbb{I}(\cdot)$ denotes that the predicate always hold with a probability 1 . Finally, the observed relation $x_{i, j}, 1 \leq i, j \leq N$ is conditioned by \boldsymbol{Z} and \boldsymbol{R}. Eq. (7) is slightly tricky: if the both of items i and j is assumed as relevant objects i.e. $r_{i}=r_{j}=1$, then "relevant" relation strengths θ is used as a parameter of a Bernoulli trial. Otherwise, "irrelevant" relation strength ϕ is employed.

1.2 Probability distributions

$$
\begin{equation*}
p(\phi ; a, b)=\phi^{a-1}(1-\phi)^{b-1} B^{-1}(a, b) . \tag{8}
\end{equation*}
$$

$$
\begin{align*}
p(\boldsymbol{\Theta}= & \{\theta\} ; c, d) \\
& =\prod_{k=1} \prod_{l=1} \theta_{k, l}^{c_{k, l}-1}\left(1-\theta_{k, l}\right)^{d_{k, l}-1} B^{-1}\left(c_{k, l}, d_{k, l}\right) \tag{9}\\
p(\boldsymbol{\Lambda}= & \{\lambda\} ; e, f)=\prod_{i} \lambda_{i}^{e-1}\left(1-\lambda_{i}\right)^{f-1} B^{-1}(e, f) \tag{10}\\
& p(\boldsymbol{R}=\{r\} ; \boldsymbol{\Lambda})=\prod_{i} \lambda_{i}^{r_{i}}\left(1-\lambda_{i}\right)^{1-r_{i}} . \tag{11}
\end{align*}
$$

When the number of the clusters is K excluding the 0th cluster,

$$
\begin{equation*}
p(\boldsymbol{Z}=\{z\} ; \boldsymbol{R}, \alpha)=\alpha^{K} \frac{\prod_{k=1}^{K}\left(m_{k}-1\right)!}{\prod_{i=1}^{M}(\alpha+i-1)}, \tag{12}
\end{equation*}
$$

where m_{k} is defined later in Eq. (16), and $M=\sum_{k} m_{k}$.

$$
\begin{align*}
p(\boldsymbol{X} & =\{x\} ; \boldsymbol{Z}, \boldsymbol{R}, \boldsymbol{\Theta}, \phi) \\
= & \prod_{i=1}^{N} \prod_{j=1}^{N}\left(\theta_{z i, z_{j}}^{r_{z} r_{j}} \phi^{1-r_{i} r_{j}}\right)^{x_{i, j}}\left(1-\theta_{z_{i}, z_{j}}^{r_{i} r_{j}} \phi^{1-r_{i} r_{j}}\right)^{\left(1-x_{i, j}\right)} \\
= & \prod_{i} \prod_{j} \prod_{k} \prod_{l}\left[\theta_{k, l}^{x_{i, j}}\left(1-\theta_{k, l}\right)^{\left(1-x_{i, j}\right.}\right]^{r_{i z i} k_{i} r_{j} z_{j, l}} \\
& \quad \times \prod_{i} \prod_{j}\left[\phi^{x_{i, j}}(1-\phi)^{\left(1-x_{i, j}\right)}\right]^{\left(1-r_{i} r_{j}\right)} \tag{13}
\end{align*}
$$

where $z_{i, k}$ and $z_{j, l}$ are the aforementioned 1-of-K vector representations.

1.3 Sampling Hidden Variables

As described in the main article paper, simultaneous sampling of r_{i} and z_{i} leads to a simpler inference for SIRM than deriving a solution for each variable independently. Therefore we explain how to simultaneously sample r_{i} and z_{i}.

Regarding the sampling of the i th object, let us denote the current number of realized clusters by K. And we divide the observations \boldsymbol{X} into two parts: data entries who relates to the object $i \boldsymbol{X}^{+i}=\left\{x_{i,}, x_{\cdot, i}\right\}$, and those who does not $\boldsymbol{X}^{\backslash i}=$ $\left\{\boldsymbol{X} \backslash \boldsymbol{X}^{+i}\right\}$. Also we define the following quantities:

$$
\begin{align*}
n_{k, l} & =\sum_{i} \sum_{j} r_{i} z_{i, k} r_{j} z_{j, l} x_{i, j}, \tag{14}\\
\bar{n}_{k, l} & =\sum_{i} \sum_{j} r_{i} z_{i, k} r_{j} z_{j, l}\left(1-x_{i, j}\right), \tag{15}\\
m_{k} & =\sum_{i} r_{i} z_{i, k}, \tag{16}\\
q & =\sum_{i} \sum_{j}\left(1-r_{i} r_{j}\right) x_{i, j}, \tag{17}\\
\bar{q} & =\sum_{i} \sum_{j}\left(1-r_{i} r_{j}\right)\left(1-x_{i, j}\right) . \tag{18}
\end{align*}
$$

The superscript $\backslash i$ denotes the above statistics computed on $\boldsymbol{X}^{\backslash i}$. Also the superscript $+i 0,+i k$ denotes that the same statistics computed on \boldsymbol{X}^{+i} assuming $r_{i}=0$ or $\left\{r_{i}=1, z_{i}=\right.$ $k\}$, respectively.

We formulate the Gibbs posterior of $\left\{r_{i}, z_{i}\right\}$ as follows:

$$
\begin{align*}
p\left(z_{i}=k, r_{i} \mid \boldsymbol{X}, \boldsymbol{Z}^{\backslash i}, \boldsymbol{R}^{\backslash i}\right) & \propto p\left(z_{i}=k, r_{i} \mid \boldsymbol{Z}^{\backslash i}, \boldsymbol{R}^{\backslash i}\right) \\
& \times p\left(\boldsymbol{X}^{+i} \mid z_{i}=k, r_{i}, \boldsymbol{X}^{\backslash i}, \boldsymbol{Z}^{\backslash i}, \boldsymbol{R}^{\backslash i}\right) \tag{19}
\end{align*}
$$

The first term of the right hand of Eq. (19) is easy. Multiply Eq. (11), and Eq. (12) and marginalize λ_{i} out thanks to the conjugacy.

$$
\begin{gather*}
p\left(z_{i}=k, r_{i} \mid \boldsymbol{Z}^{\backslash i}, \boldsymbol{R}^{\backslash i}\right) \propto p\left(z_{i}=k \mid r_{i}, \boldsymbol{Z}^{\backslash i}\right) p\left(r_{i} \mid \boldsymbol{R}^{\backslash i}\right) \\
=\left[p\left(z_{i}=k \mid r_{i}=1, \boldsymbol{Z}^{\backslash i}\right)+p\left(z_{i}=k \mid r_{i}=0\right)\right] \\
\times \int p\left(r_{i} \mid \lambda_{i}\right) p\left(\lambda_{i} \mid \boldsymbol{R}^{\backslash i}\right) d \lambda_{i} \\
\propto \begin{cases}f+\sum_{i^{\prime} \neq i}\left(1-r_{i^{\prime}}\right) & r_{i}=0, z_{i}=0, \\
\left(e+\sum_{i^{\prime} \neq i} r_{i^{\prime}}\right) \frac{m_{k}^{i}}{\alpha+\sum_{k} m_{k}^{i(i}} & r_{i}=1, z_{i}=k \in\{1,2, \ldots, K\}, \\
\left(e+\sum_{i^{\prime} \neq i} r_{i^{\prime}}\right) \frac{\alpha}{\alpha+\sum_{k} m_{k}^{i(i}} & r_{i}=1, z_{i}=K+1 .\end{cases} \tag{20}
\end{gather*}
$$

The second term of the right hand of Eq. (19) requires some computations. To see this, we rewrite the second term in
more detailed way:

$$
\begin{align*}
& p\left(\boldsymbol{X}^{+i} \mid z_{i}=k, r_{i}, \boldsymbol{X}^{\backslash i}, \boldsymbol{Z}^{\backslash i}, \boldsymbol{R}^{\backslash i}\right) \\
= & \int p\left(\boldsymbol{X}^{+i} \mid z_{i}=k, r_{i}, \phi, \boldsymbol{\Theta}\right) p\left(\phi, \boldsymbol{\Theta} \mid \boldsymbol{X}^{\backslash i}, \boldsymbol{Z}^{\backslash i}, \boldsymbol{R}^{\backslash i}\right) d \phi d \boldsymbol{\Theta}, \tag{21}
\end{align*}
$$

where $\boldsymbol{\Theta}=\left\{\theta_{k, l}\right\}$. First, we need to compute the posterior of paramters ϕ and θ excluding the information of the i the object. Then we compute the marginal lieklihood of \boldsymbol{X}^{+i} given z_{i} and r_{i}.

Using Eq. (9), Eq. (8) and Eq. (13), the posterior of parameteres is calculated as follows:

$$
\begin{align*}
p\left(\phi, \boldsymbol{\Theta} \mid \boldsymbol{Z}^{\backslash i}, \boldsymbol{R}^{\backslash i}, \boldsymbol{X}^{\backslash i}\right) & \propto p\left(\boldsymbol{X}^{\backslash i} \mid \phi, \boldsymbol{\Theta}, \boldsymbol{Z}^{\backslash i}, \boldsymbol{R}\right) p(\phi, \boldsymbol{\Theta}) \\
& =\operatorname{Beta}\left(\phi ; a+q^{\backslash i}, b+Q^{\backslash i}\right) \\
& \times \prod_{k} \prod_{l} \operatorname{Beta}\left(\theta_{k, l} ; c_{k, l}+n_{k, l}^{\backslash i}, d_{k, l}+N_{k, l}^{\backslash i}\right) \tag{22}
\end{align*}
$$

As you can see in Eq. (22), the posterior is a product of Beta distributions. Since $p\left(\boldsymbol{X}^{+i} \mid z_{i}=k, r_{i}, \boldsymbol{\phi}, \boldsymbol{\Theta}\right)$ is a product of Bernoulli distributions (Eq. (13)), again we can use conjugacy to obtain the second term of the right hand of Eq. (19). Then we have the following euqations:

$$
\begin{align*}
p\left(\boldsymbol{X}^{+i} \mid z_{i}=0, r_{i}\right. & \left.=0, \boldsymbol{Z}^{\backslash i}, \boldsymbol{R}^{\backslash i}\right) \\
& =\frac{B\left(a+q^{\backslash i}+q^{+i 0}, b+\bar{q}^{\backslash i}+\bar{q}^{+i 0}\right)}{B\left(a+q^{\backslash i}, b+\bar{q}^{\backslash i}\right)}, \tag{23}
\end{align*}
$$

and

$$
\begin{align*}
p\left(\boldsymbol{X}^{+i} \mid z_{i}=\right. & \left.k, r_{i}=1, \boldsymbol{Z}^{\backslash i}, \boldsymbol{R}^{\backslash i}\right) \\
& =\frac{B\left(a+q^{\backslash i}+q^{+i l k}, b+\bar{q}^{\backslash i}+\bar{q}^{+i l k}\right)}{B\left(a+q^{\backslash i}, b+\bar{q}^{i i}\right)} \\
\times & \frac{B\left(c_{k, k}+n_{k, k}^{\backslash i}+n_{k, k}^{+i l k}, d_{k, k}+\bar{n}_{k, k}^{\backslash i}+\bar{n}_{k, k}^{+i l k}\right)}{B\left(c_{k, k}+n_{k, k}^{\backslash i}, d_{k, k}+\bar{n}_{k, k}^{\backslash i}\right)} \\
& \times \prod_{l \neq k} \frac{B\left(c_{k, l}+n_{k, l}^{\backslash i}+n_{k, l}^{+i l k}, d_{k, l}+\bar{n}_{k, l}^{\backslash i}+\bar{n}_{k, l}^{+i l k}\right)}{B\left(c_{k, l}+n_{k, l}^{\backslash i}, d_{k, l}+\bar{n}_{k, l}^{\backslash i}\right)} \\
\times & \prod_{l \neq k} \frac{B\left(c_{l, k}+n_{l, k}^{\backslash i}+n_{l, k}^{+i l k}, d_{l, k}+\bar{n}_{l, k}^{\backslash i}+\bar{n}_{l, k}^{+i l k}\right)}{B\left(c_{l, k}+n_{l, k}^{i}, d_{l, k}+\bar{n}_{l, k}^{\backslash i}\right)} . \tag{24}
\end{align*}
$$

1.4 Posteriors of parameters

$$
\begin{gather*}
p(\phi \mid \boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{R})=\operatorname{Beta}(a+q, b+\bar{q}) \tag{25}\\
p\left(\theta_{k, l} \mid \boldsymbol{X}, \boldsymbol{Z}, \boldsymbol{R}\right)=\operatorname{Beta}\left(c_{k, l}+n_{k, l}, d_{k, l}+\bar{n}_{k, l}\right) \tag{26}\\
p\left(\lambda_{i} \mid \boldsymbol{R}\right)=\operatorname{Beta}\left(e+r_{i}, f+\left(1-r_{i}\right)\right) \tag{27}
\end{gather*}
$$

2 A Gibbs solution for two-domain SIRM

2.1 The genarative model

In the case of cross-domain relational data ($D_{1} \times D_{2} \rightarrow$ $\{0,1\}$), we need to augment the "two-domain" IRM model. Its extension is easy: we just double the variables of "onedomain" SIRM. The generative model for the two-domain SRIM is described as follows:

$$
\begin{align*}
\phi \mid a, b & \sim \operatorname{Beta}(a, b), \tag{28}\\
\theta_{k, l} \mid c_{k, l}, d_{k, l} & \sim \operatorname{Beta}\left(c_{k, l}, d_{k, l}\right), \tag{29}\\
\lambda_{1, i} \mid e_{1}, f_{1} & \sim \operatorname{Beta}\left(e_{1}, f_{1}\right), \tag{30}\\
\lambda_{2, j} \mid e_{2}, f_{2} & \sim \operatorname{Beta}\left(e_{2}, f_{2}\right), \tag{31}\\
r_{1, i} \mid \lambda_{1, i} & \sim \operatorname{Bernoulli}\left(\lambda_{1, i}\right), \tag{32}\\
r_{2, j} \mid \lambda_{2, j} & \sim \operatorname{Bernoulli}\left(\lambda_{2, j}\right), \tag{33}\\
z_{1, i} \mid r_{1, i}=1, \alpha_{1} & \sim \operatorname{CRP}\left(\alpha_{1}\right), \tag{34}\\
z_{1, i} \mid r_{1, i}=0 & \sim \mathbb{I}\left(z_{1, i}=0\right), \tag{35}\\
z_{2, j} \mid r_{2, j}=1, \alpha_{2} & \sim \operatorname{CRP}\left(\alpha_{2}\right), \tag{36}\\
z_{2, j} \mid r_{2, j}=0 & \sim \mathbb{I}\left(z_{2, j}=0\right), \tag{37}\\
x_{i, j} \mid Z_{1}, \boldsymbol{Z}_{2}, \boldsymbol{R}_{1}, \boldsymbol{R}_{2},\{\theta\}, \phi & \sim \operatorname{Bernoulli}\left(\theta_{z_{1, i, l, j, j}}^{r_{1, i}, r_{2, j}} \phi^{1-r_{1, i} r_{2, j}}\right) . \tag{38}
\end{align*}
$$

Eq. (28) defines the distribution of a relation strength for irrelevant data entries ϕ. Eq. (29) defines an relation strength from the first domain clsuter k to the second domain cluster l for relevant data entries. $\lambda_{1, i}, i=1,2, \ldots, N_{1}$ in Eq. (30) denotes the probability of a relevancy flag variable r_{i} in the first domain being 1. $r_{1, i}=\{0,1\}$ in Eq. (32) indicates whether the object i of the first domain is relevant or not. $z_{1, i} \in\{1,2, \ldots\}$ indicates the clsuter assignment of the object i in the first domain. If $r_{1, i}=1$, then $z_{1, i}$ is chosen based on the CRP as in Eq. (34). Otherwise ($r_{1, i}=0$), then its cluster assignments is set to 0 as in Eq. (35). In a symmetric fashion, $\lambda_{2, j}, j=1,2, \ldots, N_{2}$ in Eq. (30), $r_{2, j}=\{0,1\}$ in Eq. (33), and $z_{2, j} \in\{1,2, \ldots\}$ are defined in the second domain.

Finally, the observed relation $x_{i, j}, 1 \leq i, j \leq N$ is conditioned by all hidden variables. If the both of items i and j is assumed as relevant objects i.e. $r_{1, i}=r_{2, j}=1$, then "relevant" relation strengths θ is used as a parameter of a Bernoulli trial. Otherwise, "irrelevant" relation strength ϕ is employed.

2.2 Probability distributions

$$
\begin{equation*}
p(\phi ; a, b)=\phi^{a-1}(1-\phi)^{b-1} B^{-1}(a, b) \tag{39}
\end{equation*}
$$

$$
\begin{align*}
p(\boldsymbol{\Theta}= & \{\theta\} ; c, d) \\
& =\prod_{k=1}^{K} \prod_{l=1}^{K} \theta_{k, l}^{c_{k, l}-1}\left(1-\theta_{k, l}\right)^{d_{k, l}-1} B^{-1}\left(c_{k, l}, d_{k, l}\right) \tag{40}
\end{align*}
$$

$$
\begin{equation*}
p\left(\lambda_{1}=\left\{\lambda_{1, i}\right\} ; e_{1}, f_{1}\right)=\prod_{i=1}^{N_{1}} \lambda_{1, i}^{e_{1}-1}\left(1-\lambda_{1, i}\right)^{f_{1}-1} B^{-1}\left(e_{1}, f_{1}\right) . \tag{41}
\end{equation*}
$$

$$
\begin{equation*}
p\left(\lambda_{2}=\left\{\lambda_{2, j}\right\} ; e_{2}, f_{2}\right)=\prod_{j=1}^{N_{2}} \lambda_{2, j}^{e_{2}-1}\left(1-\lambda_{2, j}\right)^{f_{2}-1} B^{-1}\left(e_{2}, f_{2}\right) . \tag{42}
\end{equation*}
$$

$$
\begin{equation*}
p\left(\boldsymbol{R}_{1}=\left\{r_{1, i}\right\} ; \lambda_{1}\right)=\prod_{i=1}^{N_{1}} \lambda_{1, i}^{r_{1, i}}\left(1-\lambda_{1, i}\right)^{1-r_{1, i}} . \tag{43}
\end{equation*}
$$

$$
\begin{equation*}
p\left(\boldsymbol{R}_{2}=\left\{r_{2, j}\right\} ; \lambda_{2}\right)=\prod_{j=1}^{N_{2}} \lambda_{2, j}^{r_{2, j}}\left(1-\lambda_{2, j}\right)^{1-r_{2, j}} . \tag{44}
\end{equation*}
$$

When the number of clusters in the first domain is K_{1} excluding the $k=0$ th cluster,

$$
\begin{equation*}
p\left(\boldsymbol{Z}_{1}=\left\{z_{1, i}\right\} ; \boldsymbol{R}_{1}, \alpha_{1}\right)=\alpha^{K_{1}} \frac{\prod_{k=1}^{K_{1}}\left(m_{1, k}-1\right)!}{\prod_{i=1}^{M_{1}}\left(\alpha_{1}+i-1\right)} \tag{45}
\end{equation*}
$$

where $m_{1, k}$ is defined in Eq. (50) and $M_{1}=\sum_{k} m_{1, k}$. Similary, when the number of clusters in the second domain is K_{2} excluding the $l=0$ th cluster,

$$
\begin{equation*}
p\left(\boldsymbol{Z}_{2}=\left\{z_{2, j}\right\} ; \boldsymbol{R}_{2}, \alpha_{2}\right)=\alpha^{K_{2}} \frac{\prod_{l=1}^{K_{2}}\left(m_{2, l}-1\right)!}{\prod_{j=1}^{M_{2}}\left(\alpha_{2}+j-1\right)} \tag{46}
\end{equation*}
$$

where $m_{2, l}$ is defined in Eq. (51) and $M_{2}=\sum_{l} m_{2, l}$.

$$
\begin{align*}
& p\left(\boldsymbol{X}=\{x\} ; \boldsymbol{R}_{1}, \boldsymbol{R}_{2}, \boldsymbol{Z}_{1}, \boldsymbol{Z}_{2}, \boldsymbol{\Theta}, \phi\right) \\
& =\prod_{i=1}^{N_{1}} \prod_{j=1}^{N_{2}}\left(\theta_{z_{1, i}, z_{2, j}}^{r_{1, i} r_{2, j}} \phi^{1-r_{1, i} r_{2, j}}\right)^{x_{i, j}}\left(1-\theta_{z_{1, i}, z_{2, j}}^{r_{1, i} r_{2, j}} \phi^{1-r_{1, i} r_{2, j}}\right)^{\left(1-x_{i, j}\right)} \\
& =\prod_{i=1}^{N_{1}} \prod_{j=1}^{N_{2}} \prod_{k=1}^{K_{1}} \prod_{l=1}^{K_{2}}\left[\theta_{k, l}^{x_{i, j}}\left(1-\theta_{k, l}\right)^{\left(1-x_{i, j}\right)}\right]^{r_{1, i} z_{1, i, k} r_{2, j} z_{2, j, l}} \\
& \tag{47}\\
& \times \prod_{i=1}^{N_{1}} \prod_{j=1}^{N_{2}}\left[\phi^{x_{i, j}}(1-\phi)^{\left(1-x_{i, j}\right)}\right]^{1-r_{1, i} r_{2, j}}
\end{align*}
$$

2.3 Sampling Hidden Variables

As in the case of the one-domain models, simultaneous sampling of r_{i} and z_{i} leads to a simpler inference algorithm. Further, solutions for two domains are completely symmetric. Thus, we only present the sampling scheme for $r_{1, i}$ and $z_{1, i}$.

Regarding the sampling of the i th object in the first domain, let us denote the current number of realized clusters in D_{1} and D_{2} by K_{1} and K_{2}, respectively. And we divide the observations \boldsymbol{X} into two parts: data entries who relates to the object $i X^{+i}=\left\{x_{i, j}\right\}_{j=1, \ldots, N_{2}}$, and those who does not
$\boldsymbol{X}^{\backslash i}=\left\{\boldsymbol{X} \backslash \boldsymbol{X}^{+i}\right\}$. Also we define the following quantities:

$$
\begin{align*}
n_{k, l} & =\sum_{i} \sum_{j} r_{1, i} z_{1, i, k} r_{2, j} z_{2, j, l} x_{i, j} \tag{48}\\
\bar{n}_{k, l} & =\sum_{i} \sum_{j} r_{1, i} z_{1, i, k} r_{2, j} z_{2, j, l}\left(1-x_{i, j}\right) \tag{49}\\
m_{1, k} & =\sum_{i} r_{1, i} z_{1, i, k} \tag{50}\\
m_{2, l} & =\sum_{j} r_{2, j} z_{2, j, l} \tag{51}\\
q & =\sum_{i} \sum_{j}\left(1-r_{1, i} r_{2, j}\right) x_{i, j} \tag{52}\\
\bar{q} & =\sum_{i} \sum_{j}\left(1-r_{1, i} r_{2, j}\right)\left(1-x_{i, j}\right) . \tag{53}
\end{align*}
$$

The superscript $\backslash i$ denotes the above statistics computed on $\boldsymbol{X}^{\backslash i}$. Also the superscript $+i 0,+i k$ denotes that the same statistics computed on \boldsymbol{X}^{+i} assuming $r_{1, i}=0$ or $\left\{r_{1, i}=1, z_{1, i}=k\right\}$, respectively.

We formulate the Gibbs posterior of $\left\{r_{i}, z_{i}\right\}$ as follows:

$$
\begin{align*}
p\left(z_{1, i}=\right. & \left.k, r_{1, i} \mid \boldsymbol{X}, \boldsymbol{Z}_{1}^{\backslash i}, \boldsymbol{Z}_{2}, \boldsymbol{R}_{1}^{\backslash i}, \boldsymbol{R}_{2}\right) \\
& \propto p\left(z_{1, i}=k, r_{1, i} \mid \boldsymbol{Z}_{1}^{\backslash i}, \boldsymbol{R}_{1}^{\backslash i}\right) \\
& \times p\left(\boldsymbol{X}^{+i} \mid z_{1, i}=k, r_{1, i}, \boldsymbol{Z}_{1}^{\backslash i}, \boldsymbol{Z}_{2}, \boldsymbol{R}_{1}^{\backslash i}, \boldsymbol{R}_{2}, \boldsymbol{X}^{\backslash i}\right) \tag{54}
\end{align*}
$$

We can obtain the first term of the right hand of Eq. (54) by following the computation of Eq. (20). We easily obtain the followings for the prior term:

$$
\begin{align*}
& p\left(z_{1, i}=k, r_{1, i} \mid \boldsymbol{Z}_{1, i i}, \boldsymbol{R}_{1, \backslash i}\right) \\
\propto & \begin{cases}f_{1}+\sum_{i^{\prime} \neq i}\left(1-r_{1, i^{\prime}}\right) & r_{1, i}=0, z_{1, i}=0 \\
\left(e_{1}+\sum_{i^{\prime} \neq i} r_{1, i^{\prime}}\right) \frac{m_{1, k}^{l^{i}}}{\alpha_{1}+\sum_{k} m_{1, k}^{i}} & r_{1, i}=1, z_{1, i}=k \in\left\{1, \ldots, K_{1}\right\} \\
\left(e_{1}+\sum_{i^{\prime} \neq i} r_{1, i^{\prime}}\right) \frac{\alpha_{1}}{\alpha_{1}+\sum_{k} m_{1, k}^{i, k}} & r_{1, i}=1, z_{1, i}=K_{1}+1\end{cases} \tag{55}
\end{align*}
$$

The second term of the right hand of Eq. (54) is a likelihood term. Since the domain is separated for this case, the resulting solution is much simpler thant the case of one-domain model. Again we just follow the same path with Eq. (23) and Eq. (24), we can easily compute the likelihood terms. The results are shonw below:

$$
\begin{array}{r}
p\left(\boldsymbol{X}^{+i} \mid z_{1, i}=0, r_{1, i}=0, \boldsymbol{Z}_{1, \backslash i}, \boldsymbol{Z}_{2}, \boldsymbol{R}_{1, \backslash i}, \boldsymbol{R}_{2}, \phi, \boldsymbol{\Theta}\right) \\
=\frac{B\left(a+q^{\backslash i}+q^{+i 0}, b+\bar{q}^{\backslash i}+\bar{q}^{+i 0}\right)}{B\left(a+q^{\backslash i}, b+\bar{q}^{\backslash i}\right)}, \tag{56}
\end{array}
$$

[^0]: Appearing in Proceedings of the $15^{\text {th }}$ International Conference on Artificial Intelligence and Statistics (AISTATS) 2012, La Palma, Canary Islands. Volume XX of JMLR: W\&CP XX. Copyright 2012 by the authors.

