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Abstract

We consider the problem of active learning
over the vertices in a graph, without fea-
ture representation. Our study is based on
the common graph smoothness assumption,
which is formulated in a Gaussian random
field model. We analyze the probability dis-
tribution over the unlabeled vertices condi-
tioned on the label information, which is a
multivariate normal with the mean being the
harmonic solution over the field. Then we
select the nodes to label such that the total
variance of the distribution on the unlabeled
data, as well as the expected prediction er-
ror, is minimized. In this way, the classifier
we obtain is theoretically more robust. Com-
pared with existing methods, our algorithm
has the advantage of selecting data in a batch
offline mode with solid theoretical support.
We show improved performance over existing
label selection criteria on several real world
data sets.

1 Introduction

In many domains of interest, data instances are con-
nected by edges representing certain relationships,
forming a graph structure. Graphs and feature vec-
tors are two alternatives to represent the data, and the
former is often more natural than the latter in many
data sets [9] including people linked by the friendship
relation in social networks, web pages interconnected
by hyperlinks, etc. Even if the original data has fea-
ture representation, it is usually helpful to transform
the data into a graph structure (via constructing a
nearest neighbor graph, for instance) to better exploit
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properties of the data. In this way, learning on graphs
is receiving more and more attention in recent years.

Substantial efforts have been devoted to the problem
of classification of the nodes in a graph. On the other
hand, labels can be very expensive to obtain in many
real-world applications. Active learning [7] is then pro-
posed to determine which data examples should be la-
beled such that the classifier could achieve higher pre-
diction accuracy over the unlabeled data as compared
to random label selection. The goal of active learning
is to maximize the learner’s ability given a fixed budget
of labeling effort. While many effective active learners
have been developed in literature [20], active learning
that takes direct advantage of the graph structure in
the data has not been explored until recently [9, 2, 25].
As large-scale data sets with inherent graph structures
become increasingly prevalent, reasonable and natural
active learning criteria on graphs are in great demand.

Most of the existing active learners work with data
represented by feature vectors [20]. In a seminal pa-
per [12], X. He proposes the first manifold-based active
learning algorithm, i.e., LapRDD, which takes into ac-
count both the discriminant and geometrical structure
in the data. A nearest neighbor graph is constructed
to model the intrinsic manifold structure and incorpo-
rated into a least squares loss function as a regular-
izer. The most informative data points are selected
by minimizing the size of the parameter covariance
matrix. This principle has been successfully applied
to image retrieval [12], video indexing [22], and fea-
ture selection [13]. Please see [2] for another active
learning approach that exploits the features together
with the graph structure. However, in some cases,
features of the graph nodes are not always available.
Some other methods try to select data based on the
graph structure and some labeled nodes. Existing ap-
proaches have considered selecting the data that the
current classifier is the most uncertain [17], the data
with maximum expected information gain [23] or max-
imum expected entropy reduction [16]. Based on the
Gaussian random field model [24], an empirical risk
minimization framework [25] is proposed to select ex-
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amples that minimize the empirical risk estimated by
the current classifier. One major limitation of these
methods [25, 17, 14, 23, 16, 15] is that they have to
obtain the labels of the selected nodes in order to select
more data, therefore are not applicable when there is
no label information provided during active learning.
When labeling an instance requires time consuming
and expensive experiments, these methods are much
more costly than running a batch offline mode active
learner once and perform labeling in parallel [9].

Recently, there are some efforts devoted to designing
label selection criteria that use the graph structure
only, without feature representation and label infor-
mation. Intuitively, one tends to select nodes that
lie in high-density (unlabeled) regions [15] or the cen-
ters of clusters [17], or have high impact (measured by
the graph structure) to unlabeled data [21]. However,
these intuitive selection criteria do not have theoretical
support on optimizing any classifier.

In this paper, we propose a novel variance minimiza-
tion perspective to active learning purely on the graph
structure, without feature representation and label in-
formation. Our study is based on the common assump-
tion that the labels vary smoothly with respect to the
graph, which is widely used in the graph-based semi-
supervised learning literature [5, 3, 10, 19, 1]. Fol-
lowing one of the most popular graph-based learning
frameworks [24], we formulate the smoothness assump-
tion by a Gaussian random field over the graph nodes.
Theoretical analysis indicates that the Gaussian field
over the unlabeled vertices, conditioned on the labeled
data, is a multivariate normal whose mean is the pre-
diction of the harmonic Gaussian field classifier [24]. It
is interesting to note that the covariance matrix of the
Gaussian field over the unlabeled data is not depen-
dent on the class labels, but only on the graph struc-
ture. In this way, we propose to select the data points
to label such that the total variance of the Gaussian
field over unlabeled examples, as well as the expected
prediction error of the harmonic Gaussian field clas-
sifier, is minimized. Efficient computation scheme is
then proposed to solve the corresponding optimization
problem without introducing any additional parame-
ter.

In fact, designing active learners on graphs aiming at
minimizing the error of a particular classifier has re-
ceived substantial interest recently [9, 25]. [9] provides
theoretical bounds of the prediction error which are re-
lated to label smoothness over the graph, justifying the
reasonableness of clustering the nodes and then ran-
domly choose one point from each cluster. Compared
with existing methods [9, 25, 2, 15], our algorithm has
the advantage of directly minimizing the expected er-
ror (instead of the upper bound of the error) in a batch

offline mode, through reasonably modeling the prob-
ability distribution over the graph. Therefore, we do
not require the (potentially expensive) label informa-
tion of the selected data and tedious retraining of the
classifier repeatedly.

The rest of this paper is organized as follows. In the
next section, we introduce the variance minimization
perspective for active learning on graphs. Section 3
presents a sequential optimization scheme that effi-
ciently solves our objective function. Extensive experi-
mental results on three real-life data sets are presented
in Section 4. We provide some concluding remarks as
well as suggestions for future work in Section 5.

2 A Variance Minimization Criterion
to Active Learning on Graphs

2.1 The Problem

We define the active learning problem on graphs as
follows. Given a graph G = ⟨V, E⟩ associated with a
weight matrix W , where V = {v1, . . . , vn} is the set of
data points (without feature representation) with true
labels y = (y1, . . . , yn)T , E is the set of edges between
any two data points in V, and W = (wij) ∈ Rn×n

where wij denotes the weight on the edge between two
data points vi and vj . Our goal is to find a subset
of points L = {vp1 , . . . , vpl

} ⊂ V where {pi}l
i=1 ⊂

{1, . . . , n} are the indices of the points that we should
label, such that the classifier learned from the labels on
L could achieve the smallest expected prediction error
on the unlabeled data, measured by

∑
vi∈U (yi − y∗

i )2,
where U = V \ L and y∗

i is the predicted label for vi.

Without loss of generality, in this paper, we assume
that G is undirected and connected. We allow con-
tinuous labels here, and the labels are assumed to
vary smoothly over the graph, i.e.,

∑
i,j wij(yi − yj)

2

is small, which is similar to [9].

2.2 The Objective Function

Following [24, 25], the label smoothness assumption
could be formulated by a Gaussian random field over
the graph:

P (y) =
1

Zβ
exp(−βE(y)) (1)

where E(y) = 1
2

∑
i,j wij (yi − yj)

2
is the energy func-

tion measuring the smoothness of a label assignment
y = (y1, . . . , yn)T over the graph, β is an “inverse tem-
perature” parameter, and Zβ is a partition function for
the normalization purpose.

Without loss of generality, we can arrange the data
points chosen to be labeled to be the first l instances,
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i.e., L = {v1, . . . , vl}, and the rest u(= n − l) exam-
ples U = {vl+1, . . . , vl+u} are unlabeled. Based on the
Gaussian random field model, and the constraint that
the predictions on the labeled set are consistent with
ground truth, i.e., y∗

L = yL = (y1, . . . , yl)
T , a stan-

dard method is to predict the labels with the highest
probability (or equivalently, minimum energy) [24, 25].
Let L = D − W be the graph Laplacian [6], where D
is a diagonal matrix and Dii =

∑
j wij . L can be split

into 4 blocks according to the l-th row and column:

L =

(
Lll Llu

Lul Luu

)
(2)

Then the prediction on the unlabeled nodes given by
the harmonic Gaussian field classifier is [24]:

y∗
U = −L−1

uuLulyL (3)

where y∗
U = (y∗

l+1, . . . , y
∗
l+u)T .

It can be proven that the Gaussian field, conditioned
on the labeled data, is a multivariate normal: yU ∼
N (y∗

U , L−1
uu ) [25], where yU = (yl+1, . . . , yl+u)T . Then

we compute the expected prediction error on the un-
labeled nodes as follows:

E

(∑

vi∈U
(yi − y∗

i )2

)

= E
(
(yU − y∗

U )T (yU − y∗
U )
)

= E
(
Tr
(
(yU − y∗

U )(yU − y∗
U )T

))

= Tr
(
E
(
(yU − y∗

U )(yU − y∗
U )T

))

= Tr (var(yU )) = Tr(L−1
uu ) (4)

In order to minimize the expected error of the predic-
tion results, we should minimize the variance of the
statistical learning model [7]. Therefore, we propose
to select the nodes to label by solving the following
optimization problem:

arg min
L⊂V

Tr(L−1
uu ) (5)

It is easy to verify that Eq. (5) is independent of
the order of the examples, but only dependent on the
choice of the set of the nodes that we choose not to
label. Therefore, our objective function is well defined.

3 Efficient Optimization

Let {q1, . . . , qu} be the indices of the nodes that we
choose not to label. Following the above discussion,
our objective is to select a u × u submatrix Luu of
L on the intersections of the {q1, . . . , qu}-th rows and
columns, such that the trace of L−1

uu is minimized. This
optimization problem in Eq. (5) is challenging since

the number of candidate sets for L is exponential in
the total number of examples n. Moreover, since the
number of unlabeled examples is usually huge, Luu will
likely be a large matrix and directly optimizing Eq. (5)
based on the set of unlabeled data is very computation-
ally expensive. In this section, we first transform the
objective function so that it can be represented by the
instances that we choose to label, and then propose an
efficient sequential optimization scheme.

3.1 Formulations

We first construct a selection matrix S ∈ Ru×n to help
selecting Luu from L as follows:

Sij =

{
1 if j = qi

0 otherwise.

Then we have:

Luu = SLST (6)

Since L is symmetric, it has the eigendecomposition
result as follows:

L = XΣXT (7)

such that X is an orthonormal matrix, and Σ =
diag {λ1, . . . , λn}, where {λi}n

i=1 are the eigenvalues
of L, and λ1 ≥ . . . ≥ λn = 0. Then

Luu = SLST = SXΣXT ST (8)

Suppose X = (x1, . . . ,xn)T , where xT
i is the i-th row

of X. Let Q = SX, then Luu = QΣQT . Since S is
the selection matrix, then Q = (q1, . . . ,qu)T ∈ Ru×n

consists of the {q1, . . . , qu}-th rows of X. We fur-
ther define two sets of vectors X = {x1, . . . ,xn},
Q = {q1, . . . ,qu}, then our objective function in Eq.
(5) is equivalent to the following:

arg min
Q⊂X

Tr
(
(QΣQT )−1

)
(9)

Let In denote the identity matrix of size n × n. By
using the Woodbury formula [8], we have the following:

(QΣQT )−1

=
(
Q(Σ + In)QT − QQT

)−1

=
(
Q(Σ + In)QT − Iu

)−1

= (−Iu)−1 − Q
(
(Σ + In)−1 + QT (−Iu)−1Q

)−1
QT

= −Iu − Q
(
M−1 − QT Q

)−1
QT

where M = Σ + In = diag {λ1 + 1, . . . , λn + 1}. Ac-
cording to the matrix determinant lemma [11], we
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have:

det
(
M−1 − QT Q

)

= (−1)ndet
(
−M−1 + QT Q

)

= (−1)ndet
(
−M−1

)
det
(
Iu + Q

(
−M−1

)−1
QT
)

= (−1)2ndet
(
M−1

)
det
(
Iu − QMQT

)

= det
(
Iu − QΣQT − QInQT

) n∏

i=1

1

λi + 1

= det (Iu − Luu − Iu)
n∏

i=1

1

λi + 1

= det(−Luu)
n∏

i=1

1

λi + 1
(10)

As long as 0 < u < n and the graph is connected,
it can be easily proven that Luu is invertible, and so
is M−1 − QT Q. Recall that Tr(AB) = Tr(BA), we
further have:

Tr
(
(QΣQT )−1

)

= −u − Tr
(
Q
(
M−1 − QT Q

)−1
QT
)

= −u − Tr
((

M−1 − QT Q
)−1

QT Q
)

= −u

+Tr
((

M−1 − QT Q
)−1

(−QT Q + M−1 − M−1)
)

= −u + Tr
(
In −

(
M−1 − QT Q

)−1
M−1

)

= n − u − Tr
((

M−1 − QT Q
)−1

M−1
)

= l − Tr



(

M−1 −
u∑

i=1

qiq
T
i

)−1

M−1




Let P = {p1, . . . ,pl} = X \ Q be the {p1, . . . , pl}-th
row vectors of X that correspond to the examples that
we choose to label, then we have:

Tr
(
(QΣQT )−1

)

= l − Tr



(

M−1 −
u∑

i=1

qiq
T
i

)−1

M−1




= l − Tr



(

M−1 −
n∑

i=1

xix
T
i +

l∑

i=1

pip
T
i

)−1

M−1




= l − Tr



(

M−1 − XT X +
l∑

i=1

pip
T
i

)−1

M−1




= l − Tr



(

M−1 − In +
l∑

i=1

pip
T
i

)−1

M−1




Let A0 = M−1 − In. Since the number of data points
to be labeled, l, is fixed, our objective function in Eq.

(9) reduces to the following:

arg max
P⊂X

Tr



(

A0 +
l∑

i=1

pip
T
i

)−1

M−1


 (11)

In the following, we describe an efficient sequential op-
timization scheme to select which nodes we should la-
bel in a graph.

3.2 Selecting the First Point

Setting l = 1 in Eq. (11), we obtain the objective
function of selecting one (or the first) data point to
label:

arg max
p∈X

Tr
((

A0 + ppT
)−1

M−1
)

(12)

Usually, matrix inversion formulae in the form of(
A0 + ppT

)−1
can be simplified using the Sherman-

Morrison formula [8]:

(A + uvT )−1 = A−1 − A−1uvT A−1

1 + vT A−1u
(13)

However, note that

A0

= M−1 − In

= diag

{
1

λ1 + 1
− 1, . . . ,

1

λn + 1
− 1

}

= diag

{ −λ1

λ1 + 1
, . . . ,

−λn

λn + 1

}
(14)

is singular since the smallest eigenvalue of L (denoted
as λn) is equal to 0. Therefore, the Sherman-Morrison
formula (13) cannot be applied here. In this subsec-
tion, we derive how to select the first point to label by
performing some modification of Eq. (12).

For a connected graph, it is known that all the eigen-
values of L, except λn, are larger than 0. The eigen-
vector corresponding to λn is a n × 1 constant vector
which can be denoted as (c, . . . , c)T . So any p ∈ X
can be represented as p = (vT , c)T where v is a
(n − 1) × 1 vector after removing the last element of

p. Let B = diag
{

−λ1

λ1+1 , . . . , −λn−1

λn−1+1

}
∈ R(n−1)×(n−1)

be the matrix after removing the last row and column
of A0, which is invertible. Hence:

A0 + ppT

=

(
B cv

cvT c2

)
+

(
v
0

)(
vT 0

)

= B̂ + v̂v̂T
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where B̂ =

(
B cv

cvT c2

)
and v̂ = ( vT 0 )T . By

doing blockwise matrix inversion, we have:

B̂−1 =

(
B−1 0

0 0

)

+
1

c2(1 − vT B−1v)

(
c2B−1vvT B−1 −cB−1v

−cvT B−1 1

)

where B−1 = diag
{

−λ1+1
λ1

, . . . ,−λn−1+1
λn−1

}
. Now we

can employ Eq. (13) and have:

(
A0 + ppT

)−1

=
(
B̂ + v̂v̂T

)−1

= B̂−1 − B̂−1v̂v̂T B̂−1

1 + v̂T B̂−1v̂
(15)

Recall that M−1 = diag
{

1
λ1+1 , . . . , 1

λn+1

}
. There-

fore,
(
A0 + ppT

)−1
M−1 can be computed efficiently

without matrix inversion for any given p. We select
the first data point to label that corresponds to p ∈ X
such that Eq. (12) is maximized.

3.3 Selecting More Points

We define:

Al = A0 +
l∑

i=1

pip
T
i (16)

Suppose l(≥ 1) data points have been selected, which
correspond to the rows of X: {p1, . . . ,pl} = Pl ⊂ X ,
then the (l + 1)-th instance can be selected by solving
the following:

pl+1 = arg max
p∈X\Pl

Tr
((

Al + ppT
)−1

M−1
)

(17)

By using the Sherman-Morrison formula (13), we have:

(
Al + ppT

)−1
= A−1

l − A−1
l ppT A−1

l

1 + pT A−1
l p

(18)

And A−1
1 can be computed using Eq. (15). Therefore:

Tr
((

Al + ppT
)−1

M−1
)

= Tr(A−1
l M−1) − Tr

(
A−1

l ppT A−1
l M−1

)

1 + pT A−1
l p

= Tr(A−1
l M−1) − Tr

(
pT A−1

l M−1A−1
l p

)

1 + pT A−1
l p

= Tr(A−1
l M−1) − pT A−1

l M−1A−1
l p

1 + pT A−1
l p

(19)

Since Tr(A−1
l M−1) is a constant when selecting the

(l + 1)-th data point, we choose the (l + 1)-th point to
label that corresponds to the following pl+1:

pl+1 = arg min
p∈X\Pl

pT A−1
l M−1A−1

l p

1 + pT A−1
l p

(20)

Once pl+1 is obtained, Al+1 can be updated according
to Eq. (18).

4 Experimental Results

In this section, we apply our proposed active learning
method based on Variance Minimization (denoted as
VM) in the Gaussian random field to several real-
world data sets to test its effectiveness. We use the
labels of vertices chosen by different active learning
criteria to train a harmonic Gaussian field classifier
[24] to predict the labels of the rest of the nodes in the
graph. The following five label selection methods are
compared:

• Our proposed VM algorithm (VM).

• Empirical Risk Minimization (ERM) [4].

• Random selection (Random).

• Label Selection based on Clustering (LSC) [9].

• Uncertainty sampling (Uncertainty).

When our budget is to select l instances to label,
the LSC method clusters the data into l clusters and
then randomly select one example from each cluster.
This method minimizes the prediction error bound re-
lated to label smoothness, and empirically performs
the best in [9]. We use Spectral Clustering [18] to
cluster the graph nodes. The results of Random and
LSC are both averaged over 10 random trials. ERM
and Uncertainty are two methods that iteratively
query more data to label according to the classifier
trained by the previously labeled data. ERM selects
examples that minimize the empirical risk estimated
by the current classifier. The Uncertainty criterion
selects the instances whose labels the current classifier
is the most uncertain. Recall that the harmonic Gaus-
sian field classifier adopts the one-against-all scheme
in multi-class classification. Suppose we have k classes
and u unlabeled data points, then the classifier outputs
a u×k score matrix, where each row is for an unlabeled
point, and each column for a class. The class with the
largest value in the i-th row is the predicted class of
the i-th unlabeled point. Let f1(vi) denote the largest
score of node vi related to a certain class k1, and f2(vi)
denote the second largest score of vi related to a dif-
ferent class k2. The smaller f1(vi) − f2(vi), the more
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Table 1: Classification accuracy (%) by using 20 and 50 labels on the Isolet data set.
10 classes 15 classes 20 classes 25 classes 26 classes average

# of labels 20 50 20 50 20 50 20 50 20 50 20 50

VM 79.2 84.7 66.0 72.7 67.0 72.8 61.8 67.9 60.8 66.3 67.0 72.9
ERM 61.4 82.1 48.0 72.2 42.0 68.3 37.1 63.0 38.2 62.8 45.3 69.7

Random 66.6 79.7 53.4 71.2 44.2 61.0 36.8 55.5 37.0 55.8 47.6 64.6
LSC 71.7 82.8 61.7 74.2 51.7 65.3 46.0 59.7 42.9 57.9 54.8 68.0

Uncertainty 53.2 68.3 40.6 58.1 35.2 53.1 30.8 47.1 31.4 47.1 38.2 54.7
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Figure 1: Classification accuracy vs. the number of labels used on the Isolet data set

uncertain the classifier is about the label prediction of
vi. Therefore, we select new instances {vi} to label
with the smallest values of f1(vi) − f2(vi). This strat-
egy is also compared in [17]. Notice that ERM and
Uncertainty use the label information of the previ-
ously selected data, while other active learning meth-
ods do not. In order to test them in our scenario that
very little (if not none) label information is available
during active learning, for ERM and Uncertainty,
we randomly choose an initial set of labels for each of
them, rank the other nodes according to the score of
their label selection criterion (empirical risk for ERM,
f1(vi) − f2(vi) for Uncertainty), and select the top
ranked nodes. The performance of ERM and Uncer-
tainty are also averaged over 10 random selections of
the initial set of labels.

In the following, we begin with a description of the
data preparation.

4.1 Data Preparation

Three real-world data sets are used in our experiments.
The first one is the Isolet spoken letter database 1.
It contains 150 subjects who spoke the name of each
letter of the alphabet twice. Hence, we have 52 ex-
amples from each speaker. The speakers are grouped
into sets of 30 speakers each, and are referred to as
Isolet1, Isolet2, Isolet3, Isolet4, and Isolet5. Here we
use Isolet1 which contains 1560 data instances of 26
classes (spoken letters). Each class has 60 examples,
and each example is represented by a 617-dimensional
vector recording the spectral coefficients, contour fea-
tures, sonorant features, pre-sonorant features and
post-sonorant features.

The second one is the MNIST handwritten digit

1http://archive.ics.uci.edu/ml/datasets/ISOLET
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Table 2: Classification accuracy (%) by using 20 and 50 labels on the MNIST data set.

5 classes 6 classes 7 classes 8 classes 9 classes 10 classes average
# of labels 20 50 20 50 20 50 20 50 20 50 20 50 20 50

VM 90.6 93.3 86.6 90.4 78.8 88.2 76.2 87.2 71.4 85.6 66.8 82.8 78.4 87.9
ERM 79.0 93.5 73.6 90.8 61.6 88.0 54.0 85.6 48.9 83.7 41.7 80.8 59.8 87.1

Random 76.8 90.2 69.8 86.4 62.8 81.3 57.4 78.5 54.5 75.8 52.8 77.0 62.4 81.5
LSC 83.5 91.2 76.7 87.7 70.0 84.0 65.9 81.4 60.8 78.9 59.0 75.8 69.3 83.2

Uncertainty 72.5 92.6 64.8 89.4 57.9 83.5 51.6 82.4 46.8 78.6 49.1 75.6 57.1 83.7
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(b) 6 Classes
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(c) 7 Classes
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(d) 8 Classes
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(e) 9 Classes
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(f) 10 Classes

Figure 2: Classification accuracy vs. the number of labels used on the MNIST data set

database 2. This database has a training set of 60,000
images (denoted as set 1), and a testing set of 10,000
images (denoted as set 2). We take the first 1000 im-
ages from set 1 and the first 1000 images from set 2
as our experimental data. Each class (digit) contains
around 200 images, each of which is of size 28×28 and
therefore represented by a 784-dimensional vector.

The third data set is a connected co-author graph ex-
tracted from the DBLP database 3 on four areas: ma-
chine learning, data mining, information retrieval and
database, which naturally form four classes. The co-
author graph contains a total of 1711 vertices, each of
which represents an author. The edge between each
pair of authors is weighted by the number of papers
they co-authored. Each class (research area) contains
around 400 authors.

2http://yann.lecun.com/exdb/mnist/
3http://www.informatik.uni-trier.de/~ley/db/

For each of the first two data sets, Isolet and MNIST,
following [9], we build a 4-nearest neighbor graph
among the data points, and run the active learning al-
gorithms on graphs as well as the harmonic Gaussian
field classifier. The third data set contains an inherent
graph structure. Note that each data instance (author)
in the co-author graph does not have a natural feature
representation, therefore existing feature-based active
learning methods cannot be directly applied to it.

4.2 Classification Results

For the Isolet and MNIST data sets, the experiments
are conducted by choosing different numbers of classes
(denoted as k) from the original data set. For Iso-
let, k = 10, 15, 20, 25, 26. For each given class number
k(= 10, 15, 20, 25), the performance scores are com-
puted by averaging the scores of 10 repeats of different
randomly chosen classes. When k = 26, which is the

562



A Variance Minimization Criterion to Active Learning on Graphs

Table 3: Classification accuracy (%) by using 20 and
50 labels on the co-author graph.

# of labels 20 50

VM 50.4 62.2
ERM 47.0 54.7

Random 41.7 50.7
LSC 30.0 54.3

Uncertainty 39.4 54.1
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Figure 3: Classification accuracy vs. the number of
labels used on the co-author graph.

total number of classes in Isolet, we report the per-
formance scores of using the whole data set. For each
test, we employ different active learning methods to
select l examples to label and train a harmonic Gaus-
sian classifier to predict the labels of the rest of the
data. Fig. 1 shows the plots of classification accuracy
versus the number of labels used (l). For MNIST, the
number of classes is chosen to be k = 5, 6, 7, 8, 9, 10,
and we also average the classification accuracy over 10
different random selections of classes except for k = 10,
which corresponds to using the whole data set. The
classification accuracy versus the number of labels used
is plotted in Fig. 2. For the co-author graph, since the
original data set only contains four classes, we directly
run experiments on the whole data set. We show the
performance comparison in Fig. 3.

As can be observed from Fig. 1 to Fig. 3, our proposed
VM algorithm significantly outperforms other active
learning criteria on all the three data sets, especially
when the number of labels is very small. LSC per-
forms the second best on the Isolet and MNIST data
sets when the number of labels is relatively small. It
is interesting to note that on the MNIST data set,
ERM and Uncertainty perform not very well when
the number of labels is small, and perform much bet-
ter when more labels are selected, indicating that they
rely heavily on the label information of the selected
data.

We further provide the detailed classification accuracy
by using 20 and 50 labels in Table 1∼3. The last two
columns of Table 1 and Table 2 record the average clas-
sification accuracy over different numbers of classes.

We can see that overall, VM performs significantly
better than all the other methods, including ERM
and Uncertainty that use label information. Com-
paring with the algorithm that performs the second
best in each case, VM achieves 27.0% (10.6%), 29.6%
(6.2%), 6.4% (16.6%) relative error reduction in the
average classification accuracy using 20 (50) labels on
Isolet, MNIST and the co-author graph, respectively.
We have also performed the two-tailed t-tests at 95%
significance level over the experimental results in Ta-
ble 1∼3. In all the cases that VM performs the best,
the p-values between the results of VM and other algo-
rithms are less than 0.05. Therefore, the improvements
of our proposed algorithm are statistically significant.

5 Conclusions

From the variance minimization perspective, this pa-
per proposes a novel active learning algorithm purely
based on the graph structure, without label informa-
tion and feature representation on the nodes. One key
advantage over existing methods is that our method
theoretically minimizes the expected prediction error
of a popular graph-based classifier in a batch, of-
fline mode. Experiments validate the effectiveness of
our approach compared to existing active learners on
graphs.

This study is based on the harmonic Gaussian field
classifier. There are many other effective graph-based
classifiers with different statistical assumptions of the
distribution of the graph data. Therefore, it is worth-
while to further analyze the variance and expected
prediction error of other learning models to guide the
label selection over graphs. Moreover, this paper se-
lects data to label purely based on the graph structure.
In the future, when the feature representation of the
nodes is also available, it will be interesting to com-
bine the feature-based active learning criterion and the
graph-based active learner together to select data.
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