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Abstract

In this paper we consider the task of esti-
mating the non-zero pattern of the sparse in-
verse covariance matrix of a zero-mean Gaus-
sian random vector from a set of iid samples.
Note that this is also equivalent to recover-
ing the underlying graph structure of a sparse
Gaussian Markov Random Field (GMRF).
We present two novel greedy approaches to
solving this problem. The first estimates the
non-zero covariates of the overall inverse co-
variance matrix using a series of global for-
ward and backward greedy steps. The sec-
ond estimates the neighborhood of each node
in the graph separately, again using greedy
forward and backward steps, and combines
the intermediate neighborhoods to form an
overall estimate. The principal contribu-
tion of this paper is a rigorous analysis of
the sparsistency of these two greedy proce-
dures, that is, their consistency in recover-
ing the sparsity pattern of the inverse co-
variance matrix. Surprisingly, we show that
both the local and global greedy methods
learn the full structure of the model with
high probability given just O(d log(p)) sam-
ples, which is a significant improvement over
state of the art `1-regularized Gaussian MLE
(Graphical Lasso) that requires O(d2 log(p))
samples. Moreover, the restricted eigenvalue
and smoothness conditions imposed by our
greedy methods are much weaker than the
strong irrepresentable conditions required by
the `1-regularization based methods. We cor-
roborate our results with extensive simula-
tions and examples, comparing our local and
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global greedy methods to the `1-regularized
Gaussian MLE as well as the nodewise `1-
regularized linear regression (Neighborhood
Lasso).

1 Introduction

High-dimensional Covariance Estimation. Increas-
ingly, modern statistical problems across varied fields
of science and engineering involve a large number of
variables. Estimation of such high-dimensional mod-
els has been the focus of considerable recent research,
and it is now well understood that consistent estima-
tion is possible when some low-dimensional structure
is imposed on the model space. In this paper, we con-
sider the specific high-dimensional problem of recov-
ering the covariance matrix of a zero-mean Gaussian
random vector, under the low-dimensional structural
constraint of sparsity of the inverse covariance, or con-
centration matrix. When the random vector is mul-
tivariate Gaussian, the set of non-zero entries in the
concentration matrix correspond to the set of edges in
an associated Gaussian Markov random field (GMRF).
In this setting, imposing sparsity on the entries of the
concentration matrix can be interpreted as requiring
that the graph underlying the GMRF have relatively
few edges.

State of the art: `1 regularized Gaussian MLE. For
this task of sparse GMRF estimation, a line of recent
papers [3, 5, 15] have proposed an estimator that min-
imizes the Gaussian negative log-likelihood regular-
ized by the `1 norm of the entries (or the off-diagonal
entries) of the concentration matrix. The resulting
optimization problem is a log-determinant program,
which can be solved in polynomial time with inte-
rior point methods [1], or by co-ordinate descent al-
gorithms [3, 5]. Rothman et al. [11], Ravikumar et al.
[10] have also shown strong statistical guarantees for
this estimator: both in `2 operator norm error bounds,
and recovery of the underlying graph structure.
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Recent resurgence of greedy methods. A related line of
recent work on learning sparse models has focused on
“stagewise” greedy algorithms. These perform simple
forward steps (adding parameters greedily), and possi-
bly also backward steps (removing parameters greed-
ily), and yet provide strong statistical guarantees for
the estimate after a finite number of greedy steps. In-
deed, such greedy algorithms have appeared in various
guises in multiple communities: in machine learning
as boosting [4], in function approximation [13], and in
signal processing as basis pursuit [2]. In the context of
statistical model estimation, Zhang [17] analyzed the
forward greedy algorithm for the case of sparse lin-
ear regression; and showed that the forward greedy
algorithm is sparsistent (consistent for model selec-
tion recovery) under the same “irrepresentable” con-
dition as that required for “sparsistency” of the Lasso.
Zhang [16] analyzes a more general greedy algorithm
for sparse linear regression that performs forward and
backward steps, and showed that it is sparsistent un-
der a weaker restricted eigenvalue condition. Jalali
et al. [7] extend the sparsistency analysis of [16] to
general non-linear models, and again show that strong
sparsistency guarantees hold for these algorithms.

Our Approaches. Motivated by these recent results, we
apply the forward-backward greedy algorithm studied
in [16, 7] to the task of learning the graph structure of
a Gaussian Markov random field given iid samples. We
propose two algorithms: one that applies the greedy
algorithm to the overall Gaussian log-likelihood loss,
and the other that is based on greedy neighborhood
estimation. For this second method, we follow [8, 9],
and estimate the neighborhood of each node by ap-
plying the greedy algorithm to the local node condi-
tional log-likelihood loss (which reduces to the least
squares loss), and then show that each neighborhood
is recovered with very high probability, so that by an
elementary union bound, the entire graph structure
is recovered with high probability. A principal con-
tribution of this paper is a rigorous analysis of these
algorithms, where we report sufficient conditions for
recovery of the underlying graph structure. We also
corroborate our analysis with extensive simulations.

Our analysis shows that for a Gaussian random vec-
tor X = (X1, X2, . . . , Xp) with p variables, both
the global and local greedy algorithms only require
n = O(d log(p)) samples for sparsistent graph recov-
ery. Note that this is a significant improvement over
the `1 regularized Gaussian MLE [15] which has been
shown to require O(d2 log(p)) samples [10]. Moreover,
we show that the local and global greedy algorithms re-
quire a very weak restricted eigenvalue and restricted
smoothness condition on the true inverse covariance
matrix (with the local greedy imposing a marginally

weaker condition that the global greedy algorithm).
This is in contrast to the `1 regularized Gaussian
MLE which imposes a very stringent edge-based ir-
representable condition [10]. In Section 5, we explic-
itly compare these different conditions imposed by the
various methods for some simple GMRFs, and quan-
titatively show that the conditions imposed by the lo-
cal and global greedy methods require much weaker
conditions on the covariance entries. Thus, both the-
oretically and via simulations, we show that the set of
methods proposed in the paper are the state of the art
in recovering the graph structure of a GMRF from iid
samples: both in the number of samples required, and
the weakness of the sufficient conditions imposed upon
the model.

2 Problem Setup

2.1 Gaussian graphical models

Let X = (X1, X2, . . . , Xp) be a zero-mean Gaus-
sian random vector. Its density is parameterized by
its inverse covariance or concentration matrix Θ∗ =
(Σ∗)−1 � 0, and can be written as

f(x1, . . . , xp; Θ∗) =
exp

{
− 1

2x
T Θ∗x

}
√

(2π)p det(Θ∗)−1
. (1)

We can associate an undirected graph structure G =
(V,E) with this distribution, with the vertex set
V = {1, 2, . . . , p} corresponding to the variables
(X1, . . . , Xp), and with edge set such that (i, j) /∈ E if
Θ∗ij = 0.

We are interested in the problem of recovering this un-
derlying graph structure, which corresponds to deter-
mining which off-diagonal entries of Θ∗ are non-zero—
that is, the set

E(Θ∗) := {i, j ∈ V | i 6= j,Θ∗ij 6= 0}. (2)

Given n samples, we define the sample covariance ma-
trix

Σ̂n :=
1

n

n∑

k=1

X(k)(X(k))T . (3)

In the sequel, we occasionally drop the superscript n,
and simply write Σ̂ for the sample covariance.

With a slight abuse of notation, we define the sparsity
index s := |E(Θ∗)| as the total number of non-zero
elements in off-diagonal positions of Θ∗; equivalently,
this corresponds to twice the number of edges in the
case of a Gaussian graphical model. We also define the
maximum degree or row cardinality

d := max
i=1,...,p

∣∣∣∣
{
j ∈ V | Θ∗ij 6= 0

}∣∣∣∣, (4)
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corresponding to the maximum number of non-zeros in
any row of Θ∗; this corresponds to the maximum de-
gree in the graph of the underlying Gaussian graphical
model. Note that we have included the diagonal entry
Θ∗ii in the degree count, corresponding to a self-loop
at each vertex.

2.2 State of the art: `1 regularization

Define the off-diagonal `1 regularizer

‖Θ‖1,off :=
∑

i 6=j

|Θij |, (5)

where the sum ranges over all i, j = 1, . . . , p with
i 6= j. Given some regularization constant λn > 0,
we consider estimating Θ∗ by solving the following `1-
regularized log-determinant program:

Θ̂ := arg min
Θ∈Sp

++

{
〈〈Θ, Σ̂n〉〉 − log det(Θ) + λn‖Θ‖1,off

}
,

(6)

which returns a symmetric positive definite matrix Θ̂.

Note that this corresponds to the `1 regularized Gaus-
sian MLE when the underlying distribution is Gaus-
sian.

2.3 Forward Backward Greedy

[16, 7] consider a simple forward-backward greedy al-
gorithm for model estimation that begins with an
empty set of active variables and gradually adds (and
removes) variables to the active set. This algorithm
has two basic steps: the forward step and the back-
ward step. In the forward step, the algorithm finds
the best next candidate and adds it to the active set
as long as it improves the loss function at least by εS ,
otherwise the stopping criterion is met and the algo-
rithm terminates. Then, in the backward step, the
algorithm checks the influence of all variables in the
presence of the newly added variable. If one or more
of the previously added variables do not contribute
at least νεS to the loss function, then the algorithm
removes them from the active set. This procedure en-
sures that at each round, the loss function is improved
by at least (1− ν)εS and hence it terminates within a
finite number of steps.

In the sequel, we will apply this greedy method-
ology to Gaussian graphical models, to obtain two
methods: (a) Greedy Gaussian MLE, which applies
the greedy algorithm to the Gaussian negative log-
likelihood loss, and (b) Greedy Neighborhood Estima-
tion, which applies the greedy algorithm to the local
node-conditional negative log-likelihood loss.

Algorithm 1 Global greedy forward-backward algo-
rithm for Gaussian covariance estimation

Input: Σ̂n, Stopping Threshold εS , Backward Step
Factor ν ∈ (0, 1)

Output: Inverse Covariance Estimation Θ̂

Initialize Θ̂(0) ← I, Ŝ(0) ← ∅, and k ← 1

while true do {Forward Step}
((i∗, j∗), α∗)←− arg min

(i,j)∈(Ŝ(k−1))c ;α
L
(

Θ̂(k−1)+α(eij+eji)
)

Ŝ(k) ←− Ŝ(k−1) ∪ {(i∗, j∗)}
δ

(k)
f ←− L(Θ̂(k−1))− L

(
Θ̂(k−1) + α∗(ei∗j∗+ej∗i∗)

)

if δ(k)
f ≤ εS then

break
end if

Θ̂(k) ←− arg min
Θ
L
(
ΘŜ(k)

)

k ←− k + 1

while true do {Backward Step}
(i∗, j∗)←− arg min

j∈Ŝ(k−1)
L
(

Θ̂(k−1) − Θ̂
(k−1)
ij (eij+eji)

)

if L
(
Θ̂(k−1)−Θ̂

(k−1)
i∗j∗ (ei∗j∗ + ej∗i∗)

)
−L
(
Θ̂(k−1)

)
>

νδ
(k)
f then
break

end if

Ŝ(k−1) ←− Ŝ(k) − {(i∗, j∗)}
Θ̂(k−1) ←− arg min

θ
L
(
ΘŜ(k−1)

)

k ←− k − 1
end while

end while

3 Greedy Gaussian MLE

In Algorithm 1, we describe the greedy algorithm of
[16, 7] as applied to the Gaussian log-likelihood loss,

L(Θ) := 〈〈Θ, Σ̂n〉〉 − log det(Θ).

Assumption:
Let ρ ≥ 1 be a constant and ∆ ∈ Rp×p be a sym-
metric matrix that is sparse with at most ηd non-
zero entries per row (and column) for some η ≥
2 + 4ρ2(

√
(ρ2 − ρ)/d +

√
2)2. We require that pop-

ulation covariance matrix Σ∗ = E
[
XXT

]
satisfy the

restricted eigenvalue property, i.e., for some positive
constants Cmin, we have

Cmin ‖∆‖F ≤ 〈〈Σ∗, ∆〉〉 ≤ ρCmin ‖∆‖F ,

where, ‖ · ‖F denotes the Frobenius norm.
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Lemma 1. Suppose Σ∗ satisfies the assumption in 7.
Then, with probability at least 1 − c1 exp(−c2n) for
arbitrary small constant α > 0, we have that for any
symmetric matrix ∆ with ηd non-zero entries per row
(and column),

(1− α)Cmin ‖∆‖F ≤ 〈〈Σ̂n, ∆〉〉 ≤ (1 + α)ρCmin ‖∆‖F ,
provided that n ≥ K d log(p) for some positive con-
stant K, c1 and c2.

Proof. The proof follows from Lemma 9 (Appendix K)
in [14].

Using Taylor series expansion, we can write

L(Θ + ∆) = L(Θ) + 〈〈∆, Σ̂n〉〉 − 〈〈Θ−1, ∆〉〉

+
∞∑

i=2

(−1)i

i
〈〈 (Θ−1∆)i−1 Θ−1, ∆〉〉

︸ ︷︷ ︸
R∆

.

In order to establish the restricted strong con-
vexity/smoothness required by [7], we need to
lower/upper bound R∆. Notice that in the proof of
[7], the required ∆ is the difference between the target

variable Θ∗ and the kth step estimation Θ̂(k). Since the
algorithm is guaranteed to converge, ∆ = Θ∗− Θ̂(k) is
always bounded. Thus, without loss of generality, we
assume that ‖∆‖F ≤ 1. Notice that we can scale ‖∆‖F
and similar type of result holds. The next lemma pro-
vides the required upper/lower bound.

Lemma 2. Suppose Σ∗ satisfies the assumption in 7.
Then with probability at least 1−c1 exp(−c2n), we have
that for any symmetric matrix ∆ with ηd non-zero en-
tries per row (and column), and with ‖∆‖F ≤ 1,

1

4
C2

min‖∆‖2F ≤ R∆ ≤
1

2
ρ2C2

min‖∆‖2F .

Proof. Denote γ = 〈〈Θ−1, ∆〉〉. We have

R∆ =

∞∑

i=2

(−1)i

i
γi = γ − log(1 + γ).

Under our assumption, Cmin‖∆‖F ≤ γ ≤ ρCmin‖∆‖F
and the function γ−log(1+γ) is an increasing function
in γ. Moreover, for the range of γ, we have γ− log(1+
γ) ≥ 1

4γ
2 because they both vanish at zero and the

derivative of LHS is larger than the derivative of LHS.
Hence, we have

1

4
C2

min‖∆‖2F ≤ Cmin‖∆‖F − log(1 + Cmin‖∆‖F )

≤ γ − log(1 + γ) = R∆

≤ ρCmin‖∆‖F − log(1 + ρCmin‖∆‖F )

≤ 1

2
ρ2C2

min‖∆‖2F .

The last inequality follows from γ − log(1 + γ) ≤ 1
2γ

2

(since they are equal at zero and the derivative of RHS
is always larger above zero). Hence, the result follows.

Let ∇(n) := ‖Σ̂n− (Θ∗)−1‖∞. By first order condition
on the optimality of Θ∗, it is clear that limn→∞∇(n) =
0. The following lemma provides an upper bound on
∇(n).

Lemma 3. Given the sample complexity n ≥ K log(p)
for some constant K, we have

∇(n) ≤ c
√

log(p)

n
,

with probability at least 1−c1 exp(−c2n) for some pos-
itive constants c, c1 and c2.

Proof. The proof follows from Lemma 1 in [10].

This entails that the restricted strong convexity and
smoothness (i.e., the required assumptions of the gen-
eral result in [7]) are satisfied. Now, we can specialize
the results in [7] to obtain the following theorem:

Theorem 1 (Global Greedy Sparsistency). Under the
assumption above, suppose we run Algorithm 1 with
stopping threshold εS ≥ (2cη/ρ2)d log(p)/n, where, d
is the maximum node degree in the graphical model,
and the true parameters Θ∗ satisfy mint∈S∗ |Θ∗| ≥√

8εS/ρ2, and further that number of samples scales
as

n > K d log(p)

for some constant K. Then, with probability at least
1− c1 exp(−c2n), we have

(a) No False Exclusions: E∗ − Ê = ∅.

(b) No False Inclusions: Ê − E∗ = ∅.

4 Greedy Neighborhood Estimation

Denote byN ∗(r) the set of neighbors of a vertex r ∈ V ,
so that N ∗(r) = {t : (r, t) ∈ E∗}. Then the graphi-
cal model selection problem is equivalent to that of
estimating the neighborhoods N̂n(r) ⊂ V , so that
P[N̂n(r) = N ∗(r);∀r ∈ V ]→ 1 as n→∞.

For any pair of random variables Xr and Xt, the pa-
rameter Θrt fully characterizes whether there is an
edge between them, and can be estimated via its
conditional likelihood. In particular, defining Θr :=
{Θrt}t6=r, our goal is to use the conditional likelihood
of Xr conditioned on XV \r to estimate the support of
Θr and hence its neighborhood N (r). This conditional
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distribution of Xr conditioned on XV \r generated by
(1) is given by (considering Θ−1 = Σ)

Xr|XV \r ∼ N
(
−Θ−1

r \rΘ\r\rXV \r, Θ−1
rr −Θ−1

r \rΘ\r\rΘ
−1
\r r

)
.

However, note that we do not need to estimate the
variance of this conditional distribution in order to
obtain the support of Θr = Θr \r. In particular, the
solution to the following least squares loss

Γ∗r = arg min
Γr

E[(Xr −
∑

t 6=r

ΓrtXt)
2],

would satisfy supp(Γ∗r) = supp(Θ∗r).

Given the n samples X(1), . . . , X(n), we thus use the
sample-based linear loss

L(Γr) =
1

2n

n∑

i=1


X(i)

r −
∑

t6=r

ΓrtX
(i)
t




2

. (7)

Adapting the greedy algorithm from the previous sec-
tion to this linear loss at each node thus yields Algo-
rithm 2.

Assumption:
Let ρ ≥ 1 be a constant and ∆ ∈ Rp−1 be an arbitrary
ηd-sparse vector, where, η ≥ 2 + 4ρ2(

√
(ρ2 − ρ)/d +√

2)2. We require the marginal population Fisher in-

formation matrix Σ∗\r = E
[
X\rXT

\r

]
satisfy the re-

stricted eigenvalue property, i.e., for some positive con-
stants Cmin, we have

Cmin‖∆‖F ≤ ‖Σ∗\r∆‖F ≤ ρCmin‖∆‖F .

Lemma 4. Under assumption above, and for some
arbitrary small constant α > 0, the marginal sample

Fisher information matrix Σ̂n
\r = 1

n

∑n
i=1X

(i)
\r X

(i)T
\r ,

with probability at least 1− c1 exp(−c2n), satisfies the
condition that for any symmetric matrix ∆ with ηd
non-zero entries per row (and column),

(1− α)Cmin‖∆‖F ≤ ‖Σ̂n
\r∆‖F ≤ (1 + α)ρCmin‖∆‖F ,

provided that n ≥ K d log(p) for some positive con-
stant K, c1 and c2.

Proof. The proof follows from Lemma 9 (Appendix K)
in [14].

Let∇(n)
r := maxt

∣∣∣ 1
n

∑n
i=1X

(i)
t

(
X

(i)
r −

∑
t 6=r Γ∗rtX

(i)
t

)∣∣∣.
By first order condition on the optimality of Γ∗rt, it

is clear that limn→∞∇(n)
r = 0. The following lemma

provides an upper bound on ∇(n)
r .

Algorithm 2 Greedy forward-backward algorithm for
marginal Gaussian covariance estimation

Input: Data Vectors X(1), . . . , X(n), Stopping
Threshold εS , Backward Step Factor ν ∈ (0, 1)

Output: Marginal Vector Γ̂r

Initialize Γ̂
(0)
r ← 0, Ŝ(0) ← ∅, and k ← 1

while true do {Forward Step}
(t∗, α∗)←− arg min

t∈(Ŝ(k−1))c ;α
L
(

Γ̂(k−1)
r +αet

)

Ŝ(k) ←− Ŝ(k−1) ∪ {t∗}
δ

(k)
f ←− L(Γ̂

(k−1)
r )− L(Γ̂

(k−1)
r + α∗et∗)

if δ(k)
f ≤ εS then

break
end if

Γ̂(k)
r ←− arg min

Γr

L
(
(Γr) Ŝ(k)

)

k ←− k + 1

while true do {Backward Step}
t∗ ←− arg min

t∈Ŝ(k−1)
L(Γ̂(k−1)

r − Γ̂
(k−1)
rt et)

if L
(
Γ̂

(k−1)
r − Γ̂

(k−1)
rt∗ et∗

)
−L
(
Γ̂

(k−1)
r

)
> νδ

(k)
f then

break
end if

Ŝ(k−1) ←− Ŝ(k) − {t∗}
Γ̂(k−1)
r ←− arg min

Γr

L
(
(Γr)Ŝ(k−1)

)

k ←− k − 1
end while

end while

Lemma 5. Given the sample complexity n ≥ K log(p)
for some constant K, we have

∇(n)
r ≤ c

√
log(p)

n
,

with probability at least 1−c1 exp(−c2n) for some pos-
itive constants c, c1 and c2.

Proof. The proof follows from Lemma 5 in [14].

This entails that the restricted strong convexity and
smoothness (i.e., the required assumptions of the gen-
eral result in [7]) are satisfied with constants Cmin and
ρCmin, respectively; because, the third and higher or-
der derivatives are zero. Now, we can then specialize
the results in [7] to obtain the following theorem:

Theorem 2 (Neighborhood Greedy Sparsis-
tency). Under the assumption above, suppose
we run Algorithm 2 with stopping threshold
εS ≥ (8cρη/Cmin)d log(p)/n, where, d is the maximum
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node degree in the graphical model, and the true pa-
rameters Γ∗r satisfy mint∈N∗(r) |Γ∗rt| ≥

√
32ρεS/Cmin,

and further that number of samples scales as

n > K d log(p)

for some constant K. Then, with probability at least
1− c1 exp(−c2n), we have

(a) No False Exclusions: E∗r − Êr = ∅.

(b) No False Inclusions: Êr − E∗r = ∅.

5 Comparisons to Related Methods

In this section, we compare our global and local greedy
methods to the `1-regularized Gaussian MLE, ana-
lyzed in [10], and to `1-regularization (Lasso) based
neighborhood selection, analyzed in [8, 14].

5.1 Sample Complexity

Our greedy algorithm requires O(d log(p)) samples to
recover the exact structure of the graph for both the
global and local neighborhood based methods. In
contrast, the `1-regularized Gaussian MLE [10] re-
quires O(d2 log(p)) samples to guarantee structure
recovery with high probability. The linear neigh-
borhood selection with `1-regularization [8] requires
O(d log(p)) samples to guarantee sparsistency, similar
to our greedy algorithms.

5.2 Minimum Non-Zero Values

The `1-regularized Gaussian MLE imposes the model
condition that the minimum non-zero entry of Σ∗−1

satisfy Σ∗−1
min = O(1/d). Our greedy algorithms al-

low for a broader range of minimum non-zero values
Σ∗−1

min = O(1/
√
d). The linear neighborhood selection

with `1-regularization again matches our greedy algo-
rithms and only requires that Σ∗−1

min = O(1/
√
d).

5.3 Parameter Restrictions

We now compare the irrepresentable and restricted
eigenvalue and smoothness conditions imposed on the
model parameters by the different methods.

5.3.1 Star Graphs

Consider a star graph G(V, E) with p nodes in Fig 1(a),
where the center node is labeled 1 and the other nodes
are labeled from 2 to p. Following [10], consider the
following covariance matrix Σ∗ parameterized by the
correlation parameter τ ∈ [−1, 1]: the diagonal entries
are set to Σ∗ii = 1, for all i ∈ V ; the entries correspond-
ing to edges are set to Σ∗ij = τ for (i, j) ∈ E; while the

(a) Star (b) Chain

(c) Grid (d) Diamond

Figure 1: Generic Graph Schematics

non-edge entries are set as Σ∗ij = τ2 for (i, j) /∈ E. It is
easy to check that Σ∗ induces the desired star graph.
With this setup, the irrepresentable condition imposed
by the `1-regularized Gaussian MLE [10] entails that
|τ |(|τ | + 2) < 1 or equivalently τ ∈ (−0.4142, 0.4142)
to guarantee sparsistency. However, our greedy algo-
rithms allow for τ ∈ (−1, 1) (since Cmin = 1 − τ2).
Under the same setup, the linear neighborhood selec-
tion with `1-regularization [8] requires τ ∈ (−1, 1) to
guarantee the success.

5.3.2 Chain Graphs

Consider a chain (line) graph G(V, E) on p nodes as
shown in Fig 1(b). Again, consider a population co-
variance matrix Σ∗ parameterized by the correlation
parameter τ ∈ [−1, 1]: set Σ∗ij = τ |i−j|. Thus, this

matrix assumes a correlation factor of τk between two
nodes that are k hops away from each other. It is
easy to check that Σ∗ induces the desired chain graph.
With this setup, the `1-regularized Gaussian MLE [10]
requires |τ |p−2 ((p− 2)|τ |+ p− 1) < 1. It is hard to
evaluate bounds on τ in general, but for the case p = 4
we have τ ∈ (−0.6, 0.6); for the case p = 10 we have
τ ∈ (−0.75, 0.75) and for the case p = 100 we have
τ ∈ (−0.95, 0.95). Our greedy algorithms on the other
hand allow for τ ∈ (−1, 1) (since Cmin = (1− τ2)fp(τ)
for some function fp(τ) that depends on p and satisfies
fp(τ) > Cp for all τ and some constant Cp depending
only on p). Under the same setup, the linear neighbor-
hood selection with `1-regualrization [8] only imposes
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Fig 2: Plots of success probability P[Ŝ = S∗] versus the
control parameter β(n, p, d) = n/[70d log(p)] for (a)
chain (d = 2) and (b) 4-nearest neighbor grid (d = 4)
using both Algorithm 1 and `1-regularized Gaussian
MLE (Graphical Lasso). As our theorem suggests and
these figures show, the Global Greedy algorithm re-
quires less samples to recover the exact structure of
the graphical model.

τ ∈ (−1, 1), similar to our greedy methods.

5.3.3 Diamond Graph

Consider the diamond graph G(V, E) on 4 nodes with
the nodes labeled as in Fig 1(d). Given a correlation
parameter τ 6= 0, let Σ∗ be the population covariance
matrix with Σ∗ii = 1 and Σ∗ij = τ except Σ∗23 = 0

and Σ∗14 = 2τ2. It is easy to check that Σ∗−1 induces
the desired graph. With this setup, the `1-regularized
Gaussian MLE [10] requires 4|τ | (|τ |+ 1) < 1 or equiv-
alently τ ∈ (−0.2017, 0.2017). Our greedy algorithm
allows for τ ∈ (−0.7071, 0.7071) (since Cmin = 1−2τ2).
Under the same setup, the linear neighborhood se-
lection with `1-regularization [8] requires 2|τ | < 1
or equivalently that τ ∈ (−0.5, 0.5) to guarantee the
success. Unlike the previous two examples, this is a
strictly stronger condition than that imposed by our
greedy methods.
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Fig 3: Plots of success probability P[N̂±(r) =
N ∗(r),∀r ∈ V ] versus the control parameter
β(n, p, d) = n/[70d log(p)] for (a) chain (d = 2)
and β(n, p, d) = n/[200 log(dp)] for (b) star graph
(d = 0.1p) using both Algorithm 2 and nodewise
`1-regularized linear regression (Neighborhood Lasso).
As our theorem suggests and these figures show, the
Neighborhood Greedy algorithm requires less samples
to recover the exact structure of the graphical model.

6 Experimental Analysis

In this section we will outline our experimental results
in testing the effectiveness of both Algorithms 1 and 2
in a simulated environment.

6.1 Optimization Method

Our greedy algorithm consists of a single variable opti-
mization step where we try to pick the best coordinate.
This step can be run in parallel for all single vari-
ables to achieve maximum speedup. For greedy neigh-
borhood selection, the single variable optimization is
a relatively simple operation, however for the global
model selection algorithm (log-det optimization), we
would like to provide a fast single variable optimiza-
tion method to avoid a continual log-det calculation.
Following the result in [12], we have

det
(

Θ̂(k−1) + α(eij + eji)
)

= det
(

Θ̂(k−1)
)

(
(1 + α(Θ̂(k−1))−1

i,j )2 − α2(Θ̂(k−1))−1
ii (Θ̂(k−1))−1

jj

)
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This entails that

α∗ = arg min
α
〈〈Θ̂(k−1) + α(eij + eji), Σ̂n〉〉

− log det(Θ̂(k−1) + α(eij + eji))

=
Σ̂nij − (Θ̂(k−1))−1

ij

(Θ̂(k−1))−1
ii (Θ̂(k−1))−1

jj − (Θ̂(k−1))−1
ij (Θ̂(k−1))−1

ij

This closed-form solution simplifies the single variable
optimization step in our algorithm and avoids contin-
ual calculation of log det(Θ̂).

6.2 Experiments

To present a formal experimental analysis for both
Algorithm 1 and Algorithm 2 we simulated zero-mean
Gaussian inverse covariance estimation, or GMRF
structure learning, for various graph types and scal-
ings of (n, p, d). For the Global Greedy method we
experimented using chain (d = 2) and grid (d = 4)
graph types with sizes of p ∈ {36, 64, 100}. For
the Neighborhood Greedy method we experimented
using chain (d = 2) and star (d = 0.1p) graph types
with sizes of p ∈ {36, 64, 100}. Figure 1 outlines the
schematic structure for each graph type. For each
algorithm, we measured performance by completely
learning the true support set S∗ pertaining to the
non-zero inverse covariates (graph edges). If S∗ was
completely learned then we called this a success and
otherwise we called it a failure. Using a batch size
of 50 trials for each scaling of (n, p, d) we measured
the probability of success as the average success rate.
For both algorithms we used a stopping threshold
εS = cd log p

n where d is the maximum degree of the
graph, p is the number of nodes in the graph, n is the
number of samples used, and c is a constant tuning
parameter, as well as a backwards step threshold
of v = 0.5. We compared Algorithm 1 to that of
`1-regularized Gaussian MLE (Graphical Lasso) as
discussed in [5] and [10] using the glasso implementa-
tion from Friedman et al. [5]. We compared Algorithm
2 to that of neighborhood based `1-regularized linear
regression (Neighborhood Lasso) using the glmnet
generalized Lasso implementation, also from Friedman
et al. [6]. Both glasso and glmnet use a regularization

parameter λ = c
√

logp
n which was optimally set using

k-fold cross validation.

Figure 2 plots the probability of successfully learning
S∗ vs the control parameter β(n, p, d) = n

70d log p for
varying number of samples n for both Algorithm 1
and Graphical Lasso. Figure 3 plots the probability
of successfully learning S∗ vs the control parameter
β(n, p, d) = n

70d log p for the chain graph type and

β(n, p, d) = n
200 log(dp) for the star graph type for

both Algorithm 2 and neighborhood based `1-linear

regression. Both figures illustrate our theoretical re-
sults that the Greedy Algorithms require less samples
(O(d log p)) than the state of the art Lasso methods
(O(d2 log p)) for complete structure learning.
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