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Abstract

Stochastic bandit problems have been ana-
lyzed from two different perspectives: a fre-
quentist view, where the parameter is a deter-
ministic unknown quantity, and a Bayesian
approach, where the parameter is drawn from
a prior distribution. We show in this paper
that methods derived from this second per-
spective prove optimal when evaluated using
the frequentist cumulated regret as a mea-
sure of performance. We give a general for-
mulation for a class of Bayesian index policies
that rely on quantiles of the posterior distri-
bution. For binary bandits, we prove that
the corresponding algorithm, termed Bayes-
UCB, satisfies finite-time regret bounds that
imply its asymptotic optimality. More gen-
erally, Bayes-UCB appears as an unifying
framework for several variants of the UCB
algorithm addressing different bandit prob-
lems (parametric multi-armed bandits, Gaus-
sian bandits with unknown mean and vari-
ance, linear bandits). But the generality of
the Bayesian approach makes it possible to
address more challenging models. In par-
ticular, we show how to handle linear ban-
dits with sparsity constraints by resorting to
Gibbs sampling.

1 Introduction

The literature on stochastic multi-armed bandit prob-
lems is separated in two distinct approaches. In the
frequentist view, the expected mean rewards corre-
sponding to all arms are considered as unknown de-
terministic quantities and the goal of the algorithm is
to achieve the best parameter-dependent performance.
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In contrast, in the Bayesian approach each arm is char-
acterized by a parameter which is endowed with a
prior distribution. The Bayesian performance is then
defined as the average performance over all possible
problem instances weighted by the prior on the param-
eters. In this work, we argue that algorithms derived
from the Bayesian perspective also prove efficient when
evaluated using frequentist measures of performance.
Before exposing our contributions more precisely, we
start by reviewing some aspects of these two alterna-
tive views.

In the classical parametric stochastic multi-armed ban-
dit model, an agent faces K independent arms which
depend on unknown parameters θ1, . . . , θK ∈ Θ. The
draw of arm j at time t results in a reward Xt that is
extracted from the i.i.d sequence (Yj,t)t≥1 marginally
distributed under νθj , whose expectation is denoted by
µj . The agent sequentially draws the arms according
to a strategy (It)t≥1, where It denotes the arm chosen
at round t, based on previous rewards Xs = Ys,Is for
1 ≤ s ≤ t− 1. The agent’s goal is to maximize the ex-
pected cumulated reward until time n, Eθ [

∑n
t=1Xt],

or, equivalently, to minimize the cumulated regret

Rn(θ) = Eθ

[
n∑

t=1

µ∗ − µIt

]
=

K∑

j=1

(µ∗ − µj)Eθ[Nn(j)] ,

(1)
where µ∗ = max{µj : 1 ≤ j ≤ K} and Nn(j) denotes
the number of draws of arm j up to time n.

Lai & Robbins [12], followed by Burnetas & Katehakis
[3], have provided lower bounds on the number of sub-
optimal draws under any good strategy (having o(n)
regret for all bandit problems): for any arm j such
that µj < µ∗,

lim inf
n→∞

Eθ[Nn(j)]

log(n)
≥ 1

infθ∈Θ:µ(θ)>µ∗ KL(νθj , νθ)
, (2)

where KL denotes the Kullback-Leibler divergence.
For important classes of distributions, recent contri-
butions have provided finite-time analysis of strate-
gies that are asymptotically optimal in so far that
they reach this lower bound. Following [10], [5] and
[15] have analyzed algorithms based on the celebrated
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upper confidence bound (UCB) principle of [1] for,
respectively, one-parameter exponential models and
finitely-supported distributions.

When considering the multi-armed bandit model from
a Bayesian point of view, one assumes that the pa-
rameter θ = (θ1, ..., θK) is drawn from a prior dis-
tribution. More precisely, we will assume in the fol-
lowing that the parameters (θj)1≤j≤K are drawn in-
dependently from prior distributions (πj)1≤j≤K (usu-
ally chosen to be all equal), and that conditionally on
(θj)1≤j≤K , the sequences (Y1,t)t≥1, . . . , (YK,t)t≥1 are
jointly independent and i.i.d. with marginal distribu-
tions νθ1 , . . . , νθK .

In this Bayesian setting, the goal is to maximize
E [
∑n
t=1Xt], where the expectation is relative to the

entire probabilistic model, including the randomiza-
tion over θ. Bayesian optimality can equivalently
be measured considering the Bayesian regret RBn =
E[Rn(θ)] that averages the regret over the parameters.
A major appeal of the Bayesian framework is the fact
that a strategy with minimal Bayesian regret can be
described, if not always computed.

To define the Bayesian strategy, let Πt denote the pos-
terior distribution of θ after t rounds of game, with
Π0 denoting the initial prior distribution. Due to our
choice of independent priors on (θj)1≤j≤K , Πt is a
product distribution which is equivalently defined by
the marginal posterior distributions πt1, ..., π

t
K . If at

round t one chooses arm It = j and consequently ob-
serves Xt = Yj,t, the Bayesian update for arm j is

πtj(θj) ∝ νθj (Xt) π
t−1
j (θj) , (3)

whereas for i 6= j, πti = πt−1
i . A Bayesian algorithm is

allowed to exploit the knowledge of the whole posterior
Πt to determine the next action It+1. In his seminal
paper [7], Gittins showed that, for models admitting
sufficient statistics, finding the Bayesian optimal strat-
egy is equivalent to solving the planning problem in a
related Markov decision model. Moreover, for several
important cases, including that of Bernoulli rewards
with Beta priors, the planning problem can be solved
numerically thanks to a clever problem reduction using
so-called ’Gittins indices’.

Gittins originally considered the infinite-horizon dis-
counted problem in which one tries to maximize
E [
∑∞
t=1 γ

tXt], where 0 < γ < 1 is a real discount
parameter. It is possible to show that the model reduc-
tion argument still holds when the horizon is known,
making it possible to compute a finite-horizon vari-
ant of Gittins indices and, thus, to determine the
finite-horizon Bayesian optimal strategy. The details
of the corresponding algorithm are omitted here be-
cause of space limitations and we refer to the recent

work of Niño-Mora [13] for discussion of the numer-
ical complexity of this approach. However, we re-
port in Section 4 some experiments on Bernoulli ban-
dits that illustrate our finding that the corresponding
policy constantly outperforms its frequentist UCB-like
competitors on their own ground, that is, when eval-
uated using the parameter-dependent (frequentist) re-
gret. Interestingly, Lai [11] established lower bounds
for the Bayesian risk (depending on the prior) and
showed (in particular cases) that algorithms reaching
the lower-bound (2) were also Bayesian-optimal. Con-
versely, our finding that the Bayesian optimal strategy
also achieves remarkable parameter-dependent perfor-
mance for most (all?) value of the parameter θ is cur-
rently not supported by mathematical arguments.

Furthermore, computing the finite-horizon variant of
the Gittins indices is only feasible for moderate hori-
zons due to the need to repeatedly perform (and store
the results of) dynamic programming recursions on re-
duced models. Even for small horizons, the associated
computational load and memory footprint are orders
of magnitude larger than those of the UCB-like algo-
rithms considered in [1, 10, 5, 15].

Our objective is thus to propose a generic bandit al-
gorithm, termed Bayes-UCB, that is inspired by the
Bayesian interpretation of the problem but retains the
simplicity of UCB-like algorithms. Our hope is that
this algorithm is simple enough to be effectively imple-
mented and yet sufficiently close to the Bayesian opti-
mal policy to be able to reach the asymptotic lower
bound of (2), including in cases that are currently
not handled by UCB-like algorithms. In addition to
promising simulation results reported in Section 4, we
provide several significant elements that support our
hopes. First, it is shown in Section 2 that instan-
tiating the generic Bayes-UCB algorithm in different
specific cases (one-parameter exponential families re-
wards, Gaussian-armed bandit with unknown means
and variances, linear bandits, Gaussian process opti-
mization) yields algorithms that share striking simi-
larities with methods previously proposed in the liter-
ature. In the case of Bernoulli rewards, we provide in
Section 3 (with corresponding proofs in appendix) a
complete finite-time analysis of the Bayes-UCB algo-
rithm that implies that it reaches the lower bound of
(2). The proof of this result also reveals some enlight-
ening facts about the construction of upper confidence
bounds used in recently proposed variants of UCB such
as those of [2, 5]. Finally, in Section 4, we consider the
challenging setting of sparse linear bandits where we
show how the Bayes-UCB strategy, using a sparsity in-
ducing prior, can be numerically approximated using
Markov Chain Monte Carlo simulations.
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2 The Bayes-UCB algorithm

We start by presenting the rationale for the proposed
algorithm before stating it more formally. First, be-
ing inspired by the Bayesian modeling of the bandit
problem, the Bayes-UCB strategy is a function of the
posteriors (πtj)1≤j≤K . Due to the nature of our perfor-
mance measure, the relevant aspect of θj is the expec-
tation µj . Hence, denoting by λtj , for 1 ≤ j ≤ K, the
posterior distribution of the mean µj induced by πtj ,
the proposed strategy is a function of (λtj)1≤j≤K only.
A similar principle is used in the so-called Thompson
strategy which consists in drawing samples from the
distributions (λtj)1≤j≤K so as to select an arm j with
probability equal to the posterior probability that its
mean µj is the highest [18]. The Bayesian Learning
Automaton advocated by [9] uses this idea of sam-
pling the posterior, but no regret analysis is provided.
The use of fixed-level quantiles of (λtj)1≤j≤K as con-
fidence indices appears in [14] as a special case of the
Interval Estimation method. To be more specific, de-
note by Q(t, ρ) the quantile function associated to the
distribution ρ, such that Pρ(X ≤ Q(t, ρ)) = t. [14]
use indices of the form Q(1 − α, λtj) for 1 ≤ j ≤ K,
with α chosen to be equal to a few percents. In Bayes-
UCB, we acknowledge the strong similarity between
these posterior indices based on quantiles and the up-
per confidence bounds used in UCB and its variants:
we consider indices of the form Q(1−αt, λtj), where αt
is of order 1/t. As will be shown in Section 3 below for
the case of binary rewards, this 1/t rate is deeply con-
nected with the form of the upper confidence bounds
used in variants of UCB that are known to reach the
bound in (2). It is conjectured that no other rate can
provide an algorithm that reaches the bound in (2) and
that, furthermore, choices of the form 1/tβ with β < 1
do not even guarantee a finite-time logarithmic control
of the regret. As a more pragmatic comment, we also
observed in experiments not reported here that, in the
case of binary rewards, the empirical performance of
the method were superior when using αt ≡ 1/t. We
are now ready to state the generic version of the Bayes-
UCB algorithm.

In Algorithm 1, the horizon-dependent term (log n)c

is an artefact of the theoretical analysis that enables
us, for c ≥ 5, to both guarantee finite-time logarithmic
regret bounds and achieve asymptotic optimality with
respect to (2). But in simulations, the choice c = 0 ac-
tually proved to be the most satisfying. In cases where
the prior Π0 is chosen to correspond to an improper
prior (see, e.g., the Gaussian models below), qj(t) is
not defined when t = 1. In those cases it suffices, as
is commonly done in most bandit algorithms, to make
sure that initially one gathers a sufficient number of
observations to guarantee that the posterior Πt indeed

Algorithm 1 Bayes-UCB

Require: n (horizon), Π0 (initial prior on θ)
c (parameters of the quantile)

1: for t = 1 to n do
2: for each arm j = 1, . . . ,K do
3: compute

qj(t) = Q

(
1− 1

t(log n)c
, λt−1
j

)

4: end for
5: draw arm It = arg maxj=1...K qj(t)
6: get reward Xt = YIt,t and update Πt according

to (3)
7: end for

becomes proper, for instance by drawing each arm a
few times.

As such, Algorithm 1 corresponds to a general prin-
ciple that does not even require that the prior Π0 be
chosen as a product distribution: in fact, the GP-UCB
algorithm for gaussian processes [17] can be seen as a
variant of Bayes-UCB in which dependencies, in con-
trast, are of fundamental importance; but this is not
a point that we emphasize in this article, and for the
simplicity of notation we focus on the case where the
coordinates of θ are independent. Implementing Algo-
rithm 1 may require additional tools from the Bayesian
computational toolbox to perform (or approximate)
the Bayesian update of Πt and/or to compute (or,
again, approximate) the quantiles qj(t). We first dis-
cuss several important models for which Algorithm 1
corresponds to a a procedure that can be implemented
exactly without the need to resort to numerical ap-
proximation (an example of the opposite situation will
be considered in Section 4.3 below).

First consider the case where the reward distributions
belong to a one-parameter exponential family, that is
νθj (x) = c(x) exp(φ(θj)t(x) − a(θj)), with θj ∈ R. In
this case, it is well known that the priors π0

j can be cho-
sen to belong to the conjugate family so that the pos-
teriors πtj are all members of the same conjugate fam-
ily, indexed by their sufficient statistics. For Bernoulli
rewards, for instance, using the prior Beta(a, b) for
the probability of observing a non-zero reward, we
have πtj = Beta(a + St(j), b + Nt(j) − St(j)), where

St(j) =
∑t
i=1 1{It = j}Xt. Likewise, for exponential

rewards with a Gamma(c, d) prior on the parameter,
πtj = Gamma(c + Nt(j), d + St(j)). In addition, in
the single-parameter case, there is a one-to-one mono-
tonic correspondence between the parameter θj and
the expectation µj . Hence, qj(t) is obtained by com-
puting the quantile of well-known parametric distribu-
tions (upper quantile in the case of Bernoulli rewards,
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as µj = θj , lower quantile for exponential rewards for
which µj = 1/θj). In this case, as will be proved below
for binary rewards, the resulting algorithm is surpris-
ingly related to the KL-UCB algorithm of [5].

In general exponential family models, the Bayesian
update is usually still computable explicitly (at least
when using conjugate priors) but the relationship be-
tween the parameter θj and the expectation µj is less
direct. A significant case where Bayes-UCB corre-
sponds to a simple and efficient algorithm is when the
rewards are assumed to be Gaussian, with both un-
known mean µj and unknown variance σ2

j . For sim-
plicity, we consider improper non-informative priors on
each arm, that is, π0

j (µj , σj) = 1/σ2
j . It is well known

that the marginal posterior distribution of µj at time
t is then such that

µj − St(j)/Nt(j)√
S

(2)
t (j)/Nt(j)

∣∣∣∣∣∣
X1, ..., Xn ∼ T (Nt(j)− 1) ,

where

S
(2)
t (j) =

(∑t
i=1 1{It = j}X2

t

)
− S2

t (j)/Nt(j)

Nt(j)− 1
,

and T (k) denote the Student-t distribution with k de-
grees of freedom. Therefore Bayes-UCB is the index
policy associated to upper confidence bound

qj(t) =
Sj(t)

Nj(t)
+

√
S

(2)
t (j)

Nj(t)
Q

(
1− 1

t
, T (Nt(j)− 1)

)
,

omitting the (log n)c constant for clarity. The Bayes-
UCB index above is related to the index used in the
UCB1-norm algorithm of Auer et al. in [1], where
the quantile is replaced by

√
16 log(t− 1), which is

obtained as an upper bound of Q(1− 1/t4, T (Nj(t)−
1)). The practical performances of these two variants
(Bayes-UCB and UCB1-norm) will be illustrated in
Section 4 below.

We end this section with the more elaborate case of
linear bandits in which the arms can be very nu-
merous but share a strong common structure. Here
again we will consider the case of Gaussian rewards
with a multivariate Gaussian prior for the parameter
θ that defines the model. The arms are fixed vectors
U1, ..., UK ∈ Rd. In this model, the choice of arm
It = j at time t results in the reward yt = U ′jθ + σ2εt.
Following [16], our goal is to find strategies that min-
imize the frequentist regret

Rn = Eθ

[
n∑

t=1

(
max

1≤j≤K
(U ′jθ)− U ′Itθ

)]
.

Denoting by Yt = [y1, ..., yt]
′ the vector of rewards

and Xt = [UI1 ...UIt ]
′ the design matrix, the problem

rewrites:

Yt = Xtθ + σ2Et , where Et ∼ N (0, σ2Idt) .

The Bayesian modeling here consists in a Gaussian
N
(
0, κ2Idd

)
prior on θ, assuming the noise parameter

σ2 to be known. The posterior is

θ|Xt, Yt ∼ N (Mt,Σt) ,

where Mt = (X ′tXt + (σ/κ)2Id)
−1X ′tYt ,

Σt = σ2(X ′tXt + (σ/κ)2Id)
−1 .

The posterior distribution λtj on µj = U ′jθ is therefore
N (U ′jMt, U

′
jΣtUj). Hence, Bayes-UCB selects the arm

by maximising the index:

qj(t) = U ′jMt + ||Uj ||ΣtQ

(
1− 1

t
,N (0, 1)

)
.

[4] and [16] propose an optimistic approach for this
problem based on a confidence ellipsoid located around
the least-square estimate θ̂t. This method is equivalent
to choosing arm j such that Uj θ̂t + ρ(t)||Uj ||(X′tXt)−1

is maximal. For an improper prior (κ = ∞), we have

Mt = θ̂t and Σt = σ2(X ′tXt)
−1. Thus, this approach

can again be interpreted as a particular case of Bayes-
UCB. In Section 4.3, we consider the case where θ is a
sparse vector. It is not obvious how to design an UCB
algorithm for this case. Yet, we show that one can
implement the Bayes-UCB algorithm with the help of
Gibbs sampling.

3 Analysis of the Bayes-UCB
algorithm for binary rewards

In this section, we focus on the case where the rewards
have a Bernoulli distribution, and when the prior is the
Beta(1, 1), or uniform, law . We show that the Bayes-
UCB algorithm is optimal, in the sense that it reaches
the lower-bound (2) of Lai and Robbins.

Theorem 1 For any ε > 0, choosing the parameter
c ≥ 5 in the Bayes-UCB algorithm, the number of
draws of any sub-optimal arm j is upper-bounded by

E[Nn(j)] ≤ 1 + ε

d(µj , µ∗)
log(n) + oε,c (log(n)) .

A non-asymptotic form of Theorem 1 is proved in the
appendix. The analysis relies on tight bounds of the
quantiles of the Beta distributions, which are summa-
rized in the following lemma.

595



Emilie Kaufmann, Olivier Cappé, Aurélien Garivier

Lemma 1 Denoting by d(x, y) the KL divergence be-
tween Bernoulli distributions with parameters x and
y, the posterior quantile qj(t) used by the Bayes-UCB
algorithm satisfies

ũj(t) ≤ qj(t) ≤ uj(t) ,

where

uj(t) = argmax
x>

St(j)
Nj(t)

{
d

(
St(j)

Nt(j)
, x

)
≤ log(t) + c log(log(n))

Nt(j)

}
,

ũj(t) = argmax
x>

St(j)
Nt(j)+1

{
d

(
St(j)

Nt(j) + 1
, x

)
≤

log
(

t
Nt(j)+2

)
+ c log(log(n))

(Nt(j) + 1)



 .

Surprisingly, the Bayesian quantiles match the upper
confidence bound used by the two variants KL-UCB
and KL-UCB+ of the (Bernoulli-optimal) algorithm
for bounded bandit problems analyzed in [5], showing
thus a very similar behavior. The fact that, in ũj(t),
the current time t is divided by Nt(j) in the logarith-
mic bonus is unexpectedly reminiscent of the MOSS
algorithm of [2]. The proof of Lemma 1, given in the
appendix, relies on the following remark: for any in-
tegers a, b, the distribution Beta(a, b) is the law of the
a-th order statistic among a + b − 1 uniform random
variables, so that

P(X ≥ x) = P(Sa+b−1,x ≤ a−1) = P(Sa+b−1,1−x ≥ b) ,

where Sn,x denotes a binomial distribution with pa-
rameters n and x. Bounding the beta quantiles
boils down to controlling the binomial tails, which is
achieved using Sanov’s inequality:

e−nd(
k
n ,x)

n+ 1
≤ P(Sn,x ≥ k) ≤ e−nd( k

n ,x) , (4)

where the rightmost inequality holds for k ≥ nx.

4 Numerical experiments

4.1 Binary bandits

Numerical experiments have been carried out in a fre-
quentist setting for bandits with Bernoulli rewards: for
a fixed parameter θ and an horizon n, N bandit games
with Bernoulli rewards are repeated for a given strat-
egy. The main purpose of these numerical experiments
is to compare the performance in terms of cumulated
regret of Bayes-UCB with those of UCB and KL-UCB.
These are presented on Figure 1, where the regret is
averaged over N = 5000 simulations for two differ-
ent two-armed bandit problems with horizon n = 500.

We also included in the comparison the Bayesian al-
gorithm based on Finite-Horizon Gittins indices (FH-
Gittins). Whereas the performance of FH-Gittins are
more striking in the top situation (0.1/0.2) than in
the bottom one (0.45/0.55), Bayes-UCB also improves
equally over KL-UCB in all scenarios.
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Figure 1: Cumulated regret for the two armed-bandit
problem with µ1 = 0.1, µ2 = 0.2 (top) and µ1 =
0.45, µ2 = 0.55 (bottom).

4.2 Gaussian rewards with unknown means
and variances

For the bandit problem with Gaussian rewards with
unknown mean and variance, few algorithms have been
proposed. We compare Bayes-UCB with UCB1-norm
and UCB-Tuned (see [1]). Figure 2 presents the regret
in a 4-arms problem, on a horizon n = 10000, aver-
aged over N = 1000 simulations. UCB-Tuned seems
unadapted to the problem, whereas UCB1-norm and
Bayes-UCB achieve a regret proving that the asymp-
totic lower bound of Burnetas & Katehakis is pes-
simistic for such short horizons (see also [5]). Bayes-
UCB outperforms UCB1-norm, mostly because of the
more appropriate choice of a quantile of order 1− 1/t.

4.3 Sparse linear bandits

The linear bandit model presented in Section 2 relies
on linear regression. Many recent works have high-
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Figure 2: Regret in a 4-arms problem with parameters
µ = [1.8 2 1.5 2.2], σ = [0.5 0.7 0.5 0.3].

lighted the importance of sparsity issues in this con-
text. We show that Bayes-UCB can address sparse
linear bandit problems by using a prior that encour-
ages sparsity of the parameter θ. This ’spike-and-slab’
prior is defined as follows: the coordinates of θ are
independent, with distribution

θj ∼ εδ0 + (1− ε)N (0, κ2) .

Let C be the random vector in Rd indicating the non-
zero coordinates of θ: Cj = 1(θj 6=0). If J denotes a set
of indices, let Xt,J ∈Mt,|J|(R) be the submatrix of Xt

with columns in J only and θJ ∈ R|J| the subvector
with coordinates in J .

Given C and Yt, denote by J1 the set of non-zeros
coordinates in C. The subvector θJ1 is the solution of
a Bayesian regression problem with priorN (0, κ2I|J1|),
hence

θJ1 |C, Yt ∼ N
(
(X ′t,J1Xt,J1 + (σ/κ)2I|J1|)

−1X ′t,J1Yt

; σ2(X ′t,J1Xt,J1 + (σ/κ)2I|J1|)
−1
)
.

The marginal distribution of C given Y is

P (C|Y ) ∝ ε[J0|(1−ε)|J1|N
(
Yt|0, κ2Xt,J1X

′
t,J1 + σ2It

)
.

The normalization term involves a sum over 2d possible
configurations of C. When d is small, the exact Bayes-
UCB indices can be computed, as the dot-product U ′jθ
follows a mixture of Gaussian distributions. For higher
dimensions, one can use Gibbs sampling to sample
from C|Y , and produce samples from θ|Y that lead
to approximated values of qj(t).

Numerical simulation have been carried out for a
sparse problem in dimension d = 10 where θ only has
two non-zero coordinates. On Figure 3 we compare the
regret of Bayes-UCB for three different priors: the gen-
eral multivariate Gaussian prior discussed in Section 2,
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Figure 3: Cumulated regret in a 20 arms problem for
Bayes-UCB with different prior distributions.

an oracle Gaussian prior on the first two coordinates
only (meaning that the sparsity pattern is known) and
Bayes-UCB with a sparse prior. The 20 arms of the
problem are chosen randomly on the unit sphere and
the regret is averaged over N = 100 simulations for an
horizon n = 1000. As expected, the use of a sparsity-
inducing prior in this case results in an algorithm with
greatly enhanced performance.

5 Conclusion

Although frequentist and Bayesian bandits correspond
to two different probabilistic frameworks, we have ob-
served that using Bayesian ideas often provides ef-
ficient algorithms for the frequentist bandit setting.
The proposed Bayes-UCB approach appears to pro-
vide a generic and efficient solution for various bandit
problems, including challenging ones such as sparse
linear bandits. At this point, finite-time regret bounds
and asymptotic optimality of the Bayes-UCB strategy
have only been proved for binary multi-armed ban-
dits. However, a similar proof can be given for the
case of Gaussian multi-armed bandits, when the arm
variances are known. We believe that those results can
also be extended to more general cases and, in partic-
ular, to exponential family distributions and Gaussian
linear regression models.

A Proof of Lemma 1

If X ∼ Beta(a, b), equation (4) gives, for x > a−1
a+b−1 ,

e−(a+b−1)d( a−1
a+b−1 ,x)

a+ b
≤ P(X ≥ x) ≤ e−(a+b−1)d( a−1

a+b−1 ,x)

Let q1−γ = Q(1− γ,Beta(a, b)). Since :

(a+ b− 1)d

(
a− 1

a+ b− 1
, x

)
≥ log(1/γ) ⇒ x ≥ q1−γ
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we have that :

x∗+ = argmin
x> a−1

a+b−1

{(a+ b− 1)d

(
a− 1

a+ b− 1
, x

)
≥ log(1/γ)}

= argmax
x> a−1

a+b−1

{(a+ b− 1)d

(
a− 1

a+ b− 1
, x

)
≤ log(1/γ)}

is still an upper bound for the quantile q1−γ . The same
reasoning shows q1−γ is lower-bounded by

x∗− = argmax
x> a−1

a+b−1

{
(a+ b− 1)d

(
a− 1

a+ b− 1
, x

)

≤ log

(
1

γ(a+ b)

)}

Moreover we can easily show that

x∗+ ≤ argmax
x> a−1

a+b−2

{(a+ b− 2)d

(
a− 1

a+ b− 2
, x

)
≤ log(1/γ)}

using mainly the fact that y 7→ d(y, x) is decreasing for
y < x.We get the final result using a = Sj(t) + 1,b =
Nj(t)− Sj(t) + 1 and γ = 1/(t log(n)c).

B Proof of Theorem 1

Without loss of generality, one supposes arm 1 is opti-
mal and arm 2 is suboptimal. To prove Theorem 1, we
show more precisely that there exists N(ε) and Kc > 0
such that for n ≥ N(ε):

E[Nn(2)] ≤ (1 + ε)(log(n) + c log(log(n)))

d(µ2, µ1)

+ 1 +Kc(log(log(n)))2 +
1

n− 1

(1 + ε/2)2

ε2 (min (µ2(1− µ2);µ1(1− µ1)))
2 .

Let

βn =

√
1

log(n)

One starts with the following decomposition

Nn(2) ≤
n∑

t=1

1(µ1−βn>q1(t))+
n∑

t=1

1(µ1−βn≤q1(t))∩(It=2) .

(5)
This decomposition is motivated by the one used for
KL-UCB in [5], but to evaluate the over-estimation of
the optimal arm, we no longer compare q1(t) to µ1

but to µ1 − βn. The influence of βn makes the left-
term (under-estimation term) smaller and the right-
term bigger. Now recall that the indices q1(t), q2(t)
used in Bayes-UCB are close to KL-UCB-like indices.
We indeed use the fact that : (i) ũ1(t) ≤ q1(t), and,
(ii) q2(t) ≤ u2(t).

Lemma 2

E[Nj(2)] ≤
n∑

t=1

P (µ1 − βn > ũ1(t))

︸ ︷︷ ︸
A

+
n∑

s=1

P
(
sd+ (µ̂2(s), µ1 − βn) ≤ log(n) + c log(log(n))

)

︸ ︷︷ ︸
B

.

where d+(x, y) = d(x, y)1(x≤y)

Proof of lemma 2 Term A follows from (i). By (ii)
if It = 2, q1(t) ≤ q2(t) ≤ u2(t) so the most right term
in (5) is upper-bounded as

n∑

t=1

1(µ1−βn≤q1(t))∩(It=2) ≤
n∑

t=1

1(It=2)∩(µ1−βn≤u2(t)) .

Summing over the values of Nt(2), and using the same
trick as in lemma 7 in [5], the last term is bounded by

n∑

s=1

1(sd+(µ̂2(s),µ1−βn)≤log(n)+c log(log(n)))

and the result follows by taking the expectation.

�

Now we have to upper bound separately A and B.

Study of term A To deal with term A, we write a
new decomposition, depending on the number of draws
of the optimal arm:

(A) ≤
n∑

t=1

P
(
µ1 − βn > ũ1(t) , Nt(1) + 2 ≤ log2(n)

)

︸ ︷︷ ︸
A1

+
n∑

t=1

P
(
µ1 − βn > ũ1(t) , Nt(1) + 2 ≥ log2(n)

)

︸ ︷︷ ︸
A2

.

Study of term A1 Using that the term

log
(

t
Nt(j)+2

)
in ũ1(t) is lower-bounded by

log
(

t
log(n)2

)
, we show

(µ1 − βn > ũ1(t) , Nt(1) + 2 ≤ log2(n)) ⊆
(
µ1 > ūt1,δ

)

where

ūt1,δ = argmax
x>

St(j)
Nj(t)+1

{
(Nt(1) + 1)d

(
St(1)

Nt(1) + 1
, x

)
≤ δ
}
,

δ = log(t) + (c− 2) log(log(n)) .
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This appears to be the under-estimation term in a bi-
ased version of KL-UCB with the parameter c′ = c−2
instead of c. With a straightforward adaptation (omit-
ted here) of the proof of theorem 10 in [5] we obtain
the following self-normalized inequality.

Lemma 3

P (µ1 > ū1,δ(t)) ≤ (δ log(t) + 1) exp(−δ + 1)

And lemma 3 leads to the upper-bound

(A1) ≤ 1 +
n∑

t=2

e
(
log2(t) + (c− 2) log(t) log(log(n)) + 1

)

t(log(n))c−2

≤ 1 + (2e+ e(c− 2) log(log(n)))
n∑

t=1

1

t log(t)c−4

≤ 1 +Kc(log(log(n))2 for c ≥ 5 .

Study of term A2 In this term, the optimal arm
has been sufficiently drawn to be well estimated, so
we can use that

(µ1 − βn > ũ1(t)) ⊂
(
µ1 − βn >

St(1)

Nt(1) + 1

)

and bound the deviation of the Bayesian empirical
mean. Note that as

St(1)

Nt(1) + 1
≥ St(1)

Nt(1)
− 1

Nt(1) + 1
,

dealing with the bias leads to (denoting by t′ =⌈
log(n)2 − 2

⌉
):

(A2) ≤
n∑

t=t′

P

(
∃s ≤ t :

s∑

r=1

Ỹ1,r ≥ βn(log(n)2 − 2)− 1

)
,

where Ỹ1,r = µ1 − Y1,r is the deviation from the mean
of Y1,r ∼ B(θ1). Then we use a maximal inequality
and get, replacing βn by its value :

(A2) ≤
n∑

t=t′

e
−2t

(
log(n)2−2√

log(n)
−1

)2

≤
∞∑

t=1

e
−2t

(
log(n)2−2√

log(n)
−1

)2

=
1

e
2

(
log(n)2−2√

log(n)
−1

)2

− 1

for n s.t. log(n)2 ≥ 3 .

Note that 2

(
log(n)2−2√

log(n)
− 1

)2

≥ (log(n)2−2)2

log(n) for n such

that (log(n)2−2)√
log(n)

≥
√

2√
2−1

(∗). For such n we obtain

(A2) ≤ 1

e
log(n)

(log(n)2−2)2

log(n)2 − 1

≤
(∗∗)

1

n− 1
,

where (∗) and (∗∗) hold for log(n) ≥ 4. Finally, for
n ≥ exp (4),

(A2) ≤ 1

n− 1
.

Study of term B Introducing, for ε > 0

Kn =
(1 + ε)(log(n) + c log(log(n)))

d(µ2, µ1)
,

term B can be rewritten as

(B) ≤ Kn+
n∑

bKnc+1

P
(
d+(µ̂2(s), µ1 − βn) ≤ log(n) + c log(log(n))

Kn

)

≤ Kn +

n∑

bKnc+1

P
(
d+(µ̂2(s), µ1 − βn) ≤ d(µ2, µ1)

1 + ε

)
.

The function g(q) = d+(µ̂2(s), q) is convex and differ-

entiable and g′(q) = q−µ̂2(s)
q(1−q) 1(q>µ̂2(s)), thus

d+(µ̂2(s), µ1) ≤ d+(µ̂2(s), µ1 − βn) + βn
µ1 − µ̂2(s)

µ1(1− µ1)
.

And therefore (bounding µ1 − µ̂2(s) by 2) :
(
d+(µ̂2(s), µ1 − βn) ≤ d(µ2, µ1)

1 + ε

)

⊂
(
d+(µ̂2(s), µ1) ≤ d(µ2, µ1)

1 + ε
+ βn

2

µ1(1− µ1)

)
.

Thus for n ≥ exp

((
2(1+ε)(1+ε/2)

εµ1(1−µ1)d(µ2,µ1)

)2
)

we obtain

d(µ2,µ1)
1+ε + βn

2
µ1(1−µ1) ≤

d(µ2,µ1)
1+ε/2 and

(B) ≤ Kn+
n∑

s=bKnc+1

P
(
d+(µ̂2(s), µ1) ≤ d(µ2, µ1)

(1 + ε/2)

)
.

This term is upper-bounded precisely in [15], by

(B) ≤ Kn +
(1 + ε/2)2

ε2 (min (µ2(1− µ2);µ1(1− µ1)))
2 .

Conclusion For ε > 0 let

N(ε) = max

{
e4; exp

((
2(1 + ε)(1 + ε/2)

εµ1(1− µ1)d(µ2, µ1)

)2
)}

.

Then, for n ≥ N(ε) the following bound holds for c ≥
5:

E[Nn(2)] ≤ (1 + ε)(log(n) + c log(log(n)))

d(µ2, µ1)

+1 +Kc(log(log(n)))2 +
1

n− 1

+
(1 + ε/2)2

ε2 (min (µ2(1− µ2);µ1(1− µ1)))
2 ,

that is,

E[Nn(2)] ≤ (1 + ε) log(n)

d(µ2, µ1)
+Rn(ε, c) ,

with Rn(ε, c) = o(log(n)), for every ε > 0.

�
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