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Franz J. Király∗, Paul von Bünau, Jan S. Müller, Duncan A. J. Blythe,
Frank C. Meinecke, Klaus-Robert Müller

Berlin Institute of Technology (TU Berlin), Machine Learning group, Franklinstr. 28/29, 10587 Berlin

Abstract

We propose a method called ideal regres-
sion for approximating an arbitrary system
of polynomial equations by a system of a
particular type. Using techniques from ap-
proximate computational algebraic geometry,
we show how we can solve ideal regression
directly without resorting to numerical op-
timization. Ideal regression is useful when-
ever the solution to a learning problem can
be described by a system of polynomial equa-
tions. As an example, we demonstrate how
to formulate Stationary Subspace Analysis
(SSA), a source separation problem, in terms
of ideal regression, which also yields a con-
sistent estimator for SSA. We then compare
this estimator in simulations with previous
optimization-based approaches for SSA.

1 Introduction

Regression analysis explains the relationship between
covariates and a target variable by estimating the pa-
rameters of a function which best fits the observed
data. The function is chosen to be of a particular type
(e.g. linear) to facilitate interpretation or computation.
In this paper, we introduce a similar concept to sets of
polynomials equations: given arbitrary input polyno-
mials, the aim is to find a set of polynomials of a par-
ticular type that best approximates the set of solutions
of the input. As in ordinary regression, these polyno-
mials are parameterized to belong to a certain desired
class. This class of polynomials is usually somewhat
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simpler than the input polynomials. We call this ap-
proach ideal regression, inspired by the algebraic con-
cept of an ideal in a ring. In fact, the algorithm that we
derive is based on techniques from approximate com-
putational algebraic geometry. In machine learning,
ideal regression is useful whenever the solution to a
learning problem can be written in terms of a set of
polynomial equations. We argue that our ideal regres-
sion framework has several advantages: (a) it allows to
naturally formulate regression problems with intrinsi-
cal algebraic structure; (b) our algorithm solves ideal
regression directly instead of resorting to less efficient
numerical optimization; and (c) the algebraic formu-
lation is amenable to a wide range of theoretical tools
from algebraic geometry. We will demonstrate these
points in an application to a concrete parametric esti-
mation task.

More formally, the analogy between ordinary and ideal
regression is as follows. In ordinary regression, we are
given a dataset D = {(xi, yi)}ni=1 ⊂ RD × R and the
aim is to determine parameters θ for a regression func-
tion fθ : RD → R such that f(xi) fits the target yi
according to some criterion, i.e. informally speaking,

fθ(xi) ≈ yi for all samples (xi, yi) ∈ D. (1)

In ideal regression, the input consists of a set of n ar-
bitrary polynomial equations q1(T ) = · · · = qn(T ) = 0
in the vector of variables T = (T1, . . . , TD) which may
e.g. correspond to the coordinates of data. That is, the
data set D = {q1, . . . , qn} consists of the coefficients of
the input polynomials. Let V(D) ⊂ Cd be the set of
solutions to the input equations, i.e.

V(D) = {x ∈ CD | q(x) = 0∀p ∈ D},

where p(x) denotes the evaluation of the polynomial
p on the values x. The aim of ideal regression is

to determine another set of polynomials p
(1)
θ , . . . , p

(m)
θ

parametrized by θ that best approximate the input
polynomials D in terms of their set of solutions; that
is, informally,

V(p
(1)
θ , . . . , p

(m)
θ ) ≈ V(D). (2)

628



Regression for sets of polynomial equations

V(q1, . . . , qn)

V
�
p
(1)
θ , . . . , p

(m)
θ

�
Ordinary regression Ideal regression

Covariate x

T
a
rg
et

y

T1

T
2

fθ

Figure 1: Ordinary regression (left panel) fits the data (blue points) by a function fθ (red line) parametrized
by θ. Ideal regression (right panel) approximates a set of arbitrary input polynomials q1, . . . , qn by a set of

polynomials p
(1)
θ , . . . , p

(m)
θ that are of a special type parameterized by θ. The approximation is in terms of their

set of solutions: the parameter θ is chosen such that V(p
(1)
θ , . . . , p

(m)
θ ) (red shape) best fits the the solutions to

the input (blue shape), in the space of T1 and T2.

The class of polynomials (parametrized by θ) by which
we approximate arbitrary input is chosen such that it
has certain desirable properties, e.g. is easy to inter-
pret or is of a particular type prescribed by the con-
text of the application. Thus, in ordinary regression
we fit a parametrized function to arbitrary data and in
ideal regression we fit a parametrized system of poly-
nomial equations to arbitrary systems of polynomial
equations. Note that even if V(D) has no exact solu-
tion (e.g. due to noise, over-determinedness, or when
reducing degrees of freedom), we can still find an ap-
proximate regression system close to the inputs. Fig-
ure 1 illustrates the analogy between ordinary regres-
sion and ideal regression.

The natural algebraic object to parameterize sets of
equations up to additive and multiplicative ambigui-
ties are ideals in polynomial rings1. The parametric

family p
(1)
θ , . . . , p

(m)
θ corresponds to a parametric ideal

Fθ in the polynomial ring C[T1, . . . , Td]. In ring theo-
retic language, the informal regression condition refor-
mulates to

Fθ 3approx {q1, . . . , qn}, (3)

where 3approx stands for being approximately con-
tained. Intuitively, this means that the equations qi
are well-approximated by the parametric ideal Fθ.
The ideal regression setting is fairly general. It can be
applied to a wide range of learning settings, including
the following.

• Linear dimension reduction and feature ex-
traction. When linear features of data are

1that is, sets of polynomials closed under addition in the
set, and under multiplication with arbitrary polynomials

known, ideal regression provides the canonical
way to estimate the target parameter with or
without ”independent” or ”dependent” labels.
This subsumes PCA dimensionality reduction,
linear regression with positive codimension and
linear feature estimation.

• Non-linear polynomial regression. When the
regressor is a set of polynomials with specific
structure, as e.g. in positive codimensional poly-
nomial regression or reduced rank regression, ideal
regression allows to estimate the coefficients for
the regressor polynomials simultaneously.

• Comparison of moments and marginals.
Ideal regression is the canonical tool when equali-
ties or projections of cumulants are involved. The
example we will pursue in the main part of the
paper will be of this type, as it is possibly the
simplest one where non-linear polynomials occur
naturally.

• Kernelized versions. Non-linear feature map-
ping and kernelization is natural to integrate in
the regression process as the presented estimator
builds on least-squares estimates of vector spaces.

1.1 Example: finding common marginals

In this paper, we will demonstrate ideal regression in
a non-linear example: we will reformulate a statistical
marginalization task as ideal regression. Namely, we
study the following problem:

Problem 1.1 Given D-variate random variables
X1, . . . , Xm, find a projection P ∈ Rd×D to a d-
dimensional subspace under which which the Xi are
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Figure 2: Representation of the problem: the left panel shows the covariance matrices Σ1 and Σ2 with the desired
projection v. In the middle panel, this projection is defined as the solution to a quadratic polynomial. This
polynomial is embedded in the vector space of coefficients spanned by the monomials X2, Y 2 and XY shown in
the right panel.

identically distributed, i.e.

PX1 ∼ · · · ∼ PXm.

For example, the Xi can model different data clus-
ters or epochs, for which we want to find an infor-
mative common projection P . A special subcase of
this problem, where the Xi are approximated by Gaus-
sians, is Stationary Subspace Analysis [23, 19] which
has been applied successfully to Brain-Computer-
Interfacing [25], Computer Vision [18], domain adap-
tation [10], geophysical data analysis and feature ex-
traction for change point detection [24, 2]. Previous
SSA algorithms [23, 10, 12] have addressed this task
by finding the minimum of an objective function that
measures the difference of the projected cumulants on
the sought-after subspace.

Under the assumption that such a linear map P exists,
we can describe the set of all maps yielding common
marginals. A necessary (and in practice sufficient) con-
dition is that the projections of the cumulants under
P agree. Thus the coefficients of the polynomial equa-
tions are given by the coefficients of the cumulants of
the Xi (see Section 2 for details). The output ideals
correspond to the possible row-spans of P ; note that
the fact that the PXi have identical distribution de-
pends only on the row-span of P . Equivalently, the re-
gression parameter θ ranges over the set all sub-vector
spaces of dimension d in D-space, i.e. over the Grass-
mann manifold Gr(d,D). The regression ideal Fθ is
then just I(θ), the ideal of the vector space θ, consid-
ered as a subset of complex D-space.

1.2 Outline of the algorithm

In the application of ideal regression studied in this
paper, the aim is to determine linear polynomials that

have approximately the same vanishing set as the in-
put polynomials derived from differences of cumulants.
The representation in which the algorithm computes
is the vector space of polynomials: each polynomial is
represented by a vector of its coefficients as shown in
the right panel of Figure 2. The coefficient vector space
is spanned by all monomials of a particular degree,
e.g. in Figure 2 the axis correspond to the monomials
X2, XY and Y 2 because all homogeneous polynomi-
als of degree two in two variables can be written as a
linear combination of these monomials.

The algorithm uses an algebraic trick: We first gen-
erate more and more equations by making the given
ones more complicated; then, when their number suf-
fices, we can make them simpler again to end at a
system of the desired type. Playing on analogies, we
thus call the algorithm the Münchhausen procedure2.

In the first part of the Münchhausen algorithm, we
generate the said larger system of equations, having a
particular (higher) degree, but the same vanishing set.
This is done by multiplying the input equations by all
monomials of a fixed degree, as illustrated in the right
panel of Figure 3. We will show that for any (generic)
input, there always exists a degree such that the re-
sulting polynomials span a certain linear subspace of
the coefficient vector space (up to noise), i.e. that the
red curve will always cross the blue curve. That is, we
show that the coefficient vectors lie approximately on
a linear subspace of known dimension (subspace (a) in
Figure 3). This is the case because we have assumed
that there exists a subspace of the data space on which

2After the eponymous and semi-fictional Baron Hi-
eronymus Carl Friedrich Münchhausen, who purportedly
pulled himself and his horse out of the swamp by his own
hair; compare the Münchhausen trilemma in epistemiology.
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Coefficient space of all polynomials of degree k in D variables
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Figure 3: The left panel shows the vector space of coefficients; the input polynomials (red points) lie approx-
imately on the subspace (a) of polynomials vanishing on S. In order to reduce the degree of the polynomial,
we determine the intersection (orange) with the subspace (b) of polynomials that are divisible by a variable T1.
The polynomials in this intersection are isomorphic to the polynomials of degree k − 1 that vanish on S. The
right panel shows the Münchhausen process of multiplying the set of polynomials Qi up to a degree so that we
have enough elements |Qi| to determine the basis for the subspace (a). In the shown case, where we start with
|Q2| = 5 input polynomials in D = 6 variables and dimS = 3, we need to go up to degree 5. From Q5 we then
descend to a linear form by repeatedly dividing out a single variable as shown in the left panel.

the marginals agree. After this, we obtain an approx-
imate basis for this subspace in coefficient space by
applying PCA dimension reduction; this provides us
with an approximate basis for subspace (a) in the left
panel of Figure 3.

In the second part of the algorithm, we reduce the de-
gree of the system of equations, i.e. the approximate
basis for subspace (a), by repeatedly dividing out sin-
gle variables3. In each step, we reduce the degree by
one as illustrated by the left panel of Figure 3. We
compute a basis for the intersection (orange line) of
subspace (a) and the subspace (b) of polynomials of
degree k that are divisible by the variable T1. By
dividing each basis element by T1 we have obtained
a system of equations of lower degree, which has ap-
proximately the same set of solutions as the input. We
repeat this process until we arrive at a system of linear
equations.

1.3 Relation to other work

The ideal regression approach draws inspiration from
and integrates several concepts from different fields
of research. The first important connection is with
computational algebra, as the estimation procedure is
essentially a ring theoretic algorithm which can cope
with noise and inexact data. In the noiseless case,
estimating the regression parameter θ is essentially
calculating the radical of a specific ideal, or, more
specifically, computing the homogenous saturation of
an ideal. These tasks are notoriously known to be

3i.e. saturating with the homogenizing variable

very hard in general4; however, for generic inputs, the
computational complexity somewhat drops into feasi-
ble regions, as implied by the results on genericity in
the appendix. The best known algorithms for com-
putations of radicals are those of [8], implemented
in AXIOM and REDUCE, the algorithm of [6], im-
plemented in Macaulay 2, the algorithm of [3], cur-
rently implemented in CoCoA, and the algorithm of
[16] and its modification by [17], available in SINGU-
LAR. Closely related to homogenous saturation is also
the well-known Buchberger’s algorithm for computa-
tion of reduced Gröbner basis, which can be seen as the
inhomogenous counterpart of homogenous saturation
when a degree-compatible term order is applied.

The second contribution comes from the field of ap-
proximate and numerical algebra, as the exact algo-
rithms from computational algebra are numerically
unstable even under small variations of the inputs and
thus unfeasible for direct application to our case. The
first application of numerical linear algebra to vector
spaces of polynomials can be found in [4], the numer-
ical aspects of noisy polynomials have been treated in
[20]. Also, the nascent field of approximate algebra has
developed tools to deal with noise, see [15]. In partic-
ular, the approximate vanishing ideal algorithm [11]
fits polynomial equations to noisy data points with a
method that essentially applies a sequence of weighted
polynomial kernel regressions. The estimator for ideal
regression given in this paper is essentially a deter-
ministic algorithm using approximate computational

4namely, doubly exponential in the number of variables,
see e.g. [17, section 4.]
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algebra.

On the conceptual level, the idea of using (linear and
commutative) algebra as an ingredient in statistical
modelling and for solution of statistical problems is
natural, as algebra is the science of structure. There-
fore, studying structure in a statistical context makes
algebra under stochastical premises a canonical tool.
This idea gives rise to a plethora of different ap-
proaches, which today are subsumed as the field of
algebraic statistics - in the broader meaning of the
term. Standard references in the field include [21],
[5] and [9], or [1] and [26]. Also, there is a range of
machine learning methods dealing with non-linear al-
gebraic structure or symmetries in data, e.g. [13, 14]
or [22]. In many applications, the concept of generic-
ity also arises as the algebraic counterpart of statisti-
cal nondegeneracy; where it is mostly applied to the
choice of model parameters and the study of a general
such. Also, algebraic geometry and commmutative al-
gebra are already successfully applied there to obtain
theoretical results on statistical objects and methods.

2 The algorithm

The probability distribution of every smooth real ran-
dom variable X can be fully characterized in terms
of its cumulants, which are the tensor coefficients of
the cumulant generating function. Before we continue,
we introduce a useful shorthand notation for linearly
transforming tensors, i.e. cumulants.

Definition 2.1 Let A ∈ Cd×D be a matrix. For a ten-
sor T ∈ RD(×k)

, we will denote by A◦T the application
of A to T along all tensor dimensions, i.e.

(A ◦ T )i1...ik =
D∑

j1=1

· · ·
D∑

jk=1

Ai1j1 · . . . ·AikjkTj1...jk .

Using this, we can now define the cumulants of a D-
dimensional smooth real random variable X via the
Taylor expansion of the cumulant generating function.

Definition 2.2 Let X be a smooth real D-
dimensional random variable. Then the cu-
mulant generating function of X is defined as

χX(τ) = log
(
E
[
eiτ
>X
])

=
∑∞
k=1(iτ) ◦ κk(X)

k! , where

τ ∈ RD. The coefficient tensors κk(X) are called the
k-th cumulants of X.

For the problem addressed in this paper, cumulants
are a particularly suitable representation because the
cumulants of a linearly transformed random variable
are the multilinearly transformed cumulants, as a clas-
sical and elementary calculation shows:

Proposition 2.3 Let X be a smooth real D-
dimensional random variable and let A ∈ Rd×D be
a matrix. Then the cumulants of the transformed ran-
dom variable A · X are the transformed cumulants,
κk(AX) = A ◦ κk(X) where ◦ denotes the application
of A along all tensor dimensions.

We now derive an algebraic formulation for Prob-
lem 1.1: note that PXi ∼ PXj if and only if vXi ∼
vXj for all row vectors v ∈ spanP>.

Problem 2.4 Find all d-dimensional linear subspaces
in the set of vectors

S = {v ∈ RD
∣∣ v>X1 ∼ · · · ∼ v>Xm}

= {v ∈ RD
∣∣ v> ◦ κk(Xi) = v> ◦ κk(Xj),

k ∈ N, 1 ≤ i, j ≤ m}
= {v ∈ RD

∣∣ v> ◦ (κk(Xi)− κk(Xm)) = 0,

k ∈ N, 1 ≤ i < m}.

The equivalence of the problems then follows from the
fact that the projection P can be characterized by its
row-span which is a d-dimensional linear subspace in
S. Note that while we are looking for linear subspaces
in S, in general S itself is not a vector space. Apart
from the fact that S is homogeneous, i.e. λS = S for
all λ ∈ R\{0}, there is no additional structure that we
utilize. To use the tools from computational algebra,
we now only need to consider the left hand side of
each of the equations as polynomials f1, . . . , fn in the
variables T1, . . . , TD,

fj =
[
T1 · · ·TD

]
◦ (κk(Xi)− κk(Xm)),

with j running through n combinations of i and k. The
fj are formally elements of the polynomial ring over
the complex numbers C[T1, . . . , TD]. In particular, if
we restrict ourselves to a finite number of cumulants,
we can write S as the set of solutions to a finite number
n of polynomial equations,

S =
{
v ∈ RD | f1(v) = · · · = fn(v) = 0, 1 ≤ j ≤ k} ,

which means that S is an algebraic set or an algebraic
variety. Thus, in the language of algebraic geometry,
we can reformulate the problem as follows.

Problem 2.5 Find all d-dimensional linear subspaces
in the algebraic set

S = V(f1, . . . , fn).

In order to describe in algebraic terms how this can
be done we need to assume that a unique solution in-
deed exists, while assuming as little as possible about
the given polynomials. Therefore we need to employ
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the concept of generic polynomials, which is defined
rigorously in the supplemental material. Informally, a
polynomial is generic when it does not fulfill any other
conditions than the imposed ones and those which
follow logically. This can be modelled by assuming
that the coefficients are independently sampled from a
sufficiently general probability distribution (e.g. Gaus-
sians), only subject to the imposed constraints. The
statements following the assumption of genericity are
then probability-one statements under those sampling
conditions.

In our context, we can show that under genericity con-
ditions on the f1, . . . , fn, and when their number n is
large enough, the solution is unique and equivalent to
finding a linear generating set for the radical of the
ideal 〈f1, . . . , fn〉, which equals its homogenous satu-
ration, as Corollary C.7 in the supplemental material
asserts:

Problem 2.6 Let f1, . . . , fn with n ≥ D + 1 be
generic homogenous polynomials vanishing on a lin-
ear d-dimensional subspace S ⊆ CD. Find a linear
generating set `1, . . . , `D−d for the radical ideal

(〈f1, . . . , fn〉 : TD) =
√
〈f1, . . . , fn〉 = I(S).

3 Approximate Algebraic
Computations

In this section we present the Münchhausen algorithm
which computes the homogenous saturation in Prob-
lem 2.6 and thus computes the ideal regression in the
marginalization problem. The algorithm for the gen-
eral case is described in the appendix in section C.2.

The efficiency of the algorithm stems largely from the
fact that we operate with linear representations for
polynomials. That is, we first find enough elements
in the ideal 〈f1, . . . , fn〉 which we then represent in
terms of coefficient vectors. In this vector space we can
then find the solution by means of linear algebra. An
illustration of this representation is shown in Figure 2.
Let us first introduce tools and notation.

Notation 3.1 We will write R = C[T1, . . . , TD]
for the ring of polynomials over C in the vari-
ables T1, . . . , TD. We will denote the ideal of the d-
dimensional linear space S ⊆ CD by s = I(S).

In order to compactly write sub-vector spaces of cer-
tain degree, we introduce some notation.

Notation 3.2 Let I be an ideal of R. Then we will
denote the vector space of homogenous polynomials of
degree k in I by Ik.

The dimension of these sets can be later written com-
pactly in terms of simplex numbers, for which we in-
troduce an abbreviating notation.

Notation 3.3 We denote the b-th a-simplex number
by ∆(a, b) =

(
a+b−1
a

)
, which is defined to be zero for

a < 0.

Since the polynomials arise from estimated cumulants
we need to carry all algebraic computations out ap-
proximately. The crucial tool is to minimize distances
in coefficient space using the singular value decompo-
sition (SVD).

Definition 3.4 Let A ∈ Cm×n be a matrix, let A =
UDV > be its SVD. The approximate row span of A
of rank k is the row span of the first k rows of V ; the
approximate left null space of A of rank k is the row
span of the last k rows of U .

These approximate spaces can be represented by ma-
trices consisting of row vectors spanning them, the so-
called approximate left null space matrix and approx-
imate row span matrix.

The key to the problem is the fact that there ex-
ists a degree N such that the ideal generated by the
f1, . . . , fn contains all homogenous polynomials of de-
gree N in s. This allows us to increase the degree until
we arrive at a vector space where it suffices to operate
linearly (see Figure 3).

Theorem 3.5 Let f1, . . . , fn ∈ s be generic ho-
mogenous polynomials in D variables of fixed degrees
d1, . . . , dn each, such that n > D. Let I = 〈f1, . . . , fn〉.
Then one has

(I : Ti) = s

for any variable Ti. In particular, there exists an in-
teger N such that

IN = sN .

N is bounded from below by the unique index M be-
longing to the first non-positive coefficient aM of the
power series

∞∑

k=0

akt
k =

∏n
i=1(1− tdi)
(1− t)D − 1

(1− t)d .

If we have di ≤ 2, and D ≤ 11, then equality holds.

This summarizes Proposition B.36, Corollary B.41 and
Theorem B.42 from the supplemental material for the
case s = I(S), the proof can be found there. In the ap-
pendix, we conjecture that the statement on N is also
valid for general di and D - this generalizes Fröberg’s
conjecture on Hilbert series of semi-regular sequences
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[7]. In the supplemental material, we give an algorithm
which can be used to prove the conjecture for fixed di
and D and thus give an exact bound for N in those
cases. Theorem 3.5 guarantees that given our input
polynomials, we can easily obtain a basis for the vec-
tor spaces of homogenous polynomials sk with k ≥ N .
In this vector space, we are interested in the polyno-
mials divisible by a fixed monomial Ti; they form the
vector space sk ∩ 〈Ti〉 = (s ∩ 〈Ti〉)k . By dividing out
the monomials Ti, we can then obtain the vector space
of homogenous polynomials sk−1 of degree one less.

Algorithm 1 The ideal regression estimator.
Input: Generic homogenous polynomials f1, . . . , fn ∈
s, n ≥ D; the dimension d of S.
Output: An approximate linear generating set
`1, . . . , `D−d for the ideal s.

1: Determine some necessary degree N according to
Theorem 3.5 (e.g. with Algorithm 2, or via Con-
jecture B.39/Algorithm 1)

2: Initialize Q← [ ] with the empty matrix.
3: for i = 1 . . . n do
4: for all monomials M of degree N − deg fi do
5:

Add a row vector of coefficients, Q←
[
Q
fiM

]

6: end for
7: end for
8: for k = N . . . 2 do
9: Set Q← ReduceDegree(Q)

10: end for
11: Compute the approximate row span matrix

A←
[
a1 · · · aD−d

]>
of Q of rank D − d

12: Let `i ←
[
T1 · · · TD

]
ai for all 1 ≤ i ≤ D − d

We explain how to proceed in the case where s = I(S)
is linear, and the fi are generic. The case of gen-
eral s can be found in the appendix. So suppose that
we have enough quadratic polynomials. Then we can
determine an approximate basis for the vector space
of homogenous degree 2 polynomials vanishing on S
which is s2, because our input polynomials lie approx-
imately on that subspace. From this we can obtain
the linear homogenous polynomials s1 by dividing out
any monomial Ti; a basis of s1 can be directly used to
obtain a basis of S. More generally, if we know a basis
of the vector space of homogenous degree k polynomi-
als vanishing on S which is sk, we can obtain from it a
basis of sk−1 in a similar way; by repeating this step-
wise, we eventually arrive at s1. This degree reducing
procedure is approximatively applied in Algorithm 2.

We now describe the Münchhausen Algorithm 1 in de-
tail. In Step 1, we calculate a degree N up to which
we need to multiply our input polynomials so that
we have enough elements to approximately span the

whole space sN of polynomials vanishing on S. In the
Steps 2 to 7 we multiply the input polynomials up to
the necessary degree N and arrange them as coeffi-
cient vectors in the matrix Q. This process is illus-
trated in the right panel of Figure 3. The rows of Q
approximately span the space of polynomials vanish-
ing on S, i.e. space (a) in the left panel of Figure 3.
In Steps 8 to 10 we invoke Algorithm 2 to reduce the
degree of the polynomials in Q until we have reached
an approximate linear representation s1. Finally, in
Step 11 we reduce the set of linear generators in Q to
the principal D − d ones.

Algorithm 2 ReduceDegree (Q).
Input: Approximate basis for the vector space sk
given as the rows of the (n ×∆(n,D))-matrix Q; the
dimension d of S.
Output: Approximate basis for the vector space sk−1,
given as the rows of the (n′ ×∆(n− 1, D))-matrix A

1: for i = 1 . . . D do
2: Let Qi ← the submatrix of Q obtained by

removing all columns corresponding to
monomials divisible by Ti

3: Compute Li ← the
approximate left null space matrix of Qi
of rank m−∆(k,D) + ∆(k, d)

+∆(k − 1, D)−∆(k − 1, d)
4: Compute L′i ← the

approximate row span matrix of LiQ
of rank ∆(k − 1, D)−∆(k − 1, d)

5: Let L′′i ← the matrix obtained from L′i by
removing all columns corresponding to
monomials not divisible by Ti

6: end for
7: Let L← the matrix obtained by vertical concate-

nation of all L′′i
8: Compute A← the

approximate row span matrix of L of rank
n′ = min(n,D(∆(k − 1, D)−∆(k − 1, d)))

Given a set of polynomials of degree k that vanish
approximately S, Algorithm 2 computes another set
polynomials of degree k − 1 with the same property.
This is achieved by dividing out variables approxi-
mately, in a way that utilizes as much information as
possible to reduce the influence of estimation errors
in the coefficients of the input polynomials. Approx-
imate division by a variable Ti means that we find
linear combinations of our input polynomials such the
coefficients of all monomials not divisible by Ti are as
small as possible. Given a matrix of coefficient row
vectors Q of degree k, for each variable that we di-
vide out the result is a matrix L′′i of polynomials of
degree k− 1 that also vanish approximately on the set
of solutions S. We iterate over all variables in the for-
loop and combine the results L′′1 , . . . , L

′′
D in the final
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Figure 4: Comparison of the ideal regression algorithm and the SSA algorithm. Each panel shows the median
error of the two algorithms (vertical axis) for varying numbers of stationary sources in ten dimensions (horizontal
axis). The noise level increases from the left to the right panel; the error bars extend from the 25% to the 75%
quantile.

Steps 7 and 8. In order to find L′′i for each variable Ti,
we first determine a matrix Li that minimizes the co-
efficients for all monomials in Q that are not divisible
by Ti. To that end, in Step 2 we remove all monomi-
als not divisible by Ti to get a matrix Qi for which we
then compute the left null space matrix Li in Step 3.
The product LiQi is then a set of polynomials of de-
gree k with minimal coefficients for all monomials not
divisible by Ti. These polynomials lie approximately
on the span of polynomials vanishing on S. In the
next Step 4, we compute an approximate basis L′ for
this space and in Step 5 we reduce the degree by re-
moving all monomials not divisible by Ti. Finally, in
the last Steps 7 and 8 we combine all found solutions
L′′1 , . . . , L

′′
D using PCA. Note that both algorithm are

deterministic and consistent estimators.

4 Simulations

We investigate the influence of the noise level and the
number of dimensions on the accuracy and the runtime
of the ideal regression algorithm in the special case of
covariance matrices and compare it to the standard
method for this case, the SSA algorithm [23]. We mea-
sure the accuracy using the subspace angle between the
true and the estimated space of projections. The setup
of the synthetic data is as follows: we fix the total num-
ber of dimensions to D = 10 and vary the dimension
d of the subspace with equal probability distribution
from one to nine. We also fix the number of random
variables to m = 26, yielding n = 25 quadratic poly-
nomials. For each trial of the simulation, we choose a
random basis for the subspace S and random covari-
ance matrices to which we add a disturbance matrix
parametrized by the noise level σ.

The results are shown in Figure 4. With increasing
noise levels both algorithms become worse. For all
noise levels, the algebraic method yields significantly

better results than the standard optimization-based
approach, over all dimensionalities. In Figure 4, we
see that the error level of the ideal regression algo-
rithm decreases with the noise level, converging to the
exact solution when the noise tends to zero. In con-
trast, the error of original SSA decreases with noise
level, reaching a minimum error baseline which it can-
not fall below. In particular, the algebraic method
significantly outperforms SSA for low noise levels, ap-
proaching machine precision. At high noise levels, the
algebraic method outperforms SSA on average, having
lower error variance than SSA.

5 Conclusion

In this paper, we have presented the framework of ideal
regression and an estimator which uses approximate
computational algebra. Moreover, we have worked
through a specific example: we have shown that the
problem of finding common projections of marginals
can be reformulated in terms of ideal regression and
we have derived a practical algorithm, that we have
evaluated in numerical simulations. Also, due to the
algebraic formulation of the problem, we were able to
derive previously unapproachable theoretical results
on the estimation problem. We argue for a cross-
fertilization of machine learning and approximate com-
putational algebra: the former can benefit from the
wealth of techniques for dealing with uncertainty and
noisy data; the machine learning community may find
in ideal regression a novel framework for representing
learning problems and powerful proof techniques.
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and Klaus-Robert Müller. Finding stationary sub-
spaces in multivariate time series. Phys. Rev. Lett.,
103(21):214101, Nov 2009.

[24] Paul von Bünau, Frank C. Meinecke, Jan S. Müller,
Steven Lemm, and Klaus-Robert Müller. Boosting
high-dimensional change point detection with station-
ary subspace analysis. In Workshop on Temporal Seg-
mentation at NIPS 2009. 2009.

[25] Paul von Bünau, Frank C. Meinecke, Simon Scholler,
and Klaus-Robert Müller. Finding stationary brain
sources in EEG data. In Proceedings of the 32nd An-
nual Conference of the IEEE EMBS, pages 2810–2813,
2010.

636



Regression for sets of polynomial equations

[26] Sumio Watanabe. Algebraic Geometry and Statistical
Learning Theory. Cambridge Monographs on Applied
and Computational Mathematics. Cambridge Univer-
sity Press, United Kingdom, 2009.

637


