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A Detailed Proofs and Derivations

A.1 Proposition 3

For the QP edges, it holds that µij(xi, xj) =
µi(xi)µj(xj). Instead of having a linear objective func-
tion (µ·θ), we can substitute µij(xi, xj) by µi(xi)µj(xj)
in the objective. Thus we no longer need to store the
parameter µij(xi, xj) nor the mean-field constraint ex-
plicitly for QP edges. Therefore, the total number of
parameters is O(k2|L| + nk) and the total number of
constraints is O(2|L|k + n) where L=E\Q. As the size
of Q increases by 1, the size of the set L decreases by 1.
This proves the proposition.

A.2 Proposition 4

The optimization problem involving the function
g(µ, y; θ, Q) over Ω′ is given by1:

min
µ,y

−
∑

(i,j)∈Q

∑
xi,xj

θ(xi, xj)ey(xi)+y(xj)−

∑
(i,j)∈L

∑
xi,xj

θ(xi, xj)µ(xi, xj) (19)

subject to :
∑
xi,xj

µ(xi, xj) = 1 ∀(i, j) ∈ L;

∑
x̂j

µij(xi, x̂j) = ey(xi) ∀i ∈ V,∀xi,∀Nbl(i) (20)

The Lagrangian L(µ, y, λ) is given by:

L(µ, y, λ) = −
∑

(i,j)∈Q

∑
xi,xj

θ(xi, xj)ey(xi)+y(xj)−

∑
(i,j)∈L

∑
xi,xj

θ(xi, xj)µ(xi, xj) +
∑
ij

λij

{ ∑
xi,xj

µ(xi, xj)− 1
}

+
∑
i∈V

∑
j∈Nbl(i)

∑
xi

λji(xi)
{ ∑

xj

µij(xi, xj)− ey(xi)

}
(21)

Notice that in the above Lagrangian, we ignored the
nonnegativity constraints associated with µ(xi, xj) ≥ 0

1Equation numbers continue the main paper.

for simplicity as they remain the same for both versions
of the optimization problem. Now the KKT conditions
for the stationary point are given by:

∂L

∂µ(xi, xj)
= −θ(xi, xj) + λij + λji(xi) + λij(xj) = 0

(22)

The second KKT condition is:

∂L

∂y(xi)
= −

∑
j∈Nbq(i)

∑
xj

θ(xi, xj)ey(xi)+y(xj)−

∑
j∈Nbl(i)

λji(xi)ey(xi) = 0 (23)

which can be further simplified to:∑
j∈Nbq(i)

∑
xj

θ(xi, xj)ey(xj) +
∑

j∈Nbl(i)

λji(xi) = 0 (24)

Now consider the second optimization problem of opti-
mizing g(µ; θ, Q) over Ω given as:

min
µ,y

−
∑

(i,j)∈Q

∑
xi,xj

θ(xi, xj)µ(xi)µ(xj)−

∑
(i,j)∈L

∑
xi,xj

θ(xi, xj)µ(xi, xj) (25)

subject to :
∑
xi,xj

µ(xi, xj) = 1 ∀(i, j) ∈ L;

∑
x̂j

µij(xi, x̂j) = µ(xi) ∀i ∈ V,∀xi,∀Nbl(i) (26)

Notice that every feasible point (µ′, y′) ∈ Ω′ of the first
optimization problem can be transformed into a unique
feasible point µ ∈ Ω of the second problem simply by
setting µ(·, ·) = µ′(·, ·) and setting µ(·) = ey(·). Thus
each stationary point of the first optimization problem
is a feasible point of the second problem. We now show
that this feasible point indeed satisfies the KKT condi-
tions of the second optimization problem too, thus prov-
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ing the proposition. The Lagrangian L(µ, λ) is given by:

L(µ, λ) = −
∑

(i,j)∈Q

∑
xi,xj

θ(xi, xj)µ(xi)µ(xj)−

∑
(i,j)∈L

∑
xi,xj

θ(xi, xj)µ(xi, xj) +
∑
ij

λij

{ ∑
xi,xj

µ(xi, xj)− 1
}

+
∑
i∈V

∑
j∈Nbl(i)

∑
xi

λji(xi)
{ ∑

xj

µij(xi, xj)− µ(xi)
}

(27)

Now the KKT conditions for the stationary point are:

∂L

∂µ(xi, xj)
= −θ(xi, xj) + λij + λji(xi) + λij(xj) = 0

(28)

The above KKT condition matches exactly with the
KKT condition of Eq. (22).

The second KKT condition is:

∂L

∂µ(xi)
=−

∑
j∈Nbq(i)

∑
xj

θ(xi, xj)µ(xj)−
∑

j∈Nbl(i)

λji(xi)=0

(29)

The above condition is also exactly the same as of the
condition in Eq. (24) by noting that µ(xj) = ey(xj).
Thus we have shown that every stationary point of the
first optimization problem is a feasible point of the sec-
ond optimization and also satisfies the KKT conditions.

A.3 Proposition 5

The above proposition can be proved using Zangwill’s
global convergence theorem [2] which has been used to
prove the convergence of CCCP for the convex con-
straints [1, Thm. 4]. They also show another variant
of CCCP with non-convex constraints also converges to
a stationary point [1, Sec. 4.1]. In our case, we wish
to prove the convergence of CCCP for the optimization
problem min g(µ, y; θ, Q) of Eq. (19) over constraints
Ω′ of Eq. (20). In principle, we can use the analysis
of [1, Sec. 4.1] that handles CCCP with non-convex
constraints, however we do not use the variant of CCCP
presented in that section as we have non-convex equal-
ity constraints rather than D.C. inequality constraints.
For a brief overview of the Zangwill’s theorem, we refer
to [1, Thm. 2]. We will also use some background terms
from [1] such as the notion of point-to-set map, details
can be found in that paper.

Roughly speaking, the CCCP iteration of Eq. (12) de-
fines a point-to-set map xl+1 =Acccp(xl) where Acccp is
the optimization problem of Eq. (12). The main idea
to prove the convergence of CCCP is two fold. First we
show that a fixed point of Acccp is also a stationary point

of the D.C. program of Eq. (19). The fixed point x? of
Acccp is given by the condition x? = Acccp(x?). This
can be easily shown by writing the KKT conditions for
Acccp at x? and showing that they also satisfy the KKT
conditions for the D.C. program of Eq. (19) similar to
Appendix A.2. This condition holds in our case; we skip
the proof for brevity.

The second step is to show that the limit points of any
sequence {xl}∞l=0 generated by Acccp are the fixed points
of Acccp. This can be shown by using the conditions
of [1, Thm. 2]. We do not show the proof in detail as
it is similar to the proof of convergence of CCCP with
convex constraints [1, Thm. 4]. We provide high level
arguments as follows. The main reason is that although
our original D.C. program of Eq. (19) has non-convex
constraints, the CCCP iteration Acccp we proposed in
Eq. (12) is a convex optimization problem with linear
equality constraints. Therefore the convergence of Acccp

is implied by [1, Thm. 4], which only requires Acccp

to be a convex optimization problem and be uniformly
compact on the constraint set. We also highlight that
the [1, Remark 7] holds in our case as the constraint set
for Acccp in Eq. (13) is compact.

A.4 Reinterpretation of the dual updates in
terms of primal parameters

This appendix derives the updates used in the inner loop
of Alg. 1. Let each step of dual coordinate ascent be
indexed by superscripts τ starting from zero. Initially,
we set all multipliers λs to zero. Let the outer loop
iterations be indexed by subscripts n and let the current
outer loop iteration be n + 1. So we have:

µ(xi, xj) = e

{
θ(xi,xj)+∇µ(xi,xj)v+λij(xj)+λji(xi)−λij−1

}
µ0(xi,xj) = µn(xi,xj) exp

{
θ(xi,xj)

}
µ(xi) =

∇y(xi)v

1 +
∑

k∈Nbl(i)
λki(xi)

µ0(xi) = ∇y(xi)v

For any inner loop iteration τ , we can realize the inter-
mediate beliefs as:

µτ (xi) =
∇y(xi)v

1 +
∑

k∈Nbl(i)
λτ

ki(xi)

µτ (xi, xj) = µn(xi, xj)e
{

θ(xi,xj)+λτ
ij(xj)+λτ

ji(xi)−λτ
ij

}
Let us first consider the dual update for λτ+1

ij (xj).

λτ+1
ij (xj) = W

[ ∇y(xj)v e
P

k∈Nbl(j)\i λτ
kj(xj)+1∑

xi
µn(xi, xj) exp{θ(xi, xj) + λτ

ji(xi)− λτ
ij}

]
−1−

∑
k∈Nbl(j)\i

λτ
kj(xj)
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We can simplify the argument Zτ of the lambert W -
function as follows:

Zτ =
∇y(xj)v e

P
k∈Nbl(j)\i λτ

kj(xj)+1∑
xi

µn(xi, xj) exp{θ(xi, xj) + λτ
ji(xi)− λτ

ij}
eλτ

ij (xj)
eλτ

ij (xj)

Zτ =
∇y(xj)v e

P
k∈Nbl(j) λτ

kj(xj)+1∑
xi

µn(xi, xj) exp{θ(xi, xj) + λτ
ij(xj) + λτ

ji(xi)− λτ
ij}

Zτ =
∇y(xj)v exp{

∇y(xj)

µτ (xj)
}∑

xi
µτ (xi, xj)

So now we have new λτ+1
ij (xj) as:

λτ+1
ij (xj) = W

[
Zτ

]
− 1−

∑
k∈Nbl(j)\i

λτ
kj(xj)

Using the above equation to calculate the new µτ+1(xj),
we have:

µτ+1(xj) =
∇y(xj)v

1 +
∑

k∈Nbl(j)\i λτ
kj(xj) + λτ+1

ij (xj)

µτ+1(xj) =
∇y(xj)v
W[Zτ ]

The only other quantity affected by λτ+1
ij (xj) is

µτ+1(xi, xj). We have:

µτ+1(xi, xj) = µn(xi, xj)e
{

θ(xi,xj)+λτ
ji(xi)−λτ

ij

}
eλτ+1

ij (xj)

= µn(xi, xj)e
{

θ(xi,xj)+λτ
ji(xi)−λτ

ij

}
eW [Z]

e
1+

P
k∈Nbl(j)\i λτ

kj(xj)

Multiplying and dividing the above expression by
eλτ

ij(xj), we get

=µn(xi, xj)e
{

θ(xi,xj)+λτ
ij(xj)+λτ

ji(xi)−λτ
ij

}
eW [Z]

e
1+

P
k∈Nbl(j) λτ

kj(xj)

µτ+1(xi,xj)=µτ (xi,xj) exp
(
W[Zτ ]−

∇y(xj)v
µτ (xj)

)

A.5 Proposition 7

Substituting the definition of Bregman function in
Eq. (18) we get the proximal iteration as:

µn+1 = arg min
µ∈Ω

{
g(µ) +

1
ω

(
f(µ)− f(µn)

−∇f(µn)µ +∇f(µn)µn

)}
= arg min

µ∈Ω

{
g(µ) +

1
ω

(
f(µ)−∇f(µn) · µ

)}
Consider the D.C. program:

min
µ∈Ω

{u(µ)− v(µ)}

equivalent to the original problem minµ∈Ω g(µ) with
u(µ) = g(µ) + 1

ω f(µ) and v(µ) = 1
ω f(µ). The CCCP

iteration of Eq. (7) is given as:

arg min
µ∈Ω

{g(µ) +
1
ω

f(µ)− 1
ω
∇f(µn) · µ}

which is equivalent to the previous proximal scheme it-
eration.

B Experimental Results for Max-
Product for Biq Instances

Table 1 shows the complete set of results, detailing the
solution quality achieved by max-product.

Table 1: Solution quality comparisons for max-product

Instance Optimal MP
100-1 7970 7822
100-2 11036 11036
100-3 12723 12723
100-4 10368 10368
100-5 9083 9083
100-6 10210 10065
100-7 10125 10034
100-8 11435 11435
100-9 11455 11455
100-10 12565 12565

250-1 45607 45607
250-2 44810 44810
250-3 49037 49037
250-4 41274 41270
250-5 47961 47961
250-6 41014 41014
250-7 46757 46757
250-8 35726 34450
250-9 48916 48916
250-10 40442 40442

1b.20 133 0
2b.30 121 0
3b.40 118 0
4b.50 129 0
5b.60 150 0
6b.70 146 61
7b.80 160 0
8b.90 145 0
9b.100 137 0
10b.125 154 0
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