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Abstract

MCMC sampling has been extensively stud-
ied and used in probabilistic inference. Many
algorithms rely on local updates to explore
the space, often resulting in slow conver-
gence or failure to mix when there is no path
from one set of states to another via local
changes. We propose an efficient method for
sampling from combinatorial spaces that ad-
dresses these issues via “bridging states” that
facilitate the communication between differ-
ent parts of the space. Such states can be
created dynamically, providing more flexibil-
ity than methods relying on specific space
structures to design jump proposals. Theo-
retical analysis of the approach yields bounds
on mixing times. Empirical analysis demon-
strates the practical utility on two problems:
constrained map labeling and inferring par-
tial order of object layers in a video.

1 Introduction

Inference of combinatorial configurations under spe-
cific constraints arises as an important problem in nu-
merous areas of artificial intelligence, including struc-
tural learning(Friedman and Koller, 2003; Eaton and
Murphy, 2007), data mining(Pei et al., 2006), bioin-
formatics(Vahedi et al., 2009), and circuit verifica-
tion(Kitchen and Kuehlmann, 2009). In such prob-
lems, seeking an optimal estimate is NP-Hard. One
example is to infer the underlying partial order from
dependent observations. Owing to the complexity, ap-
proximate inference techniques are used, among which,
Monte Carlo sampling is a prominent choice. Here, we
aim to develop a generic method for sampling from
constrained combinatorial spaces.
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Current sampling methods fall mainly into three cat-
egories: (1) Direct sampling enumerates all possible
samples and evaluates their probabilities. This is usu-
ally intractable for combinatorial problems as the sam-
ple space grows exponentially with the problem scale.
(2) Rejection sampling generate samples without en-
forcing the constraints and rejects those that violate
them. This can be very inefficient since the chance of
obtaining a valid sample can be extremely low through
random sampling from the underlying product space.
(3) Markov Chain Monte Carlo (MCMC) (Walsh,
2002) is a popular method for Bayesian inference. The
idea is to construct an ergodic Markov chain which has
the desired distribution as its equilibrium distribution,
thus reducing sampling to Markov simulation.

MCMC relies on an ergodic Markov chain with rapid
mixing. Devising such a chain over a constrained com-
binatorial space can be challenging. Gibbs sampling,
where each transition updates a single variable of the
sample, is one of the most widely used MCMC meth-
ods. However, in combinatorial problems (e.g. the
graph coloring problem, where the color of each node
must differ from that of its neighbors), there often exist
strong and deterministic relations between variables.
Hence, the set of possible values for a variable can be
severely restricted by the value of others. At times,
no single variable update is possible without violating
the constraints, thus rendering the underlying Markov
chain non-ergodic.

The Metropolis-Hastings algorithm allows for cus-
tomized proposal kernels, providing for more flexible
moves that may break local traps or jump between
different spaces. Duane et al. (1987) proposed Hy-
brid Monte Carlo, which utilizes Hamiltonian dynam-
ics to drive the evolution of the target state, resulting
in larger strides across the space. Swendsen and Wang
(1987) proposed an algorithm for efficient simulation
of Ising models, which partitions the MRF into clus-
ters, and assign a new spin value for each one at a
iteration. Barbu and Zhu (2005) later reformulated
it as an M-H algorithm, and extended it to a broader
class of posterior segmentation problems. Green (1995,
2003) developed Reversible Jump MCMC, which per-
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forms Bayesian model selection, by sampling from a
mixture of model spaces with different dimensions, via
trans-dimensional jumps. Data-driven strategies that
exploit the observed data to generate proposals have
received increasing attention, and have been used to
solve various problems such as image segmentation (Tu
and Zhu, 2002) and Bayesian structure learning (Eaton
and Murphy, 2007). These algorithms are difficult to
generalize to other contexts as they are tailored to spe-
cific models (e.g. model selection and MRF labeling).

Here, we develop a generic methodology to efficiently
sample from constrained combinatorial spaces with-
out strong assumptions of the space structure. We
introduce the notion of bridging to connect different
regions of the sample space that could otherwise be
difficult or even impossible to communicate with each
other. Specifically, we augment the state space with
a set of bridging states and make connections between
these bridges and the target states under a cross-space
detailed balance condition in order to obtain a joint
Markov chain. We establish the correctness of this ap-
proach and derive bounds on the mixing time using
bottleneck analysis. We also show that by hierarchi-
cally bridging at multiple levels, one can obtain an
ergodic Markov chain in spite of the space structure,
while maintaining considerable probability of draw-
ing target samples from the augmented space. Im-
portantly, the approach constructs bridging states dy-
namically making it more flexible than many previous
MCMC methods which exploit complete knowledge of
the space structure to derive the proposal kernels.

Previous work suggests sampling to solve constrained
combinatorial problems. Wei et al. (2004) proposed
WalkSAT that seeks solutions to a boolean satisfiabil-
ity problem (SAT) via random walks interleaved with
simulated annealing steps. Kitchen and Kuehlmann
(2009) extended this approach to solve problems
with mixed boolean/integer constraints, under the
Metropolis-Hastings formulation. This approach al-
lows constraint violation, and drives the state towards
satisfying solutions using an energy function that in-
curs costs for the constraints being violated. Barrett
and Simma (2005) proposed an MCMC method that
explicitly addresses the disconnected-space issue. The
idea is to assign small probability mass to each invalid
state, and use occasional random restarts to jump be-
tween different regions. Both methods above sample
from “smoothed” versions of the target distribution in-
stead of the exact one, mixing slowly when valid solu-
tions are sparse, and increase the probability of falling
in an invalid region. Hamze and de Freitas (2010) pre-
sented a method to sample from a constrained Ising
model through self avoiding walks. It is exact and ef-
ficient, but restricted to a specific type of problem.

(1� f)PY (y, y
0)

(1� b)PX(x, x0)

fQF (y, x)

x x0

y y0

X

Y

bQB(x, y)

Figure 1: This illustrates how two Markov chains are
bridged. In the joint chain over X ∪ Y , each x ∈ X has a
probability bQB(x, y) to transit to y ∈ Y , and each y has
a probability fQF (y, x) to transit to x.

2 Theory

Suppose we wish to sample from distribution µ over a
constrained combinatorial spaceX. Using local moves,
we can derive a Markov chain with transition matrix
P, which may have slow mixing or even be non-ergodic.
In order to mitigate such issues we suggest the notion
of “bridging” as a way to connect different regions of
the sample space that are otherwise difficult or even
impossible to communicate. Specifically, we introduce
a set of “bridging states”, denoted by Y . Connecting
the states in Y with those in X, we obtain a joint
chain over the union space X ∪ Y . If the joint chain
is ergodic and has a stationary distribution in form of
(αµX , (1−α)µY ) then sampling from µX is equivalent
to drawing samples from X∪Y via the joint chain and
discarding those from Y .

With a goal of constructing a joint chain that is er-
godic and mixes rapidly, section 2.1 discusses the
generic problem of bridging between two arbitrary fi-
nite Markov chains over disjoint state spaces such that
the stationary distributions over the respective spaces
are preserved. In section 2.2, we then derive bounds of
the mixing time, which are influenced by two factors:
the bottleneck ratio and laziness.

2.1 Bridging Markov Chains

Consider two finite state spaces X and Y . Suppose we
are given two Markov chains: one over X with tran-
sition matrix PX and stationary distribution µX , the
other over Y with transition matrix PY and station-
ary distribution µY . By introducing links that connect
between X and Y , as shown in Figure 1, we derive the
joint transition matrix, as

P+ =

[
(1− b)PX bQB

fQF (1− f)PY

]
. (1)

Here, QB is a |X| × |Y | matrix, QF is a |Y | × |X|
matrix, and each row in these matrices sums to 1.
The behavior of the joint chain is described as follows:
Starting from some x ∈ X samples follow the origi-
nal chain PX with probability 1 − b and jump to Y
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with probability b landing at a particular state y with
probability QB(x, y). Similarly, starting from y ∈ Y ,
sampling either stays in Y or jumps to X, respectively
with probabilities 1− f and f .

While sampling from the joint chain we wish to pre-
serve the stationary distributions µX and µY within
respective spaces, meaning that P+ has a stationary
distribution over X ∪ Y , in form of (αµX , βµY ) with
α + β = 1. We derive the following lemma, which es-
tablishes the conditions under which this is satisfied.

Lemma 1. The joint transition matrix P+ given
by Eq.(1) has a stationary distribution in form of
(αµX , βµY ), if and only if

µXQB = µY , and µY QF = µX . (2)

Under this condition, we have αb = βf . Further, if
both PX and PY are both reversible, then P+ is also
reversible, if and only if

µX(x)QB(x, y) = µY (y)QF (y, x), (3)

for all x ∈ X and y ∈ Y .

The proofs of this lemma and other lemmas and the-
orems that we develop are provided in appendix. We
name the condition of Eq.(3) as cross-space detailed
balance. With this construction, the total probability
of cross-space transition is given by

η(b, f) , αb+ βf = 2αb = 2βf =
2bf

b+ f
. (4)

The value of η(b, f) reflects how frequently X and Y
communicate with each other, which, as we shall see,
is closely related to the mixing time of the joint chain.

We note that the matrix QBF , QBQF is a stochastic
matrix, which actually represents a Markov chain over
X, where each transition is via an intermediate state in
Y . Intuitively, these chains utilize states in the other
space to provide alternative transition routes, which,
as stated by the following lemma, also lead to the same
stationary distributions.

Lemma 2. If the condition given by Eq.(2) holds, then
µX and µY are respectively stationary distributions of
QBF and QFB. Moreover, if P+ is reversible, then
both QBF and QFB are reversible.

On the other hand, as we will discuss in section 2.2,
the ergodicity and the mixing time of the joint chain
also depend on the characteristics of QBF and QFB .

2.2 Mixing Time Analysis

The efficiency of a Markov chain is often measured by
the mixing time. Given an ergodic Markov chain over

X, with equilibrium distribution µ, the mixing time is

tmix(ε) , min{t : max
x∈X
‖Pt(x, ·)− µ‖TV < ε}. (5)

We assume that the eigenvalues of P are 1 = λ1 ≥
· · · ≥ λn ≥ −1. Then, the absolute spectral gap of P is
defined to be γ∗(P) , min{1− λ2, 1 + λn}. The theo-
rem (Levin et al., 2008) below shows that the mixing
time closely relates to this absolute spectral gap.

Theorem 1. Given a reversible Markov chain with
transition matrix P, and ε ∈ (0, 1/2), then

log(1/(2ε))(τ − 1) ≤ tmix(ε) ≤ log(1/(εµmin))τ. (6)

Here, τ is called the relaxation time, given by 1/γ∗(P).

In general, a chain tends to have slow mixing when
the absolute spectral gap is small, and when the gap
is zero, the chain is non-ergodic and never mixes. The
absolute spectral gap depends on two factors, namely
the bottleneck ratio, which affects the value of 1− λ2,
i.e. the spectral gap, and the laziness of transition,
which influences 1 + λn.

2.2.1 Flows and Bottleneck Ratio

Given a Markov chain with transition matrix P, which
has a stationary distribution µ. For x, x′ ∈ X, we
define the transition flow (or simply flow) from x to x′

to be F(x, x′) , µ(x)P(x, x′). For a reversible chain,
the flows are symmetric, i.e. F(x, x′) = F(x′, x). The
notion of flow can also be extended to sets. Let A
and B be subsets of X, then the flow from A to B is
defined to be F(A,B) ,

∑
x∈A

∑
x′∈B F(x, x′).

Consider a partition of X into two subsets S and its
complement Sc, then the transition flow ratio of S is
Φ(S, Sc;P) , F(S, Sc)/min{µ(S),µ(Sc)}, where µ is
used as a measure, i.e. µ(S) =

∑
x∈S µ(x). Taking the

minimum of such ratio values of all partitions, we get
the bottleneck ratio, which is formally defined as

Φ∗(P) = min
S⊂X

{ F(S, Sc)

min{µ(S),µ(Sc)} : S, Sc 6= ∅
}
. (7)

Jerrum and Sinclair (1989) derived the theorem below
that establishes both a lower and upper bound of the
spectral gap in terms of bottleneck ratio.

Theorem 2. Let λ2 be the second largest eigenvalue
of a reversible transition matrix P, then

Φ2
∗(P)/2 ≤ 1− λ2 ≤ 2Φ∗(P). (8)

This theorem shows that increasing the bottleneck ra-
tio tends to expand the spectral gap, and thus reduce
the mixing time. Through theoretical study, we found
that the bottleneck ratio of the joint chain P+ given
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by Eq.(1) depends on both how frequently the chain
jumps between X and Y and how well the forward and
backward links couple with each other. The former is
controlled by f and b, while the latter is mainly re-
flected by the spectral structure of the coupled chain:
QBF and QFB . We further derived specific bounds
that characterize their relations:

Theorem 3. The reversible transition matrix P+ as
given by Eq.(1) has

η(b, f)

2
· φ

φ+ 1
≤ Φ∗(P+) ≤ max{b, f}. (9)

Here, η(b, f) = 2αb = 2βf is the total probability of
cross-space transition, φ = min{Φ∗(QBF ),Φ∗(QFB)}.

This theorem gives both a lower bound and an up-
per bound of the bottleneck ratio of P+. We can see
that the bottleneck ratio is influenced by two factors:
(1) the frequency of cross-space transition. Frequent
transition between X and Y generally results in high
bottleneck ratio; while if the communication between
them is inactive, the bottleneck ratio would be very
low, leading to slow mixing. (2) the bottleneck ratio of
the collapsed chains. High bottleneck ratios of the col-
lapsed chains indicate that transition between differ-
ent regions is made easy with the intermediate states,
and thus the joint chain can mix rapidly. More impor-
tantly, from this theorem, we get

Corollary 1. The joint chain P+ is ergodic when the
collapsed chains (QBF and QFB) are both ergodic.

2.2.2 Laziness

Whereas increasing bottleneck ratio can enlarge the
spectral gap, 1− λ2, the mixing time also depends on
1 +λn, the distance between λn and −1. In general, a
reasonable value of 1+λn can be achieved by laziness.

Lemma 3. Let P be a reversible transition matrix
over X, such that P(x, x) ≥ ξ > 0 for each x ∈ X
then its smallest eigenvalue λn has λn ≥ 2ξ − 1.

This shows that by maintaining a probability ξ > 0 for
the chain to stay (without transiting to other states),
we can keep λn away from −1. Given an arbitrary
reversible chain with transition matrix P, we can make
it lazier by changing P to (1− ξ)P+ ξI. However, it is
worth noting that increasing the laziness coefficient ξ
would on the other hand shrink the spectral gap from
1−λ2 to (1−ξ)(1−λ2). Hence, it is advisable to select
a ξ that balances laziness and spectral gap.

3 Algorithms

Based on the theory of bridging Markov chains, we
develop practical algorithms to construct the bridges
and sample from the joint chain.

3.1 Construction of Bridges

Come back to our original problem of sampling from
a distribution µX over X, for which we can get a
Markov chain PX based on local moves. To improve
the mixing, we introduce “bridges” to facilitate non-
local transition. Specifically, we first choose a collec-
tion of state subsets of X: S1, . . . , Sm, and create a
bridging state yi for each Si. In this way, we get a
set of new states Y = {y1, . . . , ym}. Suppose each tar-
get state in X has been covered by some such subset
Next, for each x ∈ X, we set a transition probabil-
ity QB(x, yi) = 1/m(x) for each yi associated with
with it, i.e. x ∈ Si, where m(x) is the number of such
bridges, and set QB(x, yi) = 0 when x /∈ Si. Accord-
ing to Lemma 1, we can construct QF , the transition
probabilities from Y to X, as follows

QF (yi, x) = µX(x)/
∑

x′∈Si

µX(x′). (10)

It is not difficult to verify that the matrices QB and
QF as above satisfy the cross-space detailed balance
in Eq.(3), with µY given by

µY (yi) ∝
∑

x∈Si

µX(x′). (11)

The values of f and b are set empirically. The guideline
is to keep a balance between the local updates along
the original chain and the transition via bridges.

Discussions: (1) The construction is very flexible.
Given a specific problem, one can choose the subsets
in any way that they see as best. For a problem where
we have a clear perspective of the space structure, we
can establish bridges that connect between the samples
in different clusters to speed up the transition between
them. (2) For problems with huge space, one layer of
bridging can be very expensive. For such problems,
we devise a novel sampling scheme called hierarchical
bridging (see section 3.2), which provides a systematic
way to derive an ergodic chain.

3.2 Hierarchical Bridging

For many problems, the underlying clustering struc-
ture of the sample space is largely unknown, and thus
it is difficult to devise the bridges in advance. In the
following, we describe a generic approach, which ex-
tends the construction above to a hierarchical frame-
work that recursively builds bridges at multiple levels.

Initially, we have the target state space X, where each
sample is a discrete vector, in form of (x1, . . . , xK).
The target states constitute the 0-th level of the hi-
erarchy. For the first level of bridging, we introduce
a set of bridges, denoted by Y1. Each bridge in Y1
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Figure 2: (a) shows the hierarchically bridging Markov
chain on a simple problem: x1, x2 ∈ {0, 1} with constraint
x1 6= x2. We use red color for the backward transitions
from children to parents, and green for the transitions from
parents to children. (b) illustrates a typical transition path.
We use numbered circles to indicate the transition order. In
this process, the bridges (0,−) and (−,−) are constructed
upon the backward transition from a child state. When
(−,−) is instantiated, the right branch has not been vis-
ited, and the forward probability value for that branch is
set with an optimistic estimate, encouraging the chain to
visit that branch. Upon seeing (1, 0), the forward proba-
bilities of its parents will be updated accordingly.

corresponds to a partial assignment, i.e. a vector with
one of the value removed. Take a state space {0, 1}3
for example. Consider (0, 0, 0) ∈ X. By removing the
middle value, we get a partial vector (0,−, 0), where
− indicates a slot at which the value is removed. All
vectors in form of (0, x2, 0), which include (0, 0, 0) and
(0, 1, 0) here, are called the children of (0,−, 0), and
(0,−, 0), in turn, is called the parent of them.

Given b0, f1 < 1, the transition between X and Y
is described as follows. Starting from a target state
x ∈ X, with probability 1 − b0, the chain stays in X,
and with probability b0, it transits to the parent of
x in Y1, by randomly removing a value. Note that
a vector of length K has K different parents, and
thus the transition probability from x to any partic-
ular parent is b0/K. Starting from a bridge y ∈ Y1,
with probability 1 − f1, it stays at y, and with prob-
ability f1, it transits back to X. In particular, the
transition probability from y = (x1, . . . ,−, . . . , xK) to
x = (x1, . . . , xi, . . . , xK) is proportional to µ(x). To
calculate this probability, one only have to evaluate
of µ(x) up to a scale. This is a useful property, as
the normalization constant of a distribution is often
difficult to evaluate in practical problems.

The construction of the hierarchy can be completed
by recursively adding levels up to the root (the K-th
level). Each bridge at the k-th level (denoted by Yk)
is a partially assigned vector with k entries removed.
Starting from y ∈ Yk, the probability of transiting to
the upper level Yk+1 is bk. Specifically, each y ∈ Yk
has K − k assigned values, and thus it has a prob-
ability bk/(K − k) to transit to any of its parent by

randomly removing one of the assigned values. The
chain also has a total probability fk to transit to the
lower level Yk−1. To accomplish such a transition, we
randomly pick one of the k unassigned slots (say the
j-th entry), and draws a value for xj , resulting a child
state y′. The forward transition probability from y to
y′ is proportional to µk−1(y′). For any bridge state
y ∈ Yk, the value µk(y) is defined via the recursive
formula below

µk(y) ∝
∑

y′∈Ch(y)

µk−1(y′). (12)

When k = 0, µ0(x) , µ(x) for x ∈ X. Here, Ch(y) is
the set of y’s children in Yk−1. Through this construc-
tion, we obtain a joint chain over X ∪ Y1 ∪ · · · ∪ YK ,
which we call the hierarchically bridging Markov chain,
as illustrated in Figure 2(a). We derive the theorem
below that characterizes this chain:

Theorem 4. The hierarchically bridging Markov
chain with bk < 1 for k = 0, . . . ,K−1, and fk < 1 for
k = 1, . . . ,K is ergodic. If we write the equilibrium
distribution in form of (αµ0, β1µ1, . . . , βKµK), then
(S1) µ0 equals the target distribution µ; (S2) for each
k ≥ 1, and y ∈ Yk, µk(y) is proportional to the total
probability of its descendant target states (the target
states derived by filling all its placeholders); (S3) α,
the probability of being at the target level, is given by
α−1 = 1 +

∑K
k=1(b0 · · · bk−1)/(f1 · · · fk).

Here, we briefly explain the statements. (S1), together
with the proved ergodicity, establishes the correctness
of the construction, i.e. drawing samples from the joint
chain and retaining only those from X amounts to di-
rectly sampling from µ. (S2) characterizes the distri-
bution within other levels. (S3) gives the probability
that a state drawn from the joint chain is a target
state. From this statement, we derive

Corollary 2. If bk/fk+1 ≤ κ < 1 for each k =
1, . . . ,K, then α > 1− κ.

This lower bound of α is independent from the num-
ber of levels K. Consequently, despite the problem
scale, one can maintain a considerable chance of draw-
ing a target state from the joint chain by keeping the
backward/forward ratio below 1.

3.3 Dynamic Construction

Whereas the total number of bridges can be huge gen-
erally for a moderate problem, which however need
not be explicitly instantiated prior to sampling. In-
stead, we can build the chain progressively along with
the sampling procedure. As shown in Figure 2(b), ex-
cept for the initial state that we start with, each state
is instantiated only upon the first transition to it. In
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addition, we maintain references from each state to
all its parents and children, to facilitate the transition
from one state to another.

When a bridge state is constructed, one needs to de-
termine the forward transition probabilities from this
state to its immediate children. Exact evaluation of
these probabilities requires complete knowledge of the
distribution of all its descendants, which is generally
unavailable upon the construction. A natural idea is to
obtain such information by recursively visiting all the
descendants. However, the complexity of this method
can grow exponentially as we travel up along the hier-
archy, making it infeasible in practice.

To address this issue, we adopt a dynamic program-
ming strategy. Consider a bridge y at the k-th level
with a set of children Ch(y). Recall that for each child
state y′ ∈ Ch(y), the forward transition probability
from y to y′ is proportional to µk−1(y′). If y′ has been
visited, then µk−1(y′) is immediately available. Oth-
erwise, we initially use a quick estimate of µk−1(y′)
and update it when y′ and its descendants are visited.
In general, one can overestimate the forwarding prob-
ability of an unvisited branch, thereby encouraging ex-
ploration of unknown regions. The initial value need
not be accurate, as it is updated as the branch below
y′ is visited. A possible way to this quick estimation
is to assume all assignments in that branch are valid
(i.e. satisfying all constraints). For both applications
described in next section, we employ this way, which
results in an estimate as the product of the marginal
probabilities of the available values.

In this scheme, the transition probabilities can change
dynamically, resulting in time-inhomogeneity. In prac-
tice, such changes to the chain happen primarily dur-
ing burn-in, and thus have negligible effect on asymp-
totic behavior. It is also worth noting that while the
total number of states in X can be tremendous even for
a problem with moderate size, our algorithm generally
only visit those states with non-negligible probabili-
ties. Though just constituting a small fraction of the
entire space, they still provide a close approximation
of the target distribution.

4 Application and Experiments

We assess the effectiveness of the proposed method on
two problems: (1) constrained binary labeling and (2)
partial order inference. Despite their different origins,
both problems require sampling from a constrained
combinatorial space, to which our method can be ap-
plied. Moreover, to demonstrate its practical utility,
we also test the method in a real application, namely,
inferring the partial order of objects in a video.
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Figure 3: Each curve shows the mean energy values
(− log p(x)) as a function of elapsed iterations. Since
Relaxed-GS and HBMC may yield states that are not in
Ω, we use the energy of the last valid state as the energy
value for an iteration. This also shows bars at 10% and
90% quantiles for 100 repeated runs.

4.1 Constrained Binary Labeling

Given a graph with n nodes and m edges, we are to
set a binary label xi ∈ {0, 1} to each node. Here, each
edge is associated with a constraint on the labels of
its two ends (e.g. xi 6= xj). We use an n-dimensional
vector x ∈ {0, 1}n to represent a label configuration,
and use Ω to denote the set of all configurations that
satisfy the constraints. In addition, each node has a
preference function wi : {0, 1} → R+. Then, we get
a distribution over Ω, given by p(x) ∝ ∏n

i=1 wi(xi).
While the probabilities are in a product form, the la-
bels are not independent as they are related to each
other via the constraints. This formulation actually
stems from real world problems, such as circuit design,
scheduling, and object placement.

We first consider a 4-connected graph with 5×5 nodes.
Though the graph might seem small, it is sufficient to
generate a large enough state space (up to 225), where
the differences of algorithm behaviors can be clearly
seen. Importantly, with this scale, it is feasible to
evaluate the entire distribution through enumeration,
enabling direct comparison between the sample distri-
bution and the true one. To obtain a constrained prob-
lem, we randomly draw a constraint for each edge from
a set of constraints (xi = xj , xi 6= xj , xi = 1 or xj = 1,
etc). In this way, we generate a set of 20 constrained
labeling problems as a testbed.

On these problems, we compare three algorithms: (1)
Gibbs sampling with long jump (GS-Jump): a method
adapted from the one proposed by Barrett and Simma
(2005). At each iteration, we update all variables
by Gibbs sampling, and then propose a jump to ar-
bitrary configuration drawn from the product distri-
bution, accepting it if the result is valid. (2) Re-
laxed Gibbs sampling (Relaxed-GS): similar to Walk-
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Figure 4: The energy auto-correlation function.
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Figure 5: The correlations between the empirical distri-
butions of the collected samples and the true distribution.
Note that the y-axis is at log-scale.

SAT (Wei et al., 2004; Kitchen and Kuehlmann, 2009),
we modulate the probability with a factor exp(−c ·
#{violated constraints}), and turn the constrained
model into an unconstrained MRF, upon which Gibbs
sampling is applied. Here, c is empirically set to bal-
ance approximation accuracy and sampling efficiency,
(3) Hierarchical Bridging Markov Chain (HBMC): this
is our approach. Here, we set b0 = 0.5, meaning
that starting from a target state, the chain performs
a Gibbs update with 50% chance, and transits to up-
per level with 50% chance. For all other levels, we set
bk = 0.4 and fk = 0.6. Each iteration consists of 25
walks, just like the other methods in comparison.

Figure 3 compares the energy trajectories obtained
from 100 independent runs on a constrained prob-
lem as described above. We can see that GS-Jump
gets stuck locally before a long jump is accepted,
which rarely happens (once per over 1000 iterations
on average). By allowing violation of constraints with
cost, Relaxed-GS escapes from local traps, though
rather slowly. HBMC significantly outperforms the
other methods. Initially, encouraged by the optimistic
weights set for unseen branches, the HBMC sampler
quickly travels over the sample space, and at the same

time builds bridges at different levels. In this process,
the forward probabilities will be updated, with small
values set to the branches leading to unlikely regions.
Consequently, the chain rapidly gets to the states with
high probabilities and rarely travels away.

Using the energy trajectories, we compute the autocor-
relation function, averaged over all runs on all prob-
lem sets (in total 2000 runs for each algorithm). The
results are shown in Figure 4. For HBMC, the corre-
lation decreases to 0.1 after 50 iterations, and samples
obtained with an interval of 80 can be considered as
independent. Significant correlation remains for the
other two methods even after 500 iterations, indicat-
ing that the underlying chains mix slowly.

We also investigate how many samples are needed
to approximate the underlying distribution. For this
study, we choose a constrained problem of which the
number of distinct samples is about 10, 000, and col-
lect 50, 000 samples for each algorithm, each per 200
iterations. We compute the correlation between the
empirical distribution p̃ and the true distribution p,
i.e. pT p̃/

√
‖p‖‖p̃‖. The results are shown in Fig-

ure 5. The sample distribution obtained via HBMC
is significantly closer to the true distribution as com-
pared to the other methods, obtaining a correlation of
0.9 after only 5, 000 samplers. The other two meth-
ods exhibit drastically slower behavior. After 10 times
greater samples, they remain stuck in a low-probability
region with the correlation below 0.01.

4.2 Partial Order Inference

Partial order, namely a binary relation that is reflex-
ive, anti-symmetric, and transitive, plays a significant
role in various problems. Here, we consider the layered
video model in computer vision, which has a partial
order of layers at its core. Layered video modeling,
initially proposed by Wang and Adelson (Wang and
Adelson, 1994) and followed by a significant series of
improvements (Weiss, 1997; Weiss and Adelson, 2006;
Sun et al., 2010), is a popular approach to decompos-
ing videos. Moving objects within a scene are assigned
to layers and each image frame in the video is gen-
erated by composing these layers according to their
Z-order(i.e. depth order).

Consider a video with n foreground layers and a back-
ground layer. There is a depth order, denoted by Rt,
among them. The i-th layer is associated with a cover-
ing domain Dt

i and an appearance template At
i, where

At
i(x) is the pixel value at location x for this layer at

time t. If x is covered by multiple overlapping do-
mains, the pixel value observed at time t, denoted by
It(x), is from the top layer. We use an indicator map
Lt to maintain the association between pixels and lay-
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Figure 6: The mean energy as a function of elapsed iter-
ations, with bars at 10% and 90% quantiles.

ers. Specifically, for each location x, Lt(x) is the max-
imum of the layers that cover x with respect to Rt,
i.e. top layer at x. Then, the frame at time t is gen-
erated as It(x) = ALt(x)(x) + εt(x). Here, εt(x) is a
noise term. Whereas many previous models assume a
total order between layers, it is, however, both unnec-
essary (one need not consider the ordering of disjoint
layers) and inefficient. A natural idea to is to treat
Rt as a partial order, and thereby dispense with un-
necessary comparisons. Interested reader can refer to
Kumar et al. (2005) or Weiss and Adelson (2006) for
more details about layered video models.

Here, we are interested in inferring the partial order
given the observed image frames, namely sampling
from the posterior distribution p(Rt|It;At). The first
experiment here is to infer the partial Z-order of 6
rectangle objects from a noisy synthetic image. These
objects together with their intersects divide the image
into 18 sub-regions, each covered by the same set of
objects. Hence, the problem can be reformulated as
inferring the top layers of these regions in a consistent
way (e.g. if a is the maximum (top) of the set {a, b, c},
then the maximum of {a, b, d} can not be b). This is a
constrained combinatorial problem.

In the posterior distribution, a small number of par-
tial Z-orders actually get most of the probability mass.
However, there remain some ambiguities due to ap-
pearance similarity and noises. To make it challeng-
ing, we use “the most wrong” sample (derived by re-
versing the true order) for each sampler to start with,
such that they have to go through a long way to get
it right. All three algorithms (GS-Jump, Relaxed-GS,
and HBMC) are tested, each run for 100 times, with
their settings tuned via multiple trials to get the best
performance. The energy trajectories are shown in
Figure 6. Again, HBMC consistently outperform the
others, reaching the high-probability part of the sam-
pling space within 100 iterations, and settling at the
correct answer within 1000 iterations. GS-Jump can

Figure 7: The inferred partial orders of vehicles in 4 frames
of a video (interval = 3 sec). Vehicles are marked with
transparent rectangles in different colors. Below them are
opaque blocks that illustrate their Z-orders.

find the correct answer with random long jumps when
lucky. But we can see a large variance of its perfor-
mance, implying that it fails in a great portion of runs.
Relaxed-GS gets stuck after 600 iterations, and have a
trouble figuring out the path towards the right answer.

To assess its practical utility, we applied our method to
solve a real world problem, namely inferring the partial
Z-order of cars in a 10-minute long video of a busy
avenue. The focus here is on sampling partial orders,
rather than developing a full-fledged video model, and
therefore we employ simple approaches for motion and
appearance modeling. Specifically, we treat each car
as an object layer, with a rectangular domain, and use
Kalman filtering to update the positions of the cars
and their templates. The Z-order is re-inferred each
time based on the updates, using the previous Z-order
as a prior. Part of the results are shown in Figure 7,
which shows that our method performs very well in
inferring the partial Z-orders, despite the simplicity of
the motion and appearance models.

5 Conclusion

We proposed a general approach to sampling from
constrained combinatorial spaces, via bridging, in or-
der to address the issue of poor mixing (or even non-
ergodicity) due to strong dependencies between vari-
ables caused by constraints. We performed both theo-
retical and empirical analysis of the proposed method,
deriving bounds of the mixing time comparitive sim-
ulations with other methods. The results obtained
on both constrained binary labeling and inference of
partial Z-order of object layers clearly show that the
proposed method, utilizing dynamically constructed
bridging states, achieves remarkably better mixing
performance than other methods in comparison.
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