
The adversarial stochastic shortest path problem with unknown transition probabilities

A Extended dynamic programming: technical details

The extended dynamic programming algorithm is given by Algorithm 2.

Algorithm 2 Extended dynamic programming for finding an optimistic policy and transition model for a given
confidence set of transition functions and given rewards.

Input: empirical estimate P̂ of transition functions, L1 bound b ∈ (0, 1]|X ||A|, reward function r ∈ [0, 1]|X ||A|.
Initialization: Set w(xL) = 0.
For l = L− 1, L− 2, . . . , 0

1. Let k = |Xl+1| and (x∗1, x
∗
2, . . . , x

∗
k) be a sorting of the states in Xl+1 such that w(x∗1) ≥ w(x∗2) ≥ · · · ≥ w(x∗k).

2. For all (x, a) ∈ Xl ×A

(a) P ∗(x∗1|x, a) = min
{
P̂ (x∗1|x, a) + b(x, a)/2, 1

}
(b) P ∗(x∗i |x, a) = P̂ (x∗i |x, a) for all i = 2, 3, . . . , k.

(c) Set j = k.

(d) While
∑
i P
∗(x∗i |x, a) > 1 do

i. Set P ∗(x∗j |x, a) = max
{

0, 1−∑i 6=j P
∗(x∗i |x, a)

}
ii. Set j = j − 1.

3. For all x ∈ Xl
(a) Let w(x) = maxa {r(x, a) +

∑
x′ P

∗(x′|x, a)w(x′)}.
(b) Let π∗(x) = arg maxa {r(x, a) +

∑
x′ P

∗(x′|x, a)w(x′)}.

Return: optimistic transition function P ∗, optimistic policy π∗.

The next lemma, which can be obtained by a straightforward modification of the proof of Theorem 7 of Jaksch
et al. (2010), shows that Algorithm 2 efficiently solves the desired minimization problem.

Lemma 6. Algorithm 2 solves the maximization problem (5) for P = {P̄ : ‖P̄ − P̂‖1 ≤ b}. Let S =∑L−1
l=0 |Xl||Xl+1| denote the maximum number of possible transitions in the given model. The time and space

complexity of Algorithm 2 is the number of possible non-zero elements of P̄ allowed by the given structure, and
so it is O(S|A|), which, in turn, is O(|A||X |2).

B The detailed bound

Theorem 1 is a simplified version of the following, more detailed statement.

Theorem 2. Assume η ≤ (|X ||A|)−1
and T ≥ |X ||A|. Then the expected regret of FPOP can be bounded as

V ∗T − E

[
T∑
t=1

vt(πt)

]
≤ L|X ||A| log2

(
8T

|X ||A|

) ln
(
|X ||A|
L

)
+ 1

η
+ ηT L (e− 1)|X ||A|

+
(√

2 + 1
)
L|X |

√
T |A| ln T |X ||A|

δL
+ L|X |

√
2T ln

L

δ
+ 3δ T L.

In particular, assuming T ≥ (|X ||A|)2
, setting

η =

√√√√
log2

(
8T

|X ||A|

) ln
(
|X ||A|
L

)
+ 1

T (e− 1)
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and δ = 1/T gives

V ∗T − E

[
T∑
t=1

vt(πt)

]
≤ 2L|X ||A|

√
T (e− 1) log2

(
8T

|X ||A|

)(
ln

( |X ||A|
L

)
+ 1

)

+
(√

2 + 1
)
L|X |

√
T |A| ln T

2|X ||A|
L

+ L|X |
√

2T ln(LT ) + 3L.

The theorem can be obtained by a trivial combination of Lemmas 2, 3, and 5. The only complication is that in
the last term of Lemma 2 we apply the bound

L−1∑
l=0

ln (|Xl||A|) ≤ L ln

( |X ||A|
L

)
.

C Proof of Lemma 1

Let us fix an arbitrary x ∈ X and let l = lx. The statement follows from the following inequality due to Weissman
et al. (2003) concerning the distance of a true discrete distribution p and the empirical distribution p̂ over m
distinct events from n samples:

P [‖p− p̂‖1 ≥ ε] ≤ (2m − 2) exp

(
−nε

2

2

)
.

As now we have |Xl+1| distinct events, we get that setting

ε =

√
4|Xl+1| ln T |X ||A|

δ

n

for some fixed n ∈ [1, 2, . . . , t] yields

P

∥∥P̄i(·|x, a)− P (·|x, a)
∥∥

1
≥

√
2|Xl+1| ln T |X ||A|

δ

n

∣∣∣∣∣∣Ni(x, a) = n

 ≤ δ

T 2|X ||A| .

Using the union bound for all possible values of Ni(x, a), all (x, a) ∈ X × A, all i = 1, 2, . . . ,KT (note that for
the bound, we have used the very crude upper bound T > KT for simplicity) and the fact that the confidence
intervals trivially hold when there are no observations with probability 1, we get the statement of the lemma.

D Proof of Lemma 3

Let
(σt(Y),Γt(Y)) = arg max

π∈Π,P̄∈Pi(t)

{
W (Rt−1 + Y, π, P̄ )

}
and

Ft(Y) = W (rt,σt(Y),Γt(Y)).

Clearly,
ṽt = Ft(Yi(t))

and
v̂t = Ft(Yi(t) + rt).

Now let f be the density function of Yi(t) and Fi(t) denote the σ-algebra generated by all random variables

before epoch Ei(T ).
4 We have

E
[
v̂t| Fi(t−1)

]
=

∫
R|X||A|

Ft(y + rt)f(y)dy =

∫
R|X||A|

Ft(y)f(y − rt)dy

≤ sup
y,t

f(y − rt)
f(y)

∫
R|X||A|

Ft(y)f(y)dy ≤ sup
y,t

f(y − rt)
f(y)

E
[
ṽt| Fi(t−1)

]
.

4Note that Yi(t) is generated independently from the history up to epoch i(t).
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Since f(y) = η exp
(
−η∑x,a y(x, a)

)
for all y � 0, we get

sup
y

f(y − rt)
f(y)

= exp

(
η
∑
x,a

rt(x, a)

)
≤ exp (η|X ||A|) .

Using ex ≤ 1 + (e− 1)x for x ∈ [0, 1], which holds by our assumption on η, we get

E [v̂t] ≤ E [ṽt] (1 + η(e− 1)|X ||A|) .

Noticing that ṽt ≤ L gives the result.

E Proof of Lemma 4

We prove the statement by induction on l. For l = 1 we have∑
x1

|µ̃t(x1)− µt(x1)| =
∑
x1

∣∣∣P̃t(x1|x0,πt(x0))− P (x1|x0,πt(x0))
∣∣∣ ≤ at(x0, ,πt(x0)),

proving the statement for this case. Now assume that the statement holds for some l − 1. We have

µ̃t(xl)− µt(xl)

=
∑
xl−1

(
P̃t(xl|xl−1,πt(xl−1))µ̃t(xl−1)− P (xl|xl−1,πt(xl−1))µt(xl−1)

)
=
∑
xl−1

(
P̃t(xl|xl−1,πt(xl−1)) (µ̃t(xl−1)− µt(xl−1)) +

(
P̃t(xl|xl−1,πt(xl−1))− P (xl|xl−1,πt(xl−1))

)
µt(xl−1)

)
,

and thus∑
xl

|µ̃t(xl)− µt(xl)|

≤
∑

xl,xl−1

(
P̃t(xl|xl−1,πt(xl−1)) |µ̃t(xl−1)− µt(xl−1)|+

∣∣∣P̃t(xl|xl−1,πt(xl−1))− P (xl|xl−1,πt(xl−1))
∣∣∣µt(xl−1)

)
=
∑
xl−1

|µ̃t(xl−1)− µt(xl−1)|+
∑
xl−1

µt(xl−1)
∑
xl

∣∣∣P̃t(xl|xl−1,πt(xl−1))− P (xl|xl−1,πt(xl−1))
∣∣∣

≤
l−2∑
k=0

∑
xk∈Xk

µt(xk) at(xk,πt(xk)) +
∑
xl−1

µt(xl−1)
∑
xl

at(xl−1,πt(xl−1)),

proving the statement.

F Proof of Lemma 5

We start by some arguments borrowed from Jaksch et al. (2010). Let ni(x, a) be the number of times state-action
pair (x, a) has been visited in epoch Ei. We have

Ni(x, a) =
i−1∑
j=1

ni(x, a).

For simplicity, let KT = m be the number of epochs. By Appendix C.3 of Jaksch et al. (2010), we have

m∑
i=1

ni(x, a)√
Ni(x, a)

≤
(√

2 + 1
)√

Nm(x, a),
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and by Jensen’s inequality, ∑
x,a

m∑
i=1

ni(x, a)√
Ni(x, a)

≤
(√

2 + 1
)√
|X ||A|T .

Now fix an arbitrary 1 ≤ t ≤ T . We have

ṽt =

L−1∑
l=0

∑
x∈Xl

µ̃t(x)rt(x,πt(x))

and

vt(πt) =

L−1∑
l=0

∑
x∈Xl

µt(x)rt(x,πt(x)),

thus

ṽt(πt)− vt(πt) =

L−1∑
l=0

∑
x∈Xl

(µ̃t(x)− µt(x)) rt(x,πt(x)) ≤
L−1∑
l=0

∑
x∈Xl

|µ̃t(x)− µt(x)| .

That is, we need to bound
∑T
t=1

∑
x∈Xl

|µ̃t(x)− µt(x)|.

Setting at(x, a) =
∥∥∥P̃t(·|x, a)− P (·|x, a)

∥∥∥
1

for all (x, a) ∈ X ×A, the conditions of Lemma 4 are clearly satisfied,

and so

∑
x∈Xl

|µ̃t(x)− µt(x)| ≤
l−1∑
k=0

∑
xk∈Xk

µt(xk) at (xk,πt (xk))

≤
l−1∑
k=0

at

(
x

(t)
k ,a

(t)
k

)
+

l−1∑
k=0

∑
xk∈Xk

(
µt(xk)− I{

x
(t)
k =xk

})a1 (xk,πt (xk)) .

(9)

Now, by Lemma 1, we have with probability at least 1− δ simultaneously for all k that

T∑
t=1

at

(
x

(t)
k ,a

(t)
k

)
≤

T∑
t=1

√√√√√ 2|Xk+1| ln T |X ||A|
δ

max
{

1,Ni(t)

(
x

(t)
k ,a

(t)
k

)}

≤
∑
xk,ak

m∑
i=1

ni(xk, ak)

√√√√ 2|Xk+1| ln T |X ||A|
δ

max
{

1,Ni(t) (xk, ak)
}

≤
(√

2 + 1
)√

2T |Xk||Xk+1||A| ln
T |X ||A|

δ
.

For the second term on the right hand side of (9), notice that

(
µt(xk)− I{

x
(t)
k =xk

}) form a martingale difference

sequence with respect to {Ut}Tt=1 and thus by the Hoeffding–Azuma inequality and a1 ≤ 2, we have

T∑
t=1

(
µt(xk)− I{

x
(t)
k =xk

})a1 (xk,πt (xk)) ≤
√

2T ln
L

δ

with probability at least 1 − δ/L. Putting everything together, the union bound implies that we have, with
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probability at least 1− 2δ simultaneously for all l = 1, . . . , L,

T∑
t=1

∑
x∈Xl

(µ̃t(x)− µt(x)) ≤
l−1∑
k=0

(√
2 + 1

)√
T |Xk||Xk+1||A| ln

T |X ||A|
δ

+

l−1∑
k=0

|Xk|
√

2T ln
L

δ

≤
(√

2 + 1
)
L

L−1∑
k=0

1

L

√
T |Xk||Xk+1||A| ln

T |X ||A|
δ

+

l−1∑
k=0

|Xk|
√

2T ln
L

δ

≤
(√

2 + 1
)
L

√
T |A|

( |X |
L

)2

ln
T |X ||A|

δ
+ |X |

√
2T ln

L

δ

=
(√

2 + 1
)
|X |
√
T |A| ln

T |X ||A|
δ

+ |X |
√

2T ln
L

δ
(10)

where in the last step we used Jensen’s inequality for the concave function f(x, y) =
√
xy(a+ lnx) with param-

eter a > 0 and the fact that
∑L−1
k=0 |Xk| = |X | − 1 < |X |.

Summing up for all l = 0, 1, . . . , L − 1 and taking expectation, using that vt(πt) − ṽt ≤ L and (10) holds with
probability at least 1− 2δ, finishes the proof.


