A Extended dynamic programming: technical details

The extended dynamic programming algorithm is given by Algorithm 2.

```
Algorithm 2 Extended dynamic programming for finding an optimistic policy and transition model for a given confidence set of transition functions and given rewards.
```

Input: empirical estimate \hat{P} of transition functions, L_{1} bound $b \in(0,1]^{|\mathcal{X}||\mathcal{A}|}$, reward function $r \in[0,1]^{|\mathcal{X}||\mathcal{A}|}$. Initialization: Set $w\left(x_{L}\right)=0$.
For $l=L-1, L-2, \ldots, 0$

1. Let $k=\left|\mathcal{X}_{l+1}\right|$ and $\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{k}^{*}\right)$ be a sorting of the states in \mathcal{X}_{l+1} such that $w\left(x_{1}^{*}\right) \geq w\left(x_{2}^{*}\right) \geq \cdots \geq w\left(x_{k}^{*}\right)$.
2. For all $(x, a) \in \mathcal{X}_{l} \times \mathcal{A}$
(a) $P^{*}\left(x_{1}^{*} \mid x, a\right)=\min \left\{\hat{P}\left(x_{1}^{*} \mid x, a\right)+b(x, a) / 2,1\right\}$
(b) $P^{*}\left(x_{i}^{*} \mid x, a\right)=\hat{P}\left(x_{i}^{*} \mid x, a\right)$ for all $i=2,3, \ldots, k$.
(c) Set $j=k$.
(d) While $\sum_{i} P^{*}\left(x_{i}^{*} \mid x, a\right)>1$ do
i. Set $P^{*}\left(x_{j}^{*} \mid x, a\right)=\max \left\{0,1-\sum_{i \neq j} P^{*}\left(x_{i}^{*} \mid x, a\right)\right\}$
ii. Set $j=j-1$.
3. For all $x \in \mathcal{X}_{l}$
(a) Let $w(x)=\max _{a}\left\{r(x, a)+\sum_{x^{\prime}} P^{*}\left(x^{\prime} \mid x, a\right) w\left(x^{\prime}\right)\right\}$.
(b) Let $\pi^{*}(x)=\arg \max _{a}\left\{r(x, a)+\sum_{x^{\prime}} P^{*}\left(x^{\prime} \mid x, a\right) w\left(x^{\prime}\right)\right\}$.

Return: optimistic transition function P^{*}, optimistic policy π^{*}.

The next lemma, which can be obtained by a straightforward modification of the proof of Theorem 7 of Jaksch et al. (2010), shows that Algorithm 2 efficiently solves the desired minimization problem.

Lemma 6. Algorithm 2 solves the maximization problem (5) for $\mathcal{P}=\left\{\bar{P}:\|\bar{P}-\hat{P}\|_{1} \leq b\right\}$. Let $S=$ $\sum_{l=0}^{L-1}\left|\mathcal{X}_{l}\right|\left|X_{l+1}\right|$ denote the maximum number of possible transitions in the given model. The time and space complexity of Algorithm 2 is the number of possible non-zero elements of \bar{P} allowed by the given structure, and so it is $\mathcal{O}(S|\mathcal{A}|)$, which, in turn, is $\mathcal{O}\left(|\mathcal{A}||\mathcal{X}|^{2}\right)$.

B The detailed bound

Theorem 1 is a simplified version of the following, more detailed statement.
Theorem 2. Assume $\eta \leq(|\mathcal{X} \| \mathcal{A}|)^{-1}$ and $T \geq|\mathcal{X} \| \mathcal{A}|$. Then the expected regret of $F P O P$ can be bounded as

$$
\begin{aligned}
V_{T}^{*}-\mathbb{E}\left[\sum_{t=1}^{T} v_{t}\left(\boldsymbol{\pi}_{t}\right)\right] \leq & L|\mathcal{X}||\mathcal{A}| \log _{2}\left(\frac{8 T}{|\mathcal{X}||\mathcal{A}|}\right) \frac{\ln \left(\frac{|\mathcal{X}||\mathcal{A}|}{L}\right)+1}{\eta}+\eta T L(e-1)|\mathcal{X}||\mathcal{A}| \\
& +(\sqrt{2}+1) L|\mathcal{X}| \sqrt{T|\mathcal{A}| \ln \frac{T|\mathcal{X}||\mathcal{A}|}{\delta L}}+L|\mathcal{X}| \sqrt{2 T \ln \frac{L}{\delta}}+3 \delta T L
\end{aligned}
$$

In particular, assuming $T \geq(|\mathcal{X}||\mathcal{A}|)^{2}$, setting

$$
\eta=\sqrt{\log _{2}\left(\frac{8 T}{|\mathcal{X}||\mathcal{A}|}\right) \frac{\ln \left(\frac{|\mathcal{X}||\mathcal{A}|}{L}\right)+1}{T(e-1)}}
$$

and $\delta=1 / T$ gives

$$
\begin{aligned}
V_{T}^{*}-\mathbb{E}\left[\sum_{t=1}^{T} v_{t}\left(\boldsymbol{\pi}_{t}\right)\right] \leq & 2 L|\mathcal{X}||\mathcal{A}| \sqrt{T(e-1) \log _{2}\left(\frac{8 T}{|\mathcal{X}||\mathcal{A}|}\right)\left(\ln \left(\frac{|\mathcal{X}||\mathcal{A}|}{L}\right)+1\right)} \\
& +(\sqrt{2}+1) L|\mathcal{X}| \sqrt{T|\mathcal{A}| \ln \frac{T^{2}|\mathcal{X}||\mathcal{A}|}{L}}+L|\mathcal{X}| \sqrt{2 T \ln (L T)}+3 L
\end{aligned}
$$

The theorem can be obtained by a trivial combination of Lemmas 2, 3, and 5 . The only complication is that in the last term of Lemma 2 we apply the bound

$$
\sum_{l=0}^{L-1} \ln \left(\left|\mathcal{X}_{l}\right||\mathcal{A}|\right) \leq L \ln \left(\frac{|\mathcal{X}||\mathcal{A}|}{L}\right)
$$

C Proof of Lemma 1

Let us fix an arbitrary $x \in \mathcal{X}$ and let $l=l_{x}$. The statement follows from the following inequality due to Weissman et al. (2003) concerning the distance of a true discrete distribution p and the empirical distribution $\hat{\mathbf{p}}$ over m distinct events from n samples:

$$
\mathbb{P}\left[\|p-\hat{\mathbf{p}}\|_{1} \geq \varepsilon\right] \leq\left(2^{m}-2\right) \exp \left(-\frac{n \varepsilon^{2}}{2}\right)
$$

As now we have $\left|\mathcal{X}_{l+1}\right|$ distinct events, we get that setting

$$
\varepsilon=\sqrt{\frac{4\left|\mathcal{X}_{l+1}\right| \ln \frac{T|\mathcal{X}||\mathcal{A}|}{\delta}}{n}}
$$

for some fixed $n \in[1,2, \ldots, t]$ yields

$$
\mathbb{P}\left[\left.\left\|\overline{\mathbf{P}}_{i}(\cdot \mid x, a)-P(\cdot \mid x, a)\right\|_{1} \geq \sqrt{\frac{2\left|\mathcal{X}_{l+1}\right| \ln \frac{T|\mathcal{X}||\mathcal{A}|}{\delta}}{n}} \right\rvert\, \mathbf{N}_{i}(x, a)=n\right] \leq \frac{\delta}{T^{2}|\mathcal{X}||\mathcal{A}|}
$$

Using the union bound for all possible values of $\mathbf{N}_{i}(x, a)$, all $(x, a) \in \mathcal{X} \times \mathcal{A}$, all $i=1,2, \ldots, \mathbf{K}_{T}$ (note that for the bound, we have used the very crude upper bound $T>\mathbf{K}_{T}$ for simplicity) and the fact that the confidence intervals trivially hold when there are no observations with probability 1 , we get the statement of the lemma.

D Proof of Lemma 3

Let

$$
\left(\boldsymbol{\sigma}_{t}(\mathbf{Y}), \boldsymbol{\Gamma}_{t}(\mathbf{Y})\right)=\underset{\pi \in \Pi, \bar{P} \in \mathcal{P}_{\mathbf{i}(t)}}{\arg \max }\left\{W\left(R_{t-1}+\mathbf{Y}, \pi, \bar{P}\right)\right\}
$$

and

$$
\mathbf{F}_{t}(\mathbf{Y})=W\left(r_{t}, \boldsymbol{\sigma}_{t}(\mathbf{Y}), \boldsymbol{\Gamma}_{t}(\mathbf{Y})\right)
$$

Clearly,

$$
\tilde{\mathbf{v}}_{t}=\mathbf{F}_{t}\left(\mathbf{Y}_{\mathbf{i}(t)}\right)
$$

and

$$
\hat{\mathbf{v}}_{t}=\mathbf{F}_{t}\left(\mathbf{Y}_{\mathbf{i}(t)}+r_{t}\right)
$$

Now let f be the density function of $\mathbf{Y}_{\mathbf{i}(t)}$ and $\mathcal{F}_{\mathbf{i}(t)}$ denote the σ-algebra generated by all random variables before epoch $E_{\mathbf{i}(T)} .{ }^{4}$ We have

$$
\begin{aligned}
\mathbb{E}\left[\hat{\mathbf{v}}_{t} \mid \mathcal{F}_{\mathbf{i}(t-1)}\right] & =\int_{\mathbb{R}|\mathcal{X}||\mathcal{A}|} \mathbf{F}_{t}\left(y+r_{t}\right) f(y) d y=\int_{\mathbb{R}|\mathcal{X}||\mathcal{A}|} \mathbf{F}_{t}(y) f\left(y-r_{t}\right) d y \\
& \leq \sup _{y, t} \frac{f\left(y-r_{t}\right)}{f(y)} \int_{\mathbb{R}^{|\mathcal{X}||\mathcal{A}|}} \mathbf{F}_{t}(y) f(y) d y \leq \sup _{y, t} \frac{f\left(y-r_{t}\right)}{f(y)} \mathbb{E}\left[\tilde{\mathbf{v}}_{t} \mid \mathcal{F}_{\mathbf{i}(t-1)}\right]
\end{aligned}
$$

[^0]Since $f(y)=\eta \exp \left(-\eta \sum_{x, a} y(x, a)\right)$ for all $y \succeq 0$, we get

$$
\sup _{y} \frac{f\left(y-r_{t}\right)}{f(y)}=\exp \left(\eta \sum_{x, a} r_{t}(x, a)\right) \leq \exp (\eta|\mathcal{X} \| \mathcal{A}|)
$$

Using $e^{x} \leq 1+(e-1) x$ for $x \in[0,1]$, which holds by our assumption on η, we get

$$
\mathbb{E}\left[\hat{\mathbf{v}}_{t}\right] \leq \mathbb{E}\left[\tilde{\mathbf{v}}_{t}\right](1+\eta(e-1)|\mathcal{X} \| \mathcal{A}|)
$$

Noticing that $\tilde{\mathbf{v}}_{t} \leq L$ gives the result.

E Proof of Lemma 4

We prove the statement by induction on l. For $l=1$ we have

$$
\sum_{x_{1}}\left|\tilde{\boldsymbol{\mu}}_{t}\left(x_{1}\right)-\boldsymbol{\mu}_{t}\left(x_{1}\right)\right|=\sum_{x_{1}}\left|\tilde{\mathbf{P}}_{t}\left(x_{1} \mid x_{0}, \boldsymbol{\pi}_{t}\left(x_{0}\right)\right)-P\left(x_{1} \mid x_{0}, \boldsymbol{\pi}_{t}\left(x_{0}\right)\right)\right| \leq \mathbf{a}_{t}\left(x_{0},, \boldsymbol{\pi}_{t}\left(x_{0}\right)\right)
$$

proving the statement for this case. Now assume that the statement holds for some $l-1$. We have

$$
\begin{aligned}
& \tilde{\boldsymbol{\mu}}_{t}\left(x_{l}\right)-\boldsymbol{\mu}_{t}\left(x_{l}\right) \\
= & \sum_{x_{l-1}}\left(\tilde{\mathbf{P}}_{t}\left(x_{l} \mid x_{l-1}, \boldsymbol{\pi}_{t}\left(x_{l-1}\right)\right) \tilde{\boldsymbol{\mu}}_{t}\left(x_{l-1}\right)-P\left(x_{l} \mid x_{l-1}, \boldsymbol{\pi}_{t}\left(x_{l-1}\right)\right) \boldsymbol{\mu}_{t}\left(x_{l-1}\right)\right) \\
= & \sum_{x_{l-1}}\left(\tilde{\mathbf{P}}_{t}\left(x_{l} \mid x_{l-1}, \boldsymbol{\pi}_{t}\left(x_{l-1}\right)\right)\left(\tilde{\boldsymbol{\mu}}_{t}\left(x_{l-1}\right)-\boldsymbol{\mu}_{t}\left(x_{l-1}\right)\right)+\left(\tilde{\mathbf{P}}_{t}\left(x_{l} \mid x_{l-1}, \boldsymbol{\pi}_{t}\left(x_{l-1}\right)\right)-P\left(x_{l} \mid x_{l-1}, \boldsymbol{\pi}_{t}\left(x_{l-1}\right)\right)\right) \boldsymbol{\mu}_{t}\left(x_{l-1}\right)\right),
\end{aligned}
$$

and thus

$$
\begin{aligned}
& \sum_{x_{l}}\left|\tilde{\boldsymbol{\mu}}_{t}\left(x_{l}\right)-\boldsymbol{\mu}_{t}\left(x_{l}\right)\right| \\
\leq & \sum_{x_{l}, x_{l-1}}\left(\tilde{\mathbf{P}}_{t}\left(x_{l} \mid x_{l-1}, \boldsymbol{\pi}_{t}\left(x_{l-1}\right)\right)\left|\tilde{\boldsymbol{\mu}}_{t}\left(x_{l-1}\right)-\boldsymbol{\mu}_{t}\left(x_{l-1}\right)\right|+\left|\tilde{\mathbf{P}}_{t}\left(x_{l} \mid x_{l-1}, \boldsymbol{\pi}_{t}\left(x_{l-1}\right)\right)-P\left(x_{l} \mid x_{l-1}, \boldsymbol{\pi}_{t}\left(x_{l-1}\right)\right)\right| \boldsymbol{\mu}_{t}\left(x_{l-1}\right)\right) \\
= & \sum_{x_{l-1}}\left|\tilde{\boldsymbol{\mu}}_{t}\left(x_{l-1}\right)-\boldsymbol{\mu}_{t}\left(x_{l-1}\right)\right|+\sum_{x_{l-1}} \boldsymbol{\mu}_{t}\left(x_{l-1}\right) \sum_{x_{l}}\left|\tilde{\mathbf{P}}_{t}\left(x_{l} \mid x_{l-1}, \boldsymbol{\pi}_{t}\left(x_{l-1}\right)\right)-P\left(x_{l} \mid x_{l-1}, \boldsymbol{\pi}_{t}\left(x_{l-1}\right)\right)\right| \\
\leq & \sum_{k=0}^{l-2} \sum_{x_{k} \in \mathcal{X}_{k}} \boldsymbol{\mu}_{t}\left(x_{k}\right) \mathbf{a}_{t}\left(x_{k}, \boldsymbol{\pi}_{t}\left(x_{k}\right)\right)+\sum_{x_{l-1}} \boldsymbol{\mu}_{t}\left(x_{l-1}\right) \sum_{x_{l}} \mathbf{a}_{t}\left(x_{l-1}, \boldsymbol{\pi}_{t}\left(x_{l-1}\right)\right),
\end{aligned}
$$

proving the statement.

F Proof of Lemma 5

We start by some arguments borrowed from Jaksch et al. (2010). Let $\mathbf{n}_{i}(x, a)$ be the number of times state-action pair (x, a) has been visited in epoch E_{i}. We have

$$
\mathbf{N}_{i}(x, a)=\sum_{j=1}^{i-1} \mathbf{n}_{i}(x, a)
$$

For simplicity, let $\mathbf{K}_{T}=m$ be the number of epochs. By Appendix C. 3 of Jaksch et al. (2010), we have

$$
\sum_{i=1}^{m} \frac{\mathbf{n}_{i}(x, a)}{\sqrt{\mathbf{N}_{i}(x, a)}} \leq(\sqrt{2}+1) \sqrt{\mathbf{N}_{m}(x, a)}
$$

and by Jensen's inequality,

$$
\sum_{x, a} \sum_{i=1}^{m} \frac{\mathbf{n}_{i}(x, a)}{\sqrt{\mathbf{N}_{i}(x, a)}} \leq(\sqrt{2}+1) \sqrt{|\mathcal{X}||\mathcal{A}| T}
$$

Now fix an arbitrary $1 \leq t \leq T$. We have

$$
\tilde{\mathbf{v}}_{t}=\sum_{l=0}^{L-1} \sum_{x \in \mathcal{X}_{l}} \tilde{\boldsymbol{\mu}}_{t}(x) r_{t}\left(x, \boldsymbol{\pi}_{t}(x)\right)
$$

and

$$
v_{t}\left(\boldsymbol{\pi}_{t}\right)=\sum_{l=0}^{L-1} \sum_{x \in \mathcal{X}_{l}} \boldsymbol{\mu}_{t}(x) r_{t}\left(x, \boldsymbol{\pi}_{t}(x)\right)
$$

thus

$$
\tilde{\mathbf{v}}_{t}\left(\boldsymbol{\pi}_{t}\right)-v_{t}\left(\boldsymbol{\pi}_{t}\right)=\sum_{l=0}^{L-1} \sum_{x \in \mathcal{X}_{l}}\left(\tilde{\boldsymbol{\mu}}_{t}(x)-\boldsymbol{\mu}_{t}(x)\right) r_{t}\left(x, \boldsymbol{\pi}_{t}(x)\right) \leq \sum_{l=0}^{L-1} \sum_{x \in \mathcal{X}_{l}}\left|\tilde{\boldsymbol{\mu}}_{t}(x)-\boldsymbol{\mu}_{t}(x)\right| .
$$

That is, we need to bound $\sum_{t=1}^{T} \sum_{x \in \mathcal{X}_{l}}\left|\tilde{\boldsymbol{\mu}}_{t}(x)-\boldsymbol{\mu}_{t}(x)\right|$.
Setting $\mathbf{a}_{t}(x, a)=\left\|\tilde{\mathbf{P}}_{t}(\cdot \mid x, a)-P(\cdot \mid x, a)\right\|_{1}$ for all $(x, a) \in \mathcal{X} \times \mathcal{A}$, the conditions of Lemma 4 are clearly satisfied, and so

$$
\begin{align*}
\sum_{x \in \mathcal{X}_{l}}\left|\tilde{\boldsymbol{\mu}}_{t}(x)-\boldsymbol{\mu}_{t}(x)\right| & \leq \sum_{k=0}^{l-1} \sum_{x_{k} \in \mathcal{X}_{k}} \boldsymbol{\mu}_{t}\left(x_{k}\right) \mathbf{a}_{t}\left(x_{k}, \boldsymbol{\pi}_{t}\left(x_{k}\right)\right) \\
& \leq \sum_{k=0}^{l-1} \mathbf{a}_{t}\left(\mathbf{x}_{k}^{(t)}, \mathbf{a}_{k}^{(t)}\right)+\sum_{k=0}^{l-1} \sum_{x_{k} \in \mathcal{X}_{k}}\left(\boldsymbol{\mu}_{t}\left(x_{k}\right)-\mathbb{I}_{\left\{\mathbf{x}_{k}^{(t)}=x_{k}\right\}}\right) \mathbf{a}_{1}\left(x_{k}, \boldsymbol{\pi}_{t}\left(x_{k}\right)\right) \tag{9}
\end{align*}
$$

Now, by Lemma 1, we have with probability at least $1-\delta$ simultaneously for all k that

$$
\begin{aligned}
\sum_{t=1}^{T} \mathbf{a}_{t}\left(\mathbf{x}_{k}^{(t)}, \mathbf{a}_{k}^{(t)}\right) & \leq \sum_{t=1}^{T} \sqrt{\frac{2\left|\mathcal{X}_{k+1}\right| \ln \frac{T|\mathcal{X}||\mathcal{A}|}{\delta}}{\max \left\{1, \mathbf{N}_{\mathbf{i}(t)}\left(\mathbf{x}_{k}^{(t)}, \mathbf{a}_{k}^{(t)}\right)\right\}}} \\
& \leq \sum_{x_{k}, a_{k}} \sum_{i=1}^{m} \mathbf{n}_{i}\left(x_{k}, a_{k}\right) \sqrt{\frac{2\left|\mathcal{X}_{k+1}\right| \ln \frac{T|\mathcal{X}||\mathcal{A}|}{\delta}}{\max \left\{1, \mathbf{N}_{\mathbf{i}(t)}\left(x_{k}, a_{k}\right)\right\}}} \\
& \leq(\sqrt{2}+1) \sqrt{2 T\left|\mathcal{X}_{k}\right|\left|\mathcal{X}_{k+1}\right||\mathcal{A}| \ln \frac{T|\mathcal{X}||\mathcal{A}|}{\delta}}
\end{aligned}
$$

For the second term on the right hand side of (9), notice that $\left(\boldsymbol{\mu}_{t}\left(x_{k}\right)-\mathbb{I}_{\left\{\mathbf{x}_{k}^{(t)}=x_{k}\right\}}\right)$ form a martingale difference sequence with respect to $\left\{\mathbf{U}_{t}\right\}_{t=1}^{T}$ and thus by the Hoeffding-Azuma inequality and $\mathbf{a}_{1} \leq 2$, we have

$$
\sum_{t=1}^{T}\left(\boldsymbol{\mu}_{t}\left(x_{k}\right)-\mathbb{I}_{\left\{\mathbf{x}_{k}^{(t)}=x_{k}\right\}}\right) \mathbf{a}_{1}\left(x_{k}, \boldsymbol{\pi}_{t}\left(x_{k}\right)\right) \leq \sqrt{2 T \ln \frac{L}{\delta}}
$$

with probability at least $1-\delta / L$. Putting everything together, the union bound implies that we have, with
probability at least $1-2 \delta$ simultaneously for all $l=1, \ldots, L$,

$$
\begin{align*}
\sum_{t=1}^{T} \sum_{x \in \mathcal{X}_{l}}\left(\tilde{\boldsymbol{\mu}}_{t}(x)-\boldsymbol{\mu}_{t}(x)\right) & \leq \sum_{k=0}^{l-1}(\sqrt{2}+1) \sqrt{T\left|\mathcal{X}_{k}\right|\left|\mathcal{X}_{k+1}\right||\mathcal{A}| \ln \frac{T|\mathcal{X}||\mathcal{A}|}{\delta}}+\sum_{k=0}^{l-1}\left|\mathcal{X}_{k}\right| \sqrt{2 T \ln \frac{L}{\delta}} \\
& \leq(\sqrt{2}+1) L \sum_{k=0}^{L-1} \frac{1}{L} \sqrt{T\left|\mathcal{X}_{k}\right|\left|\mathcal{X}_{k+1}\right||\mathcal{A}| \ln \frac{T|\mathcal{X}||\mathcal{A}|}{\delta}}+\sum_{k=0}^{l-1}\left|\mathcal{X}_{k}\right| \sqrt{2 T \ln \frac{L}{\delta}} \\
& \leq(\sqrt{2}+1) L \sqrt{T|\mathcal{A}|\left(\frac{|\mathcal{X}|}{L}\right)^{2} \ln \frac{T|\mathcal{X}||\mathcal{A}|}{\delta}}+|\mathcal{X}| \sqrt{2 T \ln \frac{L}{\delta}} \\
& =(\sqrt{2}+1)|\mathcal{X}| \sqrt{T|\mathcal{A}| \ln \frac{T|\mathcal{X}||\mathcal{A}|}{\delta}}+|\mathcal{X}| \sqrt{2 T \ln \frac{L}{\delta}} \tag{10}
\end{align*}
$$

where in the last step we used Jensen's inequality for the concave function $f(x, y)=\sqrt{x y(a+\ln x)}$ with parameter $a>0$ and the fact that $\sum_{k=0}^{L-1}\left|\mathcal{X}_{k}\right|=|\mathcal{X}|-1<|\mathcal{X}|$.

Summing up for all $l=0,1, \ldots, L-1$ and taking expectation, using that $v_{t}\left(\boldsymbol{\pi}_{t}\right)-\tilde{\mathbf{v}}_{t} \leq L$ and (10) holds with probability at least $1-2 \delta$, finishes the proof.

[^0]: ${ }^{4}$ Note that $\mathbf{Y}_{\mathbf{i}(t)}$ is generated independently from the history up to epoch $\mathbf{i}(t)$.

