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Figure 1: Probabilistic graphical model of PAT

As has been mentioned in Section 2.4, the parameters of PAT

0 2 {u., ¢, ¥, mg,a?}

can be estimated using the EM algorithm. In this appendix, we provide the details of parameter estimation for PAT.

1 Notations

Operators and constants used in this appendix are defined in Table 1.

Table 1: Notations

Notation Definition
p(-1©) probability density function given parameters ©
n re-estimated parameters
! matrix transpose
()p the expectation operator with respect to the distribution p as specified in the subscript
D two bars above means {+),(z, a,lxpcple)
diag[-] extracting the diagonal elements of a matrix to form a diagonal matrix
tr-] the trace of a matrix
[] the determinant of a matrix
T the total number of frames
N the dimension of observation vector x;
M the dimension of DCT vector z;

2 Model Review

The probabilistic graphical model is shown in Figure 1. For detailed explanation, please refer to Section 2 in the paper.
The joint probability distribution of a T-frame utterance is given as follows, where we use the Matlab notation to represent
a set of variables, e.g. xy.p £ x4, -+, X!
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p(Crirsbur, Zam Grir 1) = | | PGl elleos, €0 - Paclc)p(zlen adp el e z)
t
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3 Auxiliary Function

The EM algorithm consists of two steps. In the E-step, the following auxiliary function is computed:

Q(G)I@old) = 201;T,11;Tf

21T dzyrdayrp(Crr lir 2oy Qrr %1, Oora) - log p(crr, by, 21, @1, X1 (0)  (2)

where 0,,, isthe old parameters estimated in the previous iteration. The auxiliary function is essentially the expectation
of the complete log-likelihood

L(®) = p(evr by Zor, Qs X1.7]©) 3)
over all hidden variables, with respect to the posteriori distribution p(cy.7, L., Z1.7, Q171 %1.70 Op1a)-
In the M-step, the auxiliary function is maximized to update the parameters, namely
0 = argmax Q(0]0,)q) (@)
subject to the normalizing constraint
Hepe =1 (5)

In the following two sections, we introduce the details of the two steps. To make the results clearer and more
straightforward, the M-step will be introduced first.

4 M-step

As is shown in Equ. (4) and (5), the M-step deals with a constrained maximization problem, which can be solved using
Lagrange function:

J(©10414) = Q(O]0014) + Xc Ac(Hcpc — 1) (6)
where A, is Lagrange multiplier. Maximizing Equ. (6) gives the re-estimation formula for all parameters. The result is

given as follows:

o s -1
Ue = (Zt yt,c(ag)p(ad X1.7,Ct=C) I+ Zlcq)cl 1) : Zt yt,c(atzt)p(at,zdxl:—r,ct:c) (7)

where ;. 2 p(c; = cl|xy.r), 1 2 {1}yxq, I denotes the identity matrix. A, can be solved by Equ. (7) together with the
following constraint:

Aefle =1 8
EISC _ ZtVt,c((zt_atﬁc)(Zt_atﬁc)’)p(zt_adxl:,r_ct:c) ©)
YtVtc
~ 1 . o~ !
Y= ;Zt dlag[(mez(xt - Fltzt)(xt - Fltzf) >p(zt’ct’lt|x1:T):| (10)

m, is re-estimated by solving the following quartic equation:
0= Zt(a—c_z(at - mc))P(Ct=C-at|x1:T) - (M Xt yt.C)mc_l + 2 <mc_3tr[(xt - Fltzf)(xt - Fltzt) @_1]>P(Zt-Ct:C'lt|x1:T)(11)

. ZtVt,c(ag—Zatﬁlc)p agl x1.7.06=€) |
2 _ Ztytc( el X110 )+mg (12)
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5 E-step

It can be derived from Equ. (1) that the conditional distributions p(z;|x;, ¢;, ls, ar), p(x|ce e ar) and p(ag|cs, Ly, xt)
are all Gaussian distributions, whose conditional expectation and conditional covariance are given as follows:

Cov(ze|xy, cp, by ar) = (P51 + Flf‘}’_ll“lt)_l 20, (13)
E(z¢|xp ce b ap) = Qq (L9 %, + a D5 e,) 2 3y (14)
Cov(x¢lc, ly,ar) =0, P, I, + ¥ £ Gy (15)
E(x¢|ce le, ap) = Ty ie, 2 for (16)

Cov(acler, I, x) = (faGa' fa + o)™ 2 Kq 17)
E(acles Uy xe) = Ko (f4Ga % + 072me) £ jg (18)

The posteriori of ¢, and [, can be calculated using forward-backward algorithm:

p(ce, Lelxyr) o aler, LB (ce, 1) (19)

where
aley, ly) 2 plep, b, x4.0) (20)
B(ce 1) 2 p(Xerrrlce le) (21)

a(c, 1) and B(c, 1) can be derived recursively. To reduce computation cost, we perform Viterbi approximation:
ale,ly) = maXe, 1.4 a(ce—1, Le—DpUelce, L—D)p(eelce-)p (xelee, 1) (22)
B(ce, ) = maXe, ,leq B(Cests les)DUerrlCesrrs Ie) - D(Cesrlc)D(XestlCers Lesr) (23)

where p(x;|c;, ;) can be solved using Equ. (15)(16):

p(xelen 1) = fdat p(aclc)p(xeley e, ar)

atg

_1,,1/2 _ _ 1,1 _ P
= O-cthcl/ (2m) N/Zchll 1/2 €xp [E (Kclljczl - O-thmgt - xthllxt)] (24)

The recursions as shown in Equ. (22) and (23) are initialized as follows:
a(ey, ly) = pllyle)ple)p(xyley, 1y) (25)

Bler,lr) =1 (26)

With these probability distributions, we can first compute several basic statistics, which is then used to derive the
statistics for the M-step.

a=t = Ja (27)

a? = j4 + K, (28)

Z=t = ch(l—‘l’tlp_lxt +jclq);t1.uct) (29)

22, = Qo + Qa{Ka (95 11e,) (051 1e,) 10 (30)
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aizy = ch [jclrlzlp_lxt + (]Czl + Kcl)cbc_tl'uct]
Now we can calculate the statistics needed in M-step. Expectations in Equ. (7) are calculated as

yt,c<a?)p(at| X1.T.Ct=C) — vl =cl = llxl:T)a?

Vt,c<atZt)p(at,zt|x1:T,ct=c) =Xip(ce = ¢ ly = lxy.7)0Z
Expectation in Equ. (9) is calculated as

Vt,c((zt - atﬁc)(zt - atﬁc)’>p(zt,at|x1:T,ct=c)

=2 = ¢l = l|xy.r) (ZtZ£ - ﬁcatzt, —aiZlc+a

Expectation in Equ. (10) is calculated as

(mc_tz (xt - Fltzt)(xt - Fltzt)’)P(Zt.Ct.lt|X1:T)

=Yoip(ee = ¢l = Uxy.p)mH{xex{ — TiZixt — x,(,Z) + Tyz.2{T}}

Expectations in Equ. (11) are calculated as

<6-c_2(at - ﬁc))p(q:c,adxl:ﬂ =xplee=cl = llxl:T)ﬁc_z((Tt — M)

<m€_3tr[(xt - Fltzt)(xt - Fltzt),(p_l])p(ltrCFC.ltlan)

=Yp(ee = ¢ by = Uxy.p)MmB P Yuyx{ — TZex{ — x,(0,Z)" + [z,2,T}}

Expectation in Equ. (12) is calculated as

Vt,c(a? - Zatmc>p(at|x1:7~,ct=c) =Xiplce=cl = llxl:T)é\-e_2 (a? - 2a=tﬁ\lc)
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