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Proof of Proposition 1

For EDMN , this is well-known (see [Dat05]).

It remains to show that DMN is a proper closed con-
vex cone. By definition, DMN is the intersection of
pre-images of closed sets under continuous functions.
Hence, DMN is closed.

It is trivially clear that λDMN ⊆ DMN for all λ ≥ 0.
Hence, it suffices to show that DMN + DMN ⊆ DMN

to obtain that DMN is a convex cone. To this end, let
D, D̃ ∈ DM. The fact that DMN + DMN ⊆ (SN≥O)∗ is
obvious. Thus, we may complete the proof by showing
that√

dij + d̃ij ≤
√
dik + d̃ik +

√
dkj + d̃kj , i, j, k ∈ N,

for all D, D̃ ∈ DM.

We have

dij + d̃ij

≤ (
√
dik +

√
dkj)

2 + (

√
d̃ik +

√
d̃kj)

2

= dik + dkj + d̃ik + d̃kj + 2(
√
dikdkj +

√
d̃ikd̃kj)

= dik + dkj + d̃ik + d̃kj + 2

√(√
dikdkj +

√
d̃ikd̃kj

)2

= dik + dkj + d̃ik + d̃kj+

+ 2

√
dikdkj + d̃ikd̃kj + 2

√
dikdkj d̃ikd̃kj

≤ dik + dkj + d̃ik + d̃kj+

+ 2

√
dikdkj + d̃ikd̃kj + dikd̃kj + dkj d̃ik

= dik + dkj + d̃ik + d̃kj + 2

√
(dik + d̃ik)(dkj + d̃kj)

=

(√
dik + d̃ik +

√
dkj + d̃kj

)2

,

where we used the geometric-arithmetic mean inequal-
ity
√
ab ≤ 1

2 (a+ b) ∀ a, b ≥ 0.

Sketch of a Proof of Theorem 4

Lifting the constraint into the objective of (5.3) by
means of a suitably chosen Lagrange multiplier z ≥ 0,
we obtain that any optimizer of the above also optimizes

min
K∈SN�O

〈L,K〉+ z(d− 〈I,K〉). (0.1)

Rescaling the objective yields the equivalent program

max
K∈SN�O

〈I,K〉 − z̃ 〈L,K〉 , (0.2)

where z̃ := 1/z. To complete our discussion, we make
use of the subsequent trivial lemma.

Lemma 1 Let S be a set and f, g : ∫ → R. Then, for
any z > 0, any optimizer x∗ of

max f(x)− zg(x)

is also an optimizer of

max f(x) s.t. g(x) ≤ g(x∗).

Let K be feasible for (0.2) and let D := D(K). We
have

〈L,K〉 =
∑
{i,j}∈E

wij 〈Eij ,K〉

Hence, we may consider −z̃wij as Lagrange multipliers.
Invoking Lemma 1 iteratively eventually gives rise to
Theorem 4.



On a Connection between Maximum Variance Unfolding, Shortest Path Problems and IsoMap

Proof of Proposition 3

From the proof of Theorem 2, any D ∈ DM is feasible
for (5.5) if and only if D ≤ DG, where DG. This
immediately implies that DG is an optimizer of (5.5).
Hence, any feasible D is an optimizer if and only if∑

{i,j}∈Ẽ

wij(d
G
ij − dij) = 0.

Since, by virtue of D ≤ DG, all terms in the summation
are nonnegative, this identity is equivalent to dij =
dGij , wij > 0.

Proof of Theorem 5

Assume that Ẽ be a geodesic covering and let D be
an optimizer of (5.5). We show that D = DG. Let
{i, j} ∈ N2. If {i, j} ∈ Ẽ, then, by Proposition 3, we
have dij = dGij . If {i, j} /∈ Ẽ, then, again by Proposition

3, we have dij ≤ dGij . Now assume that dij < dGij . Since

Ẽ is a geodesic covering, there is {k, l} ∈ Ẽ and a
shortest path γ ∈ ΠG

kl such that i = γs1 , j = γs2 for
some 1 ≤ s1, s2 ≤ |γ|. Since γ is a shortest path in G,
so is the restricted path γ|s1≤s≤s2 ∈ ΠG

ij .

The triangle inequality and D ≤ DG from Proposition
3 yield √

dkl ≤ l̃(γ|s≤s1)︸ ︷︷ ︸
≤l(γ|s≤s1

)

+
√
dij︸ ︷︷ ︸

<
√
dGij

+ l̃(γ|s≥s2)︸ ︷︷ ︸
≤l(γ|s≥s2

)

< l(γ|s≤s1) +
√
dGij + l(γ|s≥s2)

=
√
dGkl,

where l̃(γ̃) denotes the length of γ̃ with respect to the
weighting d̃wij = dij , {i, j} ∈ E. The strict inequality

contradicts the fact that dij = dGij by Proposition 3.
This proves sufficiency.

To show necessity, assume that Ẽ is not a geodesic
covering and let i, j ∈ V such that for all {k, l} ∈ Ẽ,
no shortest path in ΠG

kl passes through i and j. We
shall construct an optimal solution other than DG. To
this end, define

S := {{s, t} | s, t ∈ V,
there is a shortest path from s to t

passing through i, j} . (0.3)

Since S contains at least {i, j}, S is nonempty. Let

ε := min
{q,r}/∈S, {q,k}∈S∨{k,r}∈S

√
dGqr√

dGqk +
√
dGkr

.

It holds that ε < 1, since, otherwise, we would ob-

tain that
√
dGqr =

√
dGqk +

√
dGkr for some {q, k} /∈

S, {q, k} ∈ S, which, in turn, gives rise to the con-
tradiction that there is a shortest path from q to r
traversing i, j. Now define D̃ by

d̃qr =

{
ε2dGqr, {q, r} ∈ S,
dGqr, {q, r} /∈ S.

Since ε < 1 and S is nonempty, we obtain D̃ 6= DG.
Clearly, S ∩ Ẽ = ∅. Therefore, D̃ and DG have the
same objective value. To complete the proof, it remains
to show that D̃ is feasible. Obviously, D̃ is symmetric,
d̃ii = 0, and O ≤ D̃ ≤ DG, which, in particular, yields
d̃ij ≤ dwij , {i, j} ∈ E. Hence, D̃ ∈ DMN if√

d̃qr ≤
√
d̃qk +

√
d̃kr ∀ q, k, r ∈ V,

which is verified as follows: If {q, k} , {k, r} /∈ S, then√
dGqr ≤

√
dGqk +

√
dGkr =

√
d̃Gqk +

√
d̃Gkr.

Otherwise, we have√
dGqr ≤ ε(

√
dGqk +

√
dGkr) ≤

√
d̃qk +

√
d̃kr.

As d̃qr ≤ dGqr, the desired inequality follows.
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