APPENDIX - SUPPLEMENTARY MATERIAL On a Connection between Maximum Variance Unfolding, Shortest Path Problems and IsoMap

Alexander Paprotny
Inst. für Mathematik, TU Berlin
Straße des 17. Juni 136, D-10623 Berlin
paprotny@math.tu-berlin.de

Proof of Proposition 1

For $\mathbb{E D M}^{N}$, this is well-known (see [Dat05]).
It remains to show that $\mathbb{D M}^{N}$ is a proper closed convex cone. By definition, $\mathbb{D M}^{N}$ is the intersection of pre-images of closed sets under continuous functions. Hence, $\mathbb{D M}^{N}$ is closed.
It is trivially clear that $\lambda \mathbb{D M}^{N} \subseteq \mathbb{D M}^{N}$ for all $\lambda \geq 0$. Hence, it suffices to show that $\mathbb{D M}^{N}+\mathbb{D M}^{N} \subseteq \mathbb{D M}^{N}$ to obtain that $\mathbb{D M}^{N}$ is a convex cone. To this end, let $D, \tilde{D} \in \mathbb{D M}$. The fact that $\mathbb{D M}^{N}+\mathbb{D M}^{N} \subseteq\left(\mathbb{S}_{\geq O}^{N}\right)^{*}$ is obvious. Thus, we may complete the proof by showing that

$$
\sqrt{d_{i j}+\tilde{d_{i j}}} \leq \sqrt{d_{i k}+\tilde{d}_{i k}}+\sqrt{d_{k j}+\tilde{d}_{k j}}, i, j, k \in \underline{N}
$$

for all $D, \tilde{D} \in \mathbb{D M}$.
We have

$$
\begin{aligned}
& d_{i j}+\tilde{d}_{i j} \\
& \leq\left(\sqrt{d_{i k}}+\sqrt{d_{k j}}\right)^{2}+\left(\sqrt{\tilde{d}_{i k}}+\sqrt{\tilde{d}_{k j}}\right)^{2} \\
&= d_{i k}+d_{k j}+\tilde{d}_{i k}+\tilde{d}_{k j}+2\left(\sqrt{d_{i k} d_{k j}}+\sqrt{\tilde{d}_{i k} \tilde{d}_{k j}}\right) \\
&= d_{i k}+d_{k j}+\tilde{d}_{i k}+\tilde{d}_{k j}+2 \sqrt{\left(\sqrt{d_{i k} d_{k j}}+\sqrt{\tilde{d}_{i k} \tilde{d}_{k j}}\right)^{2}} \\
&= d_{i k}+d_{k j}+\tilde{d}_{i k}+\tilde{d}_{k j}+ \\
&+2 \sqrt{d_{i k} d_{k j}+\tilde{d}_{i k} \tilde{d}_{k j}+2 \sqrt{d_{i k} d_{k j} \tilde{d}_{i k} \tilde{d}_{k j}}} \\
& \leq d_{i k}+d_{k j}+\tilde{d}_{i k}+\tilde{d}_{k j}+ \\
&+2 \sqrt{d_{i k} d_{k j}+\tilde{d}_{i k} \tilde{d}_{k j}+d_{i k} \tilde{d}_{k j}+d_{k j} \tilde{d}_{i k}} \\
&= d_{i k}+d_{k j}+\tilde{d}_{i k}+\tilde{d}_{k j}+2 \sqrt{\left(d_{i k}+\tilde{d}_{i k}\right)\left(d_{k j}+\tilde{d}_{k j}\right)} \\
&=\left(\sqrt{d_{i k}+\tilde{d}_{i k}}+\sqrt{d_{k j}+\tilde{d}_{k j}}\right)^{2},
\end{aligned}
$$

Jochen Garcke

Inst. f. Numerische Simulation, Univ. Bonn Wegelerstr. 6, D-53115 Bonn

Fraunhofer SCAI
Schloss Birlinghoven, D-53754 St. Augustin garcke@ins.uni-bonn.de
where we used the geometric-arithmetic mean inequality $\sqrt{a b} \leq \frac{1}{2}(a+b) \forall a, b \geq 0$.

Sketch of a Proof of Theorem 4

Lifting the constraint into the objective of (5.3) by means of a suitably chosen Lagrange multiplier $z \geq 0$, we obtain that any optimizer of the above also optimizes

$$
\begin{equation*}
\min _{K \in \mathbb{S}_{\geq O}^{N}}\langle L, K\rangle+z(d-\langle I, K\rangle) . \tag{0.1}
\end{equation*}
$$

Rescaling the objective yields the equivalent program

$$
\begin{equation*}
\max _{K \in \mathbb{S}_{\succeq O}^{\mathbb{N}}}\langle I, K\rangle-\tilde{z}\langle L, K\rangle \tag{0.2}
\end{equation*}
$$

where $\tilde{z}:=1 / z$. To complete our discussion, we make use of the subsequent trivial lemma.

Lemma 1 Let \mathcal{S} be a set and $f, g: \int \rightarrow \mathbb{R}$. Then, for any $z>0$, any optimizer x^{*} of

$$
\max f(x)-z g(x)
$$

is also an optimizer of

$$
\max f(x) \text { s.t. } g(x) \leq g\left(x^{*}\right)
$$

Let K be feasible for (0.2) and let $D:=\mathcal{D}(K)$. We have

$$
\langle L, K\rangle=\sum_{\{i, j\} \in E} w_{i j}\left\langle E_{i j}, K\right\rangle
$$

Hence, we may consider $-\tilde{z} w_{i j}$ as Lagrange multipliers. Invoking Lemma 1 iteratively eventually gives rise to Theorem 4.

Proof of Proposition 3

From the proof of Theorem 2, any $D \in \mathbb{D M}$ is feasible for (5.5) if and only if $D \leq D^{G}$, where D^{G}. This immediately implies that $D^{\bar{G}}$ is an optimizer of (5.5). Hence, any feasible D is an optimizer if and only if

$$
\sum_{\{i, j\} \in \tilde{E}} w_{i j}\left(d_{i j}^{G}-d_{i j}\right)=0 .
$$

Since, by virtue of $D \leq D^{G}$, all terms in the summation are nonnegative, this identity is equivalent to $d_{i j}=$ $d_{i j}^{G}, w_{i j}>0$.

Proof of Theorem 5

Assume that \tilde{E} be a geodesic covering and let D be an optimizer of (5.5). We show that $D=D^{G}$. Let $\{i, j\} \in \underline{N}^{2}$. If $\{i, j\} \in \tilde{E}$, then, by Proposition 3, we have $d_{i j}=d_{i j}^{G}$. If $\{i, j\} \notin \tilde{E}$, then, again by Proposition 3, we have $d_{i j} \leq d_{i j}^{G}$. Now assume that $d_{i j}<d_{i \tilde{E}}^{G}$. Since \tilde{E} is a geodesic covering, there is $\{k, l\} \in \tilde{E}$ and a shortest path $\gamma \in \Pi_{k l}^{G}$ such that $i=\gamma_{s_{1}}, j=\gamma_{s_{2}}$ for some $1 \leq s_{1}, s_{2} \leq|\gamma|$. Since γ is a shortest path in G, so is the restricted path $\left.\gamma\right|_{s_{1} \leq s \leq s_{2}} \in \Pi_{i j}^{G}$.
The triangle inequality and $D \leq D^{G}$ from Proposition 3 yield

$$
\begin{aligned}
\sqrt{d_{k l}} & \leq \underbrace{\tilde{l}\left(\left.\gamma\right|_{s \leq s_{1}}\right)}_{\leq l\left(\left.\gamma\right|_{s \leq s_{1}}\right)}+\underbrace{\sqrt{d_{i j}}}_{<\sqrt{d_{i j}^{G}}}+\underbrace{\tilde{l}\left(\left.\gamma\right|_{s \geq s_{2}}\right)}_{\leq l\left(\left.\gamma\right|_{s \geq s_{2}}\right)} \\
& <l\left(\left.\gamma\right|_{s \leq s_{1}}\right)+\sqrt{d_{i j}^{G}}+l\left(\left.\gamma\right|_{s \geq s_{2}}\right) \\
& =\sqrt{d_{k l}^{G}}
\end{aligned}
$$

where $\tilde{l}(\tilde{\gamma})$ denotes the length of $\tilde{\gamma}$ with respect to the weighting $\tilde{d}_{i j}^{w}=d_{i j},\{i, j\} \in E$. The strict inequality contradicts the fact that $d_{i j}=d_{i j}^{G}$ by Proposition 3. This proves sufficiency.
To show necessity, assume that \tilde{E} is not a geodesic covering and let $i, j \in V$ such that for all $\{k, l\} \in \tilde{E}$, no shortest path in $\Pi_{k l}^{G}$ passes through i and j. We shall construct an optimal solution other than D^{G}. To this end, define

$$
S:=\{\{s, t\} \mid s, t \in V
$$

there is a shortest path from s to t

$$
\begin{equation*}
\text { passing through } i, j\} \tag{0.3}
\end{equation*}
$$

Since S contains at least $\{i, j\}, S$ is nonempty. Let

$$
\epsilon:=\min _{\{q, r\} \notin S,\{q, k\} \in S \vee\{k, r\} \in S} \frac{\sqrt{d_{q r}^{G}}}{\sqrt{d_{q k}^{G}}+\sqrt{d_{k r}^{G}}}
$$

It holds that $\epsilon<1$, since, otherwise, we would obtain that $\sqrt{d_{q r}^{G}}=\sqrt{d_{q k}^{G}}+\sqrt{d_{k r}^{G}}$ for some $\{q, k\} \notin$ S, $\{q, k\} \in S$, which, in turn, gives rise to the contradiction that there is a shortest path from q to r traversing i, j. Now define \tilde{D} by

$$
\tilde{d}_{q r}=\left\{\begin{array}{l}
\epsilon^{2} d_{q r}^{G},\{q, r\} \in S \\
d_{q r}^{G}, \quad\{q, r\} \notin S
\end{array}\right.
$$

Since $\epsilon<1$ and S is nonempty, we obtain $\tilde{D} \neq D^{G}$. Clearly, $S \cap \tilde{E}=\emptyset$. Therefore, \tilde{D} and D^{G} have the same objective value. To complete the proof, it remains to show that \tilde{D} is feasible. Obviously, \tilde{D} is symmetric, $\tilde{d}_{i i}=0$, and $O \leq \tilde{D} \leq D^{G}$, which, in particular, yields $\tilde{d}_{i j} \leq d_{i j}^{w}, \quad\{i, j\} \in E$. Hence, $\tilde{D} \in \mathbb{D M}^{N}$ if

$$
\sqrt{\tilde{d}_{q r}} \leq \sqrt{\tilde{d}_{q k}}+\sqrt{\tilde{d}_{k r}} \forall q, k, r \in V
$$

which is verified as follows: If $\{q, k\},\{k, r\} \notin S$, then

$$
\sqrt{d_{q r}^{G}} \leq \sqrt{d_{q k}^{G}}+\sqrt{d_{k r}^{G}}=\sqrt{\tilde{d}_{q k}^{G}}+\sqrt{\tilde{d}_{k r}^{G}}
$$

Otherwise, we have

$$
\sqrt{d_{q r}^{G}} \leq \epsilon\left(\sqrt{d_{q k}^{G}}+\sqrt{d_{k r}^{G}}\right) \leq \sqrt{\tilde{d}_{q k}}+\sqrt{\tilde{d}_{k r}}
$$

As $\tilde{d}_{q r} \leq d_{q r}^{G}$, the desired inequality follows.

References

[Dat05] Jon Dattorro. Convex optimization \& Euclidean distance geometry. Meboo, 2005.

