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Abstract

Discriminative training for general graphical
models is a challenging task, due to the in-
tractability of the partition function. We pro-
pose a computationally efficient approach to
estimate the partition sum in a structured
learning problem. The key idea is a lower
bound of the partition sum that can be eval-
uated in a fixed number of message passing it-
erations. The bound makes use of a subset of
the variables, a feedback vertex set, which al-
lows us to decompose the graph into tractable
parts. Furthermore, a tightening strategy
for the bound is presented, which finds the
states of the feedback vertex set that maxi-
mally increase the bound, and clamps them.
Based on this lower bound we derive batch
and online learning algorithms and demon-
strate their effectiveness on a computer vision
problem.

1 Introduction

Discriminative structured output prediction (Bakir
et al., 2007) is a popular approach for classification
tasks with interdependent variables. Applications in-
clude multi-class and multi-label classification prob-
lems, gene finding in bioinformatics, object recognition
in computer vision and part-of-speech tagging in nat-
ural language processing. In many computer vision
tasks, the underlying structure is a graphical model
containing a large number of loops, rendering infer-
ence and learning intractable. This work considers
the problem of learning the parameters of the graphi-
cal model and formulates a novel lower bound on the
structured output loss. The evaluation of the bound
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typically requires only a few iterations of a modified
message passing algorithm, where the number of iter-
ations is fixed and dependent on the specified budget.
Our approach consists of two parts: First, a subset of
the output variables is selected, a so called feedback
vertex set (FVS), with the property that any cycle in
the graph contains at least one variable in the FVS.
Second, a conditioned partition sum for one state of
the variables in the FVS is repeatedly computed for
a few low-energy states, to successively tighten the
lower bound. Each individual computation requires
two message passes. We show that this lower bound is
well-suited for structured output learning, especially
in an online scenario.

The contributions of this paper are as follows: First,
we propose a generalization of composite likelihood
for computing a lower approximation of the structured
partition sum and formulate a tightening strategy. We
show that composite likelihood is a specific instance of
this framework. Second, we introduce a forest decom-
position and formulate it as a minimal feedback vertex
set (FVS) problem. Third, a variational algorithm,
max-tighten is introduced. The algorithm finds the
states of the FVS which maximally increase the lower
bound. We introduce batch and online algorithms for
learning with the lower bound. The performance of
the algorithms is demonstrated on a computer vision
dataset.

2 Structured Output Prediction

In structured output prediction, the task is predict-
ing interdependent output variables y ∈ Y for a given
input variable x ∈ X . An individual output variable
yi has a discrete and finite output domain Yi. The
dependencies between the variables are assumed to be
specified by a parametrized factor graph; the param-
eters are denoted by w. Assuming linearity of the
parametrization, the score (i.e., negative energy) of an
input/output configuration (x,y) can be written as an
inner product 〈w,φ(x,y)〉. Here φ(x,y) : X ×Y → H
is a mapping of the variables to a joint input/output
space in correspondence to the factor graph. The map-
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ping φ(x,y) can also be thought of as sufficient statis-
tics of the model. The energy E(y,x,w) for a given
input/output pair can be written as

E(y,x,w) = −〈w,φ(x,y)〉
= −

∑

t∈T

∑

α∈C(t)
〈wt,φt(x,yα, α)〉

=
∑

t∈T

∑

α∈C(t)
Eα(yα,x,w

t) (1)

Here, t runs over potentials that share the same param-
eter (factor templates T ) and α runs over the different
factors of the factor graph C. This work considers pair-
wise models, thus the factor graph can be represented
as a graph G = (V, E)1. Finally, Eα denotes the energy
of factor α.

We review estimation of the parameters in Section 2.1
and prediction for such models in Section 2.2. These
tasks are computationally intractable for general loopy
graphical models due to the partition sum.

2.1 Learning

We consider the task of learning the parameters w of
such a model from a given training set {(xn,yn)}Nn=1.
For discriminative models, the two dominant ap-
proaches in the literature are the Conditional Random
Field (Lafferty et al., 2001) (CRF) and the Structured
Support Vector Machine (Tsochantaridis et al., 2005;
Taskar et al., 2003). The CRF is a log-linear model for
the posterior distribution over outputs given an input:

P (y|x,w) =
1

Z(x,w)
exp(〈w,φ(x,y)〉), (2)

Z(x,w) =
∑

y∈Y
exp(〈w,φ(x,y)〉). (3)

The parameters w are generally estimated using max-
imum likelihood, and the main computational burden
is in evaluating the partition sum Z(x,w). This is due
to the fact that Y is an exponentially large set.

Taking the negative logarithm of the likelihood and in-
cluding an `2 regularizer, yields the structured output
learning problem:

min
w

1

N

N∑

n=1

−〈w,φ(xn,yn)〉+ logZ(xn,w) +
λ

2
‖w‖2.

(4)
In this work we focus on accurate and efficient param-
eter estimation for CRFs. Nevertheless, the results
are also relevant for the structured SVM, as recent
work (Pletscher et al., 2010) shows deep connections
between the two learning problems.

1We consider only the output variables to be part of
the graphical model. The input variables are observed,
and thus can always be absorbed into the factors.

2.2 Prediction

For a given parameterw and an error function ∆y′(y),
which measures the loss incurred by predicting y in-
stead of y′, Bayesian decision theory predicts output
variables y? according to

y? = argmin
y

∑

y′

∆y′(y)P (y′|x,w). (5)

This is the best predictor possible for a given ∆ under
the assumption that the learned distribution is equal
to the true underlying model. Taking ∆ to be the zero-
one loss on the full output, results in the maximum-a-
posterior (MAP) predictor y∗ = argmaxy P (y|x,w),
whereas a zero-one loss on the individual output
variables leads to the maximum posterior marginal
(MPM) predictor y∗i = argmaxyi P (yi|x,w).

3 Composite Likelihood and
Contrastive Divergence

Composite likelihood is a common approach for ap-
proximate parameter estimation in CRFs. Let V be
the set of output variables. Furthermore, let (A,B)
be a partition of V into two sets (i.e., A ∪ B = V
and A ∩ B = ∅). In composite likelihood2 (Lindsay,
1988) the intractable full likelihood in (2) is approxi-
mated by the conditional distribution of the variables
in A given the ground-truth state of the variables in B.
Several decompositions {(Am,Bm)}Mm=1 are combined
by multiplying their respective conditional likelihoods.
The maximum composite likelihood estimator is then
computed as:

min
w

1

N

N∑

n=1

1

M

M∑

m=1

− logP (ynAm
|xn,ynBm

,w)+
λ

2
‖w‖2.

(6)
Note that in (6) the form of the decomposition are left
unspecified. Pseudolikelihood (Besag, 1975) is a spe-
cial case of composite likelihood that assumes particu-
larly simple decompositions given by Am = {m},B =
V\{m} with m running over all the output variables
in V. Dillon & Lebanon (2010) recently introduced
a stochastic version of composite likelihood, where
the decompositions are chosen stochastically. This al-
lows for computationally more demanding decomposi-
tions, such as a small cyclic subgraph, to be included
with some probability. Despite its simplicity, com-
posite likelihood was shown to be consistent (Lindsay,
1988). Under weak regularity conditions, the compos-
ite likelihood estimate asymptotically converges to the
maximum-likelihood estimate.

2We restrict ourselves to the conditional composite like-
lihood; the marginal conditional likelihood is not discussed.
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An alternative method for approximate parameter
learning is contrastive divergence (Hinton, 2000): A
Markov Chain Monte Carlo (MCMC) sampler is run
for few iterations (typically around five iterations) to
compute an approximate gradient of (4). Stochastic
gradient descent is then used for the minimization.
The trick is that the MCMC sampler is initialized
with the ground-truth label. Asuncion et al. (2010)
point out the similarities between contrastive diver-
gence and composite likelihood. While contrastive di-
vergence gives satisfying results in practice, it has been
shown that it does not converge in general (Sutskever
& Tieleman, 2010).

In (Vickrey et al., 2010) a non-local contrastive diver-
gence is introduced. Low energy configurations are
computed using an approximate MAP inference algo-
rithm. An approximation of the partition sum is then
obtained by adding up the contributions of the gener-
ated states. Non-local contrastive divergence is shown
to be consistent.

4 Lower Bounding the Structured
Output Loss

In this section we introduce an extension of composite
likelihood which can be understood as a lower bound of
the partition sum. Given a partition of V into two sets,
A and B, the partition sum in (3) can be decomposed
into two sums running over the states of the variables
in A and B. A trivial lower-bound is obtained by sum-
ming over only a (small) subset YB ⊆ YB of the large
state space YB:

Z(x,w) =
∑

yB∈YB

∑

yA∈YA

exp(〈w,φ(x,y)〉)

≥
∑

yB∈YB

∑

yA∈YA

exp(〈w,φ(x,y)〉)

=: Z(x,w,B,YB). (7)

The set YB contains all possible states of the variables
in B and is therefore exponentially large. Using a sub-
set YB may result in a relatively poor approximation
for high-entropy distributions. However, as we will
show, for parameter learning this simple approach can
be very effective. The choice of the decomposition,
(A,B) as well as the states in the set YB are discussed
in detail in Section 5.1 and Section 5.2 respectively.
Actual learning algorithms are given in Section 5.3.
The remainder of this section discusses extensions of
the lower bound and its connection to previous work.

4.1 Several Decompositions

To decrease the effects of poor decompositions, sev-
eral partitions D = {(A1,B1), . . . , (AM ,BM )} and cor-

responding states Z = {YB1
, . . . ,YBM

} can be com-
bined. Let Zm := Z(x,w,Bm,YBm

). The arithmetic
and geometric mean as well as the maximum of all the
bounds are also valid lower bounds:

Za,D,Z(x,w) :=
1

M

M∑

m=1

Zm, (8)

Zg,D,Z(x,w) :=

(
M∏

m=1

Zm

)1/M

, (9)

Zm,D,Z(x,w) := max
m

Zm. (10)

The maximum over the different decompositions re-
sults in the tightest bound, but has the disadvantage
of being non-differentiable w.r.t. the parameters due
to the maximum function. This can cause problems
when minimizing (4) using quasi-Newton solvers that
rely on the smoothness of the objective. The geomet-
ric mean is commonly used by composite likelihood
approaches, and is obtained by considering the arith-
metic average of the log partition sum. This has the
advantage that it is smooth. However, the arithmetic
mean actually provides a tighter lower bound while
maintaining differentiability.

Lemma 1. The relation between the different lower
bound combinations is

Zm,D,Z(x,w) ≥ Za,D,Z(x,w) ≥ Zg,D,Z(x,w). (11)

Furthermore, all combination approaches lead to lower
bounds on Z(x,w).

4.2 Connection to Composite Likelihood

The following lemma draws the connection between
the lower bound in (7) and composite likelihood.

Lemma 2. Composite likelihood learning with decom-
positions D is equivalent to lower bounding the par-
tition sum in (4) for each example (xn,yn) by the
geometric average lower bound Zg,D,Zn

(xn,w) with
YnBm

= {ynBm
} and Zn = {YnB1

, . . . ,YnBM
}.

The lower bound in our work differs in two key aspects
from the classic composite likelihood: First, we give
a concrete choice of the decompositions by feedback-
vertex sets, balancing computational tractability and
accuracy of the estimator. Second, in addition to the
ground-truth, several other low energy states of the
variables in B are used. As will be shown in the ex-
periments, especially the second contribution improves
the results drastically.

4.3 Asymptotic Consistency

The bound in (7) can be understood as an efficient
extension of the non-local contrastive objective intro-
duced in (Vickrey et al., 2010). In their work a learning
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objective is formulated where the partition sum is re-
placed by an exhaustive enumeration over low energy
states which are computed using MAP inference. Con-
trary to our work, the non-local contrastive objective
does however not consider the decomposition of the
partition sum into two parts. Therefore much more
states need to be considered explicitly. Nevertheless,
the proof of asymptotic convergence in (Vickrey et al.,
2010) also generalizes to our lower bound (when the
geometric combination is used) subject to the same
regularity assumptions.

4.4 Comparison to Upper Bounds

Finally, in contrast to our lower bound a considerable
amount of work has investigated upper bounding the
partition sum. Upper bounds are generally obtained
using variational inference. Such an example is the
tree reweighted belief propagation (Wainwright et al.,
2002). A problem of learning with upper bounds such
as (Hazan & Urtasun, 2010; Wainwright et al., 2002;
Meshi et al., 2010) arises from the fact that conver-
gence of the message passing algorithms used to com-
pute the upper bound is generally slow, or sometimes
not even guaranteed.

The general perception in the field is that upper
bounds are superior to lower bounds, as intuitively
less things can go wrong when minimizing an upper
bound. This view is also supported by (Finley &
Joachims, 2008). Our work questions this belief by
showing that composite likelihood is in fact a lower
bound. Furthermore, we give experimental support
that our lower bound leads to state-of-the-art accu-
racy on a well-studied data set.

4.5 Connection to Cutset Conditioning

Our work is related to the relatively old idea of cut-
set conditioning in Bayesian networks, dating back
to Pearl (1990), see also (Koller & Friedman, 2009,
Section 9.5). For the task of probabilistic inference, a
subset of the nodes is exhaustively enumerated over,
whereas for the remaining variables a sum-product al-
gorithm is used. We use a very similar idea in the next
section. Cutset conditioning is generalized in (Horvitz
et al., 1989) for approximate inference. However, to
the best of our knowledge, cutset conditioning has not
been used for learning undirected models, nor have its
connection to composite likelihood been explored.

5 Part & Clamp

This section describes the details of the main parts of
our proposed part & clamp algorithm.

5.1 Part: Finding a Minimum Feedback
Vertex Set

The lower bound in (7) is valid for any choice of par-
tition A,B. For tractable computations, we consider
B such that all loops in the graph G are blocked by
at least one variable in B. Such a subset of the out-
put variables is called a feedback vertex set (Vazirani,
2001). To make this property explicit, we will use F
to denote such a set B and V\F to denote its comple-
ment. Due to the FVS property (see Figure 1), V\F is
a forest and hence conditioned on the state of the FVS,
yF , summation over YV\F for the remaining variables,
can be carried out exactly using the sum-product al-
gorithm.

The decision variant of the minimal FVS is an NP-
hard problem (Vazirani, 2001) and therefore one has
to resort to approximate algorithms. In our work we
consider the unweighted version, where the number of
variables |F| in the FVS is minimized. This can be
motivated by the principle of insufficient reason: all
the variables are assumed to have the same contribu-
tion to the partition sum. Therefore, the minimum
FVS results in the lowest approximation error. More
complex selection criteria based on marginal variable
weights would be possible. However, in our work we
keep the decomposition fixed during learning and thus
an initial estimate of the parameters would need to
be obtained in order to make the selection based on
marginals meaningful.

Algorithm 1 Growing forests algorithm for the feed-
back vertex set problem.

Require: G = (V, E).
1: F = ∅,Q = ∅, ∀i ∈ V : visited(i) = 0.
2: while not all vertices visited do
3: Choose i at random from {j ∈ V : visited(j) = 0}.
4: i→ Q.
5: repeat
6: i← Q.
7: if |{j ∈ N (i) : visited(j) ∧ j 6∈ F}| ≥ 2 then
8: F = F + {i}.
9: end if

10: visited(i) = 1.
11: ∀j ∈ N (i) ∧ ¬visited(j) : j → Q (random order).
12: until Q = ∅.
13: end while
14: return F

A series of papers (Becker & Geiger, 1996; Chudak
et al., 1998; Bafna et al., 1999) gives 2-approximation
algorithms for the minimum FVS problem. In our
work we consider a simpler probabilistic algorithm
(Chandrasekaran et al., 2011) based on a breadth-first
exploration of the graph. The algorithm is shown in
Algorithm 1; N (i) denotes the neighborhood of a ver-
tex i. An algorithm with a depth-first exploration is
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(a) example FVSs for 3× 3 grid (b) DF (0.38) (c) BF (0.33)

Figure 1: Different feedback vertex sets (in black) of a grid-graph. (b) & (c) show small FVSs obtained using
the algorithms described below. BF and DF denote the breadth-first and depth-first approach. We indicate the
fraction of variables in the FVS in brackets. A checkerboard decomposition would have a fraction of around 0.5.

obtained by using a stack instead of the queueQ. Gen-
erally the results with depth-first exploration were in-
ferior to the ones obtained using breadth-first. For a
grid graph the breadth-first approach leads to a close
to optimal FVS ratio of around 1/3, which is in the
order of the lower bound in (Luccio, 1998).

5.2 Clamp: Choosing the States of the
Feedback Vertex Set

The set YF is initialized with the ground-truth label
ynF , corresponding to the input yn as the only state.
For a given parameter w and feedback vertex set F let
us consider the problem of finding a labeling y?F to be
included in YF . We here follow a greedy approach by
including y?F to maximally tighten the lower bound in
(7). We choose the states of the FVS according to:

y?F = argmax
yF∈YF

∑

yV\F∈YV\F

exp(〈w,φ(x,y)〉). (12)

The maximization above is more complex than stan-
dard energy minimization problems arising from MAP
inference. The task is sometimes described as marginal
MAP (Koller & Friedman, 2009). Here, some vari-
ables yV\F are summed over and other variables yF
are maximized over. We derive a variational approach
for this problem, which we named max-tighten. To
simplify the notation, we drop the dependence of the
energy on w and x. Furthermore, let Z(yF ) denote
the partition sum for the FVS variables clamped to
state yF .

We follow the recent approach in (Liu & Ihler, 2011;
Jiang et al., 2011) which formulates the marginal
MAP as a variational problem over the marginal poly-
tope (Wainwright & Jordan, 2008). Let us first rewrite
the log partition sum for a given yF through its dual:

A(yF ) := log
∑

yV\F

exp(−E(yF ,yV\F )) (13)

= min
P

∑

yV\F

P (yV\F |yF )E(y)

+
∑

yV\F

P (yV\F |yF ) logP (yV\F |yF )

The full problem in (12) can then be rewritten as

max
yF

A(yF ) = min
P

∑

y

P (y)E(y)

+
∑

y

P (y) logP (yV\F |yF )

︸ ︷︷ ︸
=:−H(yV\F |yF )

. (14)

The first term in (14) is a standard average energy
and the second term corresponds to the negative con-
ditional entropy of yV\F . Unfortunately, the varia-
tional problem above still remains intractable as the
optimization problem has an exponential number of
variables (or equivalently an exponential number of
constraints if expressed using the marginal polytope).
Furthermore, the conditional entropy does not factor-
ize into marginals, which makes an approximation even
more difficult. Both, (Liu & Ihler, 2011) and (Jiang
et al., 2011) choose to approximate (14) by relaxing
the constraint set to the local marginal polytope and
replacing the entropy term with a unary and pair-
wise approximation. We here choose the approach
from (Jiang et al., 2011) which reduces to a hybrid
message-passing algorithm in which for variables in the
FVS a max-product update is performed, whereas for
the remaining nodes a sum-product update is used.

For obtaining a y?F , the obtained pseudo-beliefs need
to be rounded to integer values. The approach ignores
the constraint that y?F should be different from all the
states already in YF and thus in theory might gener-
ate a state that is already modeled. This could proba-
bly be improved with an approach akin to the M -best
MAP algorithm (Fromer & Globerson, 2009), at the
cost of an increased runtime. We observed empirically
that states were rarely chosen repeatedly.

Alternatively, instead of using the max-tighten ap-
proach, one can simply compute a MAP labeling.
While this approach does not guarantee the most effec-
tive tightening, it has the advantage that very efficient
specialized solvers are available. In practice we have
found that initializing the message-passing algorithm
for max-tighten with a smoothed version of a MAP
label consistently lead to the best results.
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(a) Lower bound on the empirical risk.
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Figure 2: Batch learning for the binary image denoising dataset. The lower bound and the prediction error are
visualized when increasing YF . We observe that the first couple of iterations are the most important. The dotted
curve in (a) corresponds to tightening using MAP inference, the solid curve to max-tighten: The differences
are more pronounced for the bimodal data set. The curves in (b) correspond to different prediction approaches
using the same parameter estimate. The error bars show the standard deviation of the prediction errors. Note
that clamped MPM is unrealistic (since it requires labels), and is shown to indicate the theoretical optimum.

5.3 Derived Learning Algorithms

Here we describe parameter learning with the pro-
posed lower bound. The approximate objective is
obtained by replacing the partition sum in (4) by
Z(x,w,F ,YF ) which is defined in (7):

min
w

1

N

N∑

n=1

−〈w,φ(xn,yn)〉

+ logZ(x,w,F ,YF ) +
λ

2
‖w‖2. (15)

To make learning efficient, the gradient of the approx-
imate objective needs to be computed efficiently. The
derivative of the approximate log partition sum w.r.t.
w is the expected feature map. The expectation now
only runs over the states in YF . The expectation com-
putation requires the marginals Pα(yα|YF ) of the fac-
tors. The overall gradient is therefore given by

∂

∂w
=

N∑

n=1

−φ(xn,yn)+

∑

t∈T

∑

α∈C(t)
Pα(yα|YF )φt(x

n,yα, α) + λw. (16)

All the required quantities can be computed by aggre-
gating the results from simple sum-product runs for
the different clamping configurations yF ∈ YF . We il-
lustrate this for two configurations y1

F ,y
2
F and the case

of larger YF is straightforward. Given the marginals
Pα(yα|y1

F ) and Pα(yα|y2
F ) for the two clamping states

and the corresponding partition sums Z1, Z2, the com-

bined quantities are obtained as follows:

Z1,2 = Z1 + Z2,

Pα(yα|YF ) =
Z1
α(yα)

Z1,2
+
Z2
α(yα)

Z1,2
, (17)

Zkα(yα) = ZkPα(yα|ykF ) for k ∈ {1, 2}.
As described in Section 4.1, several decompositions can
be used using different combination approaches. The
marginal computations for the maximum and geomet-
ric average combinations are simple (marginals of the
decomposition with the maximum value and an aver-
age of the different marginals, respectively). The arith-
metic average combination turns out to be a partition
sum computation of a special form, which is however
also tractable.

Batch Learning Batch learning for the proposed
lower bound computesM decompositions of the graph-
ical model for each example. The set YnF for each of the
examples xn is initialized with the ground-truth label
ynF . The resulting bound is then minimized using L-
BFGS leading to a first parameter estimate. For this
parameter, a tightening operation using max-tighten
is performed for each decomposition and example. The
tightening of the lower bound is followed by a mini-
mization w.r.t. the parameters. This is repeated un-
til convergence. The batch algorithm has close rela-
tionships to the cutting planes algorithm employed in
the training of structured SVMs (Tsochantaridis et al.,
2005).

Online Learning In order to solve large scale prob-
lems, we propose an online learning version of the algo-
rithm using stochastic gradient descent (SGD). SGD
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``````````Prediction
Train Pseudo- Composite Contrastive Part & Clamp

likelihood likelihood divergence batch online

b
im

o
d
a
l MAP 15.58± 4.11 12.02± 3.50 7.01± 1.71 6.14± 1.27 5.16± 0.77

MPM 11.86± 3.40 9.33± 2.69 6.72± 1.67 5.32± 1.12 5.20± 0.80
clamped MPM 1.77± 0.25 1.80± 0.26 1.96± 0.22 1.90± 0.22 2.23± 0.25

u
n
im

o
d
a
l

MAP 5.28± 1.47 4.43± 1.26 2.39± 0.47 2.40± 0.50 2.40± 0.46
MPM 4.13± 1.18 3.66± 0.96 2.37± 0.45 2.40± 0.42 2.42± 0.43
clamped MPM 0.98± 0.22 1.01± 0.21 1.05± 0.21 1.03± 0.22 1.17± 0.23

Table 1: Test error for learning on the binary image denoising dataset. A single FVS decomposition per example
is used, i.e. M = 1. Composite likelihood refers to the first iteration of the Part&Clamp algorithm (i.e. only
the ground-truth state is used in YF ). For the SGD updates in contrastive divergence and the online variant
of Part&Clamp, all the images were considered for a single update step to simplify the comparison to the
batch learning algorithms. For contrastive divergence 5 Gibbs iterations were used, for the online version of
Part&Clamp a budget of two labels, i.e. |YF | = 2.

evaluates the loss for a subset of examples and takes
a step in the direction of the gradient. In our imple-
mentation, a budget is specified for each example, this
budget corresponds to the number of states in YF .
At each iteration the lower bound is tightened using
max-tighten and in case the budget is exceeded, the
highest energy state is pruned from YF (the ground-
truth state is however never removed). Followed by an
evaluation of the lower bound and its derivative.

6 Experiments

We evaluate the performance of the proposed approach
on the application of binary image denoising. We use
the dataset in (Kumar & Hebert, 2006) and follow
their experimental settings. The dataset consists of
two noise scenarios: a unimodal and bimodal noise
model. 10 images are used for training and 150 im-
ages for testing. The graphical model is given by the
standard four connected grid of size 64 × 64. In all
of the experiments we use λ = 1, we observed lit-
tle change when varying the regularization parameter.
Figure 2 shows the development of the lower bound
for batch learning. As expected, the lower bound in-
creases as more labels are added to YF . Furthermore,
the more states considered for the FVS, the better the
test error. Comparing the curves for the unimodal
and bimodal noise datasets, we notice that the lower
bound flattens off after fewer iterations of the algo-
rithm in the easier unimodal dataset. For MAP pre-
diction we used sequential tree-reweighted belief prop-
agation (TRWS) (Kolmogorov, 2006) and for MPM we
used Gibbs sampling (with 1000 sweeps).

Table 1 shows the image denoising results obtained
using different learning and prediction algorithms. As
expected, MPM prediction outperforms MAP predic-
tion. We also include a prediction version (‘clamped
MPM’) where the minimal FVS algorithm is used to
find a FVS, the state of which is clamped to its true

value. Only for the variables in V\F a label is pre-
dicted. We report the test error of the clamped MPM
to give a rough estimate of the prediction error under-
lying the surrogate loss used in composite likelihood
training. As can bee seen, the Part&Clamp approach,
in both its online and batch version, performs well and
does not exhibit the poor behavior of contrastive di-
vergence on the more difficult bimodal dataset. The
online version of Part&Clamp performs better than
the batch version, as it seems to overfit less to the
training data (the train error is however worse). The
results improve slightly on (Kumar & Hebert, 2006)
where a regularization heuristic for pseudo-likelihood
was used. (Hazan & Urtasun, 2010) studies a different
setting, which should have a diminishing test error as
the output label is always the same in training and
testing and the parametrization is powerful enough to
simply remember this particular output label.
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Figure 3: Training error for different number of de-
compositions for a clamping set of size five. We vi-
sualize the results when either using the max-tighten
algorithm for tightening (red) or a random state for
clamping (blue). The results with the geometric mean
(solid line) are less robust w.r.t. the decompositions
than the arithmetic mean (dashed line) for the ran-
dom clamping.
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Figure 3 reports results when several decompositions
are considered. In each setting the batch algorithm
is run for one to five different FVSs with a clamp-
ing set of size five, i.e. |YF | = 5. MPM inference is
used for prediction. It can be observed that increasing
the number of FVSs has little influence on the results.
The combination approach (arithmetic or geometric
mean) behaved as predicted by Lemma 1; the arith-
metic mean leads to slightly more robust results. This
behavior is more pronounced if random states are used
for clamping.

7 Summary

We propose a lower approximation of the partition
sum which improves with increasing computational re-
sources. Our method consists of finding good parti-
tions of the graphical model (Part) and for those parti-
tions find good states of the conditioning set (Clamp).
We solve the first problem by finding a minimal FVS to
obtain the largest possible tractable subgraph. Then
we propose a variational approach max-tighten to
optimize the states of the conditioning set. We demon-
strate that the resulting learning algorithm has good
performance in a computer vision task. Furthermore,
the online version enables large scale learning of con-
ditional random fields.
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